Antibiotic Resistance: Past, Present and Future

Karen Bush, PhD
Professor of Practice in Biotechnology
Indiana University Bloomington

Great Plains Emerging Infectious Diseases Conference
University of Iowa
April 7, 2017
Conflicts of Interest (2016-2017)

Retiree Compensation:

35 Years in Antibacterial R&D (1973–2009):
Bristol-Myers Squibb, Johnson & Johnson, Pfizer (Wyeth)

Consultant or Scientific Advisory Board:

Achaogen, Allecra, Fedora, Gladius, Melinta, Merck, Roche, WarpDrive

Research Support:

Achaogen, Allergan/Actavis, Merck, Tetraphase

Shareholder:

Fedora, Johnson & Johnson
Outline of Presentation

• Antibiotic resistance
 – Historical perspectives
 – Current situation
 – Future trends
FAQs Related to Antibiotic Resistance

• What is an antibiotic/antimicrobial agent?
 – An antibiotic is generally defined as a drug that kills bacteria, or prevents them from growing
 – An antimicrobial agent is a drug that fight infections caused by bacteria, viruses or fungi/yeast

• What is antimicrobial resistance?
 – The ability of a microbe (bacteria, virus, fungus) to evade the action of an antibiotic or antimicrobial agent
 – Resistance occurs when microbes have genetic mutations that allow them to grow in the presence of a previously effective drug

https://www.cdc.gov/drugresistance/about.html ; http://www.clipartkid.com/tell-us-cliparts/
Antibiotic Resistance is a Fact of Life.
The CDC and WHO on Antibiotic Resistance

• “Antibiotic resistance has been called one of the world's most pressing public health problems.” (http://www.cdc.gov/getsmart/antibiotic-use/antibiotic-resistance-faqs.html)

• “Resistance anywhere is resistance everywhere” (http://www.cdc.gov/getsmart/campaignmaterials/week/downloads/factsheet)

• “…it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country.” (WHO’s first global report on antimicrobial resistance/2014) (http://www.who.int/mediacentre/news/releases/2014/amr-report/en/)
Antibacterial Resistance Today

• According to the Centers for Disease Control and Prevention (CDC) report in 2013
 • More than 2 million people in the United States are infected with antibiotic-resistant bacteria
 – At least 23,000 deaths due to hospital-acquired resistant bacteria
• According to the UN report (2016)
 – An estimated 700,000 people die each year from drug-resistant strains of common bacterial infections, HIV, tuberculosis, and malaria.
 – A 2014 report from the Review on Antimicrobial Resistance projected that if rising AMR is not addressed, the annual death toll could reach 10 million by the year 2050

United Nations General Assembly and Antimicrobial Resistance (Sept. 21, 2016)

- “Antimicrobial resistance (AMR) poses a fundamental, long-term threat to human health, sustainable food production and development,” (UN Secretary-General Ban Ki-moon)
- All UN member states signed a declaration to fight drug-resistant superbugs estimated to kill more than 700,000 people each year.
- A blueprint for combating AMR was put forward by the World Health Organization (WHO) in 2015
- The declaration allowed for formation of a group to address AMR representing the WHO, the Food and Agriculture Organization (FAO), and the World Organization for Animal Health (OIE)

• March 2015

• September 15, 2015
 – HHS, the U.S. Department of Agriculture (USDA), and the U.S. Department of Defense (DoD) announced appointment of nationally recognized experts to the Advisory Council

• Role of the Advisory Council
 – Provide advice, information, and recommendations to the Secretary regarding programs and policies intended to support and evaluate the National Strategy for Combating Antibiotic-Resistant Bacteria (Strategy) and the National Action Plan for Combating Antibiotic-Resistant Bacteria (Action Plan) on these topics:
 • Detect, prevent, and control illness and death related to antibiotic-resistant infections
 • Reduce the emergence and spread of antibiotic-resistant bacteria
 • Ensure the continued availability of effective therapeutics for the treatment of bacterial infections

• Meets quarterly to discuss antibiotic resistance and issue reports

http://www.hhs.gov/ash/carb/
Antibiotic Resistance: Past, Present and Future
We Have a Classical Evolutionary Battle

Naturally-occurring antibiotics are produced by microorganisms in complex environmental sources to conserve resources for their own growth

+ Antibiotics
We Have a Classical Evolutionary Battle

Antibiotics are produced by microorganisms in complex environmental sources to conserve resources for their own growth

+ Antibiotics
+ Resistance Factors

Other microorganisms produce resistance determinants such as inactivating enzymes that allow their own survival
Antibiotic Resistance Genes are Ancient!

• β-lactam-inactivating enzymes are estimated to have originated over 2 billion years ago
 – A little less than half the estimated geological age of the earth

• A variety of resistance genes have been identified in
 – A region of the Lechuguilla Cave, New Mexico that had been isolated for over 4 million years
 – 30,000-year-old permafrost sediments east of Dawson City, Yukon

Fast facts about penicillin

• Identified by Alexander Fleming in 1928
• Human use of penicillin:
 • First patient dosed in 1940 improved but died
 • First patient cured by penicillin in 1942
• Outbreak of World War II was the impetus for a collaborative effort to produce larger quantities of penicillin.
 • Consortium of the USDA Northern Regional Research Laboratory in Peoria and five pharmaceutical companies: Abbott Laboratories, Lederle Laboratories, Merck, Pfizer and E.R. Squibb & Sons
 • Highest titer of penicillin was produced from a cantaloupe from a Peoria fruit market.
• Sufficient quantities eventually produced during WW II to treat the Allied soldiers

Life magazine, August 14 1944

http://www.pbs.org/newshour/rundown/the-real-story-behind-the-worlds-first-antibiotic/
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html#increasing-penicillin-yield
Following WW II, Many Pharmaceