ASSOCIATION BETWEEN INITIAL TREATMENT AND SUBSEQUENT PRIMARIES IN HODGKIN'S LYMPHOMA PATIENTS

Ariana Cavazos
Rebecca Rasnick
What is Hodgkin’s Lymphoma?

- Hodgkin’s Lymphoma is a type of cancer in the lymphatic system.
- The lymphatic system is a piece of the immune system which transports fluids through the human body.
 - Within the lymphatic system are B cells and T cells.
 - B cells are responsible for creating antibodies and storing pathogen information.
 - T cells hunt and kill infected cells, as well as sends cytokines to alert the immune system of a foreign object.
- Most cases of Hodgkin’s Lymphoma begin when B cells are compromised.
Classic Hodgkin’s Lymphoma Vs. NLPHD

- About 95% of Hodgkin’s Lymphoma in developed countries is Classic Hodgkin’s Lymphoma
 - The carcinogenic cells are classified as Reed-Sternberg cells. These are large and abnormal B cells

- Nodular Lymphocyte Predominant Hodgkin’s Disease (NLPHD) takes up the other 5%
 - The cells are very large, often called popcorn cells, and are variants of the Reed-Sternberg cells
What are the Known Risk Factors?

- Mononucleosis- Those who have had mononucleosis have greater risk because of their prior exposure to the Epstein-Barr virus (EBV).
- Age- Crockett and Lunning (2014) stated the most common age ranges of occurrence are 15-30 and over 50 years.
- Gender- Crockett and Lunning (2014) also claim the disease is more prevalent in men than women.
- HIV- The risk is increased for HIV positive subjects.
Importance of Hodgkin’s Lymphoma Research

- The National Institute of Health determined that “In 2016, it is estimated that there will be 8,500 new cases of Hodgkin’s Lymphoma and an estimated 1,120 people will die of this disease” (2016) in the United States.

- Cancer Research UK stated “0.5% of cancer cases diagnosed in adults in 2012 were Hodgkin Lymphoma (Worldwide). This is 65,950 cases” (2014).
Problem

- It is believed that Chemotherapy and/or Radiation may be associated with secondary malignancies (cancer recurrences).
- There is also the belief that radiating an organ may be associated with surrounding organ failures or may be associated with carcinogenic states.

Questions

- How does Initial Treatment affect subsequent primaries in Hodgkin’s Lymphoma patients?
- What are contributing prognostic factors associated with developing subsequent primaries?
Information About our Dataset

- Our database is the oncology registry at the University of Iowa
- There were 518 patients considered in this study
- The age of diagnosis ranged from 3 to 90 years of age
- 296 males and 222 females were involved
- 463 people did not have a recurrence, 47 people had a single recurrence, and 8 people developed two recurrences
- The treatments were categorized as Chemotherapy, Radiation, and combinations of these treatments
Cancer Recurrences

![Graph showing cancer recurrences](image)
General Treatments for Hodgkin’s Lymphoma

Chemotherapy

- Kills cells and prevents the division of rapidly dividing cells
- Can be administered orally or through an IV

Radiation

- External Radiation is performed by a medical device outside the body that sends radiation to the carcinogenic cells

Combination of Chemotherapy and Radiation
Question

- Which methods will we use to assess the association between occurrences and Initial Treatment groups, or other prognostic factors?

Answer

- We will use an adaptation of the Cox Proportional Hazards Model
The Cox Proportional Hazards Model is a method used to analyze the likelihood of an event happening as a function of prognostic factors and the amount of time elapsed.

\[
\log \left(\frac{h_i(t)}{h^0(t)} \right) = \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi} \quad \Leftrightarrow \quad \frac{h_i(t)}{h^0(t)} = e^{(\beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi})} \quad (1)
\]

The hazard function is the probability of this certain event happening within a short time frame, given that the individual has survived treatment up to that point.

\[
h(t) = \lim_{\delta t \to 0} \left\{ \frac{P(t \leq T < t + \delta t | T \geq t)}{\delta t} \right\} \quad (2)
\]

The baseline hazard is when no covariates are taken into account:

\[
h^0(t)
\]
Outcome

- (Gap Time, Event Indicator)

Predictors or Prognostic Factors

- Initial Treatment
- Follow-Up Treatment
- Age
- Gender
How does Initial Treatment Affect the Hazard of Recurrence?

