SPEECH INTELLIGIBILITY INDEX MODEL:

A Key Aspect to a Child’s Development of Speech and Language

July 17, 2014

Mentor: Dr. Jacob Oleson
Melissa Jay
Colorado College

Katelyn Zumpf
North Central College
Outline

1. Importance of the study
2. Introduction to hearing
3. Methods for imputation
4. Construction of SII Model
5. Analysis of Imputations
6. Concluding Remarks
The development of speech and language in children is critically impacted by the child’s ability to hear.

- OCHL Grant

It has been found that children with hearing loss, who fail to seek proper help, have a delay in their speech development.
Hearing

- “Speech Banana”
- Shows the pitches and levels of loudness for which certain sounds and speech are heard
Hearing Aids

- Amplifies sound
- Patients have mild to moderate hearing loss
Cochlear Implants

- A Surgically implanted electronic device
- Patients damaged hair cells in cochlea
- Severe to complete hearing loss
- How it works?
 - Microphone captures sound from environment
 - Noise is filtered and converted to electric impulses
What is Speech Intelligibility Index?

- Measure between 0 and 1
 - 0: no understanding of speech
 - 1: speech information is audible and usable
 (normal hearing)
- Unable to be measured in individuals with cochlear implants
- No other way of obtaining this value
Goal of the Study

● Find a model that predicts “functional” Speech Intelligibility Index (SII) for a child with a cochlear implant

● Determine when hearing loss is identified, which hearing corrective action approach would provide a child with the most long term advantages: -hearing aids or cochlear implants?
Data Set and Variables

- 77 Children, ages 7-9
 - 18 with Cochlear Implants (CI)
 - 59 with Hearing Aids (HA)

- 16 Variables
 - SII
 - Word Attack, Passage Score, Mother’s Education, Pure-tone Average
Could these children benefit more with a cochlear implant?
Multiple Imputation

- A method used to predict missing data values
- Imputations of SII for children with CI and of missing values in explanatory variables
- Software package used: Multivariate Imputation by Chained Equations (MICE) in R
- A Markov-Chain Monte Carlo algorithm (MCMC) is used in this package
MCMC Example

<table>
<thead>
<tr>
<th>SII</th>
<th>Word Attack Score</th>
<th>Passage Score</th>
<th>Mother’s Education Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>90</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>0.884</td>
<td>122</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132</td>
<td>5</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>120</td>
<td>5</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>110</td>
<td>2</td>
</tr>
</tbody>
</table>

Iteration Order: 1. Word Attack→ Passage→ SII

... 200. Word Attack→ Passage→ SII

\[
\theta_{1}^{*}(t) \sim P\left(\theta_{1} \mid Y_{1}^{\text{obs}}, Y_{2}^{(t-1)}, \ldots, Y_{p}^{(t-1)}\right)
\]

\[
Y_{1}^{*}(t) \sim P\left(Y_{1} \mid Y_{1}^{\text{obs}}, Y_{2}^{(t-1)}, \ldots, Y_{p}^{(t-1)}, \theta_{1}^{*}(t)\right)
\]

\[
\theta_{p}^{*}(t) \sim P\left(\theta_{p} \mid Y_{p}^{\text{obs}}, Y_{1}^{(t)}, \ldots, Y_{p-1}^{(t)}\right)
\]

\[
Y_{p}^{*}(t) \sim P\left(Y_{p} \mid Y_{p}^{\text{obs}}, Y_{1}^{(t)}, \ldots, Y_{p-1}^{(t)}, \theta_{p}^{*}(t)\right)
\]
MCMC Example

<table>
<thead>
<tr>
<th>SII</th>
<th>Word Attack Score</th>
<th>Passage Score</th>
<th>Mother’s Education Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>90</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>0.884</td>
<td>122</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>0.86</td>
<td>117</td>
<td>132</td>
<td>5</td>
</tr>
<tr>
<td>0.57</td>
<td>115</td>
<td>120</td>
<td>5</td>
</tr>
<tr>
<td>0.77</td>
<td>109</td>
<td>110</td>
<td>2</td>
</tr>
</tbody>
</table>

Iteration Order: 1. Word Attack → Passage → SII

... 200. Word Attack → Passage → SII

\[
\begin{align*}
\theta_1^{* (t)} & \sim P\left(\theta_1 | Y_{1}^{\text{obs}}, Y_2^{(t-1)}, ..., Y_p^{(t-1)}\right) \\
Y_1^{* (t)} & \sim P(Y_1 | Y_{1}^{\text{obs}}, Y_2^{(t-1)}, ..., Y_p^{(t-1)}, \theta_1^{* (t)}) \\
\theta_p^{* (t)} & \sim P\left(\theta_p | Y_p^{\text{obs}}, Y_1^{(t)}, ..., Y_{p-1}^{(t)}\right) \\
Y_p^{* (t)} & \sim P(Y_p | Y_p^{\text{obs}}, Y_1^{(t)}, ..., Y_{p-1}^{(t)}, \theta_p^{* (t)})
\end{align*}
\]
Model Assumptions

- To perform multiple imputation, response variables are supposed to be “Missing at Random” (MAR). Is SII for CI children MAR?

- Same relationship between SII and explanatory variables for children with HA and CI

- Explanatory variables are independent
This model produces impossible results, or “Pregnant Fathers!”. Explanatory Variables: Word Attack, Passage Score, Mother’s Education.
- Imputes SII using logistic transformation
- Creates upper bound of 1.0
- Transforms SII back to normal range after imputation
- No pregnant fathers
- Imputed SII values are strongly influenced by PTA
- Conceptually this does not make sense
- Violates “variables missing at random”- significant difference between CI and HA
- Conclusion: remove PTA from the model
Our Final Imputation Model

- Impute Logistic SII (Response Variable)
- Explanatory variables: Word Attack, Passage Score, Mother’s Education
Regression with Completed Data

- After completing data set, the following multiple regression can be used to predict SII:

\[\text{Predicted Cl SII} = -2.21 - 0.016(\text{Word - Attack}) + 0.049(\text{Passage}) + \\
0.053(\text{Mom's Ed3}) + 0.011(\text{Mom's Ed4}) + 0.117(\text{Mom's Ed5}) \]

Multiple R-squared: 0.3279
Testing Aided SII Points (Logistic Imputations) vs PTA

Better Ear SII

Better Ear PTA

- CI Imputed SII
- HA Imputed SII
- HA Measured SII
- 25% Minimum Line
Conclusion

● New Criteria:
 ○ Any child with aided SII < 0.42
 ○ Any child with PTA > 49.5 dB

● Future research topics:
 ○ Determine if the newly-developed less-invasive Hybrid 10 Implants could further improve SII in children with severe hearing loss
 ○ Studying how generalizable our model is to different age groups
Acknowledgements

- We would like to thank our mentor, Dr. Jacob Oleson, for his support and guidance throughout this research as well as:

 Dr. Bruce Tomblin
 Dr. Gideon Zamba
 Terry Kirk
 Melissa Pugh

 Joe Moen
 Entire Biostatistics Department
 Home Institutions

Questions?