Testing Statistical Models to Improve Screening of Lung Cancer

Elliot Burghardt: University of Iowa

Daren Kuwaye: University of Hawai‘i at Mānoa

Iowa Summer Institute in Biostatistics - University of Iowa

Department of Biostatistics

Faculty Mentor: **Brian Smith, PhD**, Professor, Dept. of Biostatistics, University of Iowa
Background

- Over 1 in 4 cancer deaths in the US
- Early-stage detection improves prognosis
- CT Scans
- National Lung Screening Trial (NLST)
 - CT screening detects more early-stage cancers
 - CT scans have a False Positive Rate of 96.4%
- False positives may require invasive procedures to resolve the diagnosis
Overview – Data Collection

Radiomic features – quantified characteristics of tumor/nodule

Process
- Image segmentation – nodule and parenchyma
- Feature extraction – summary statistics of the following:
 - Intensity
 - Shape
 - Border
 - Texture

Dilger et al.
Overview – Data Analysis

- **Goal:** Use radiomic features to improve classification of nodule
- **Supervised machine learning**
 - **Variables**
 - Input: 144 radiomic variables and 2 clinical variables
 - Output: Cancer status - Malignant or Benign
 - **4 models**
 - Use Cross Validation to estimate predictive performance
 - Compare the area under the ROC curve for each combination of tuning parameter(s)
Data Summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Subjects</td>
<td>198 (100%)</td>
</tr>
<tr>
<td>Benign</td>
<td>89 (44.9%)</td>
</tr>
<tr>
<td>Malignant</td>
<td>109 (55.1%)</td>
</tr>
<tr>
<td>Clinical Variables</td>
<td>8</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Mean = 59.93 (\text{sd} = 13.77)</td>
</tr>
<tr>
<td>Pack Years</td>
<td>Mean = 26.39 (\text{sd} = 29.11)</td>
</tr>
<tr>
<td>Radiomic Variables</td>
<td>144</td>
</tr>
</tbody>
</table>
Cross Validation (CV)

- Used to estimate predictive performance
- Process (3-Fold CV):
 - Protects against “over-fitting” a model
 - To improve estimation, we chose to use 10-Fold CV repeated 10 times

Kuhn and Johnson, p. 71
Model 4 - Artificial Neural Network

- Thought of as a “black box” inspired by the brain
- Tuning Parameter: number of hidden units
- Hard to interpret
- ROC = 0.79
Model 3 – Partial Least Squares

- Linear regression model with fewer variables
 - Orthogonal linear combinations of predictor variables
 - Dimensions are reduced
- Tuning Parameter: number of components
- Hard to interpret
- Continuous outcomes...
- ROC = 0.80
Model 2 – Stochastic Gradient Boosting

- Uses many binary trees
- Final decision based on majority rule
 - (Ties broken at random)
- Variable selection at each node
- Tuning parameters: number of trees, height of tree
- ROC = 0.83
Model 1 – Elastic Net
Penalized Logistic Regression

- Binomial model is represented by

\[
\log \frac{\Pr(\text{Diagnosis} = 1 | X = x)}{\Pr(\text{Diagnosis} = 0 | X = x)} = \beta_0 + \beta^T x
\]

- \(G = \{0, 1\} \) where 0 is Benign and 1 is Malignant
- \(X \) is vector of input variables
- \(\beta \) is vector of coefficients

- **Objective function**

\[
\min_{(\beta_0, \beta) \in \mathbb{R}^{p+1}} \left\{ -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot (\beta_0 + x_i^T \beta) - \log(1 + e^{(\beta_0 + x_i^T \beta)}) \right\} + \lambda \left\{ (1 - \alpha) \frac{1}{2} \sum_{j=1}^{p} \beta_j^2 + \alpha \frac{1}{2} \sum_{j=1}^{p} |\beta_j| \right\}
\]

Ridge vs Lasso

Variability vs Bias
Elastic Net Penalized Logistic Regression – Optimization

Tuning parameters
- Mixing percentage (α)
- Regularization parameter (λ)

Optimal Performance
- $\alpha = 0.94$
- $\lambda = 0.03$
- ROC = 0.84
Elastic Net Penalized Logistic Regression - Optimization

Tuning parameters
- Mixing percentage (α)
- Regularization parameter (λ)

Optimal Performance
- $\alpha = 0.94$
- $\lambda = 0.03$
- ROC = 0.84
Elastic Net Penalized Logistic Regression – Equation

\[
\log \frac{Pr(Diagnosis = 1 | X = x)}{Pr(Diagnosis = 0 | X = x)} = 0.299 \\
+ 0.993 PackYears \\
+ 0.764 Age \\
- 0.217 PhysSphComp5 \\
+ 0.213 NodeFeat6 \\
+ 0.191 PhysSphComp6 \\
- 0.189 PhysSphComp3 \\
+ 0.157 X2DKurtNod3 \\
+ 0.085 NodeFeat7 \\
+ 0.048 X2DVarSurrTiss5 \\
+ 0.002 NodeFeat3
\]
Elastic Net Penalized Logistic Regression - Variables
Summary

- Models were based on 146 measurements from 198 subjects at the University of Iowa Hospital
 - Clinical variables had a large impact
 - Both nodule and parenchyma features had an impact
- All of our models had similar performance despite design differences
 - ROC between 0.79 and 0.84
 - Approach from uninterpretable black box to a collection of binary trees to logistic regression
- Elastic net model performance
 - Reduced false positive rate (23.6%)
 - At the expense of sensitivity (70.6%)
Future Work

- Set a threshold for false negative then minimize the false positive
- Study the impact of changing the population on the performance of this model
 - Adults aged 55-80 with a history of smoking
 - Multicenter
 - Across US vs. global
 - Beyond academic medical institutions
- Use model to differentiate between types of lung cancer
 - Histology-based
 - Molecular subsets
References

Acknowledgement

Instructors
- Brian Smith, PhD
- Gideon Zamba, PhD
- Lauren Sager

Collaborators
- Samantha Dilger, PhD
- Johanna Uthoff
- Alexandra Judisch
- Emily Hammond
- Sarah Mott
- John Newell, Jr.
- Eric Hoffman, PhD
- Jessica Sieren, MD

Funding
- SIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI) HL131467
- MSTP sponsored by the National Institute of General Medical Sciences (NIGMS) T32 GM007337
Questions