- The Initial Treatment groups are: Chemotherapy (Chm)—Radiation (RT)—Chm&RT
- We start by analyzing an univariate CPH model adaptation with response variable being the time to recurrence and covariate being Initial Treatment group where the baseline for comparison is Chm&RT

Results

- Chm alone when compared to Chm&RT shows a very statistically significant difference with a higher hazard of recurrence
- RT when contrasted to Chm&RT shows a slight significance with approximately 3 times the hazard of recurrence

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|-------|------|-----------|----------|------|----------|
| Chm | 1.30 | 3.67 | 0.47 | 2.74 | 0.00613 |
| RT | 1.02 | 2.76 | 0.52 | 1.97 | 0.04868 |
| Chm&RT| - | - | - | - | - |
How does Follow-Up Treatment Affect the Hazard of Recurrence?

- The Follow-Up Treatment groups are: Chm—RT—Chm&RT—Other Treatments
- We chose Chm&RT as the baseline for these groups

Results

- There is marginally significant evidence that Chm has a larger hazard than baseline.
- RT and the Other Treatments do not show statistical significance in this study.

| | Coef | Exp(coef) | Se(coef) | Z | Pr(>|z|) |
|----------------|------|-----------|----------|------|----------|
| Chm | 0.95 | 2.59 | 0.486 | 1.96 | 0.0506 |
| RT | 0.43 | 1.53 | 0.542 | 0.79 | 0.4326 |
| Other Treatments | 0.86 | 2.36 | 0.510 | 1.68 | 0.0925 |
| Chm&RT | - | - | - | - | - |
How does Age Affect the Hazard of Recurrence?

- We first compare Age as a single group

Results

- Each year that passes, the hazard of recurrence multiplies by approximately 1.04
 - This may not sound alarming at first, but this could accumulate over a large period of time

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|-----|------|-----------|----------|-----|----------|
| Age | 0.04 | 1.04 | 0.007 | 6.14| 8.3e-10 |
Categorizing Age

- Crockett and Lunning (2014) claimed that Hodgkin’s Lymphoma is most common in two Age groups:
 - 15-30 years of age
 - Over 50 years of age

- We wanted to categorize age into Age groups to assess their effect on the hazard of recurrence
How does Categorizing Age Affect the Hazard of Recurrence?

- We chose the baseline hazard for Age to be the youngest group

Results

- There is no statistical significance for the 15-30 age group
- When 31-49 year olds are compared to the baseline, the hazard of recurrence increases
- The group of 50 years and older have over 20 times the hazard of recurrence compared to baseline

| Age Group | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|-------------------|------|-----------|----------|------|----------|
| 15-30 | 1.17 | 3.23 | 1.031 | 1.14 | 0.25513 |
| 31-49 | 2.45 | 11.58 | 1.017 | 2.41 | 0.01606 |
| 50 and Older | 3.04 | 20.92 | 1.037 | 2.93 | 0.00336 |
| 14 and Younger | - | - | - | - | - |
How does Gender Affect the Hazard of Recurrence?

- We chose the baseline hazard to be male

Results

- Being female is marginally significant with a lower hazard of recurrence

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|-------|------|-----------|----------|-------|----------|
| Female | -0.49 | 0.61 | 0.265 | -1.86 | 0.0632 |
| Male | - | - | - | - | - |
Question

- What is the joint effect of these prognostic factors on the hazard of recurrence?
- We explore this question by considering a multivariate Cox Proportional Hazards Model
Multivariate Cox Proportional Hazards Model

- A multivariate CPHM approximates the hazard when all other factors are held fixed
- Chm alone as Initial Treatment multiplies the hazard by more than 11
- The effect of Initial Treatment being RT multiplies the hazard by nearly 20
- Ages 15-30 do not show any statistical significance

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|---------------------------|------|-----------|----------|-------|----------|
| Initial Treatment: Chm | 2.40 | 11.02 | 1.199 | 2.00 | 0.04547 |
| Initial Treatment: RT | 2.93 | 18.73 | 1.284 | 2.28 | 0.02253 |
| Age: 15-30 | 1.08 | 2.95 | 1.035 | 1.05 | 0.29541 |
| Age: 31-49 | 2.23 | 9.33 | 1.021 | 2.19 | 0.02869 |
| Age: Over 50 | 2.80 | 16.43 | 1.042 | 2.69 | 0.00724 |
| Gender | -0.50| 0.61 | 0.286 | -1.76 | 0.07903 |
| Follow-Up Treatment: Chm | -1.72| 0.18 | 1.213 | -1.42 | 0.15517 |
| Follow-up Treatment: RT | -2.35| 0.09 | 1.319 | -1.79 | 0.07423 |
| Follow-up Treatment: Other Treatments | -1.58 | 0.21 | 1.196 | -1.32 | 0.18656 |
Multivariate Cox Proportional Hazards Model

- Patients between 31-49 years of age have an increase in the hazard of recurrence
- Those above the age of 50 have 16 times the hazard when compared to ages 14 and younger
- Gender is not statistically significant in this study
- The Follow-Up Treatment has no statistical significance as well but is worth adjusting for

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|---------------------------|------|-----------|----------|------|----------|
| Initial Treatment: Chm | 2.40 | 11.02 | 1.199 | 2.00 | 0.04547 |
| Initial Treatment: RT | 2.93 | 18.73 | 1.284 | 2.28 | 0.02253 |
| Age: 15-30 | 1.08 | 2.95 | 1.035 | 1.05 | 0.29541 |
| Age: 31-49 | 2.23 | 9.33 | 1.021 | 2.19 | 0.02869 |
| Age: Over 50 | 2.80 | 16.43 | 1.042 | 2.69 | 0.00724 |
| Gender | -0.50| 0.61 | 0.286 | -1.76| 0.07903 |
| Follow-Up Treatment: Chm | -1.72| 0.18 | 1.213 | -1.42| 0.15517 |
| Follow-up Treatment: RT | -2.35| 0.09 | 1.319 | -1.79| 0.07423 |
| Follow-up Treatment: Other Treatments | -1.58 | 0.21 | 1.196 | -1.32 | 0.18656 |
Problem

- Additional insights came to light after consulting with an expert in the field of Lymphoma, Dr. Brian K. Link. We were informed treatments have evolved over time. For example
 - Radiation was primarily used in the 80’s since Chemotherapy was very toxic in that time period
 - Nowadays both treatments are widely used and well tolerated
- Therefore the monitoring period is worth adjusting for to reflect these underlying changes

Solution

- We adjusted for the monitoring period in the Cox Proportional Hazards Model
Adjusted Multivariate Cox Proportional Hazards Model

- When the Monitoring Period is adjusted for, Initial Treatment being Chm and Ages 31-49 lose their significance
- Initial Treatment being RT now shows a decrease in the hazard of recurrence
- Patients over the Age of 50 multiplies the hazard of recurrence by 12
- The Monitoring Period in this study is very significant

| | Coef | Exp(coef) | Se(coef) | z | Pr(>|z|) |
|--------------------------|-------|-----------|----------|--------|----------|
| Initial Treatment: Chm | -0.424| 0.654 | 0.299 | -1.42 | 0.1561 |
| Initial Treatment: RT | -1.863| 0.155 | 0.764 | -2.44 | 0.0148 |
| Age: 15-30 | 0.950 | 2.585 | 1.036 | 0.92 | 0.3592 |
| Age: 31-49 | 1.861 | 6.432 | 1.028 | 1.81 | 0.0701 |
| Age: Over 50 | 2.492 | 12.085 | 1.048 | 2.38 | 0.0175 |
| Gender | -0.002| 0.979 | 0.297 | -0.07 | 0.9432 |
| Follow-Up Treatment: Chm | 0.603 | 1.828 | 0.501 | 1.21 | 0.2282 |
| Follow-up Treatment: RT | 0.644 | 1.904 | 0.548 | 1.18 | 0.2400 |
| Follow-up Treatment: Other Treatments | 0.209 | 1.232 | 0.527 | 0.40 | 0.6916 |
Conclusion

- Before adjusting for the monitoring period, our findings suggested that the combination of Chemotherapy and Radiation was protective as Initial Treatment
 - Radiation alone was the most hazardous

- After factoring in expert opinion our findings are reversed. Our findings support that Radiation alone is the least hazardous as Initial Treatment
Future Research

- Dr. Brian K. Link also suspects tumor stage and tumor size might determine the treatment administered. Thus, these variables might be associated with the hazard of recurrence
 - Unfortunately, our data did not contain an adequate amount of stages recorded, nor did it include tumor size

- Since medical treatments are constantly evolving, further research is needed to consider the year the patient was treated

- Further exploration must also be made to consider the frailty of the patient and the treatment they receive
References

Acknowledgements

- Dr. Gideon K. D. Zamba
- Sarah Bell
- Dr. Brian K. Link
- Lauren Sager
- Miles Dietz
- Terry Kirk
- Most of all, ISIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI) HL131467
Thank you for your time

Are there any questions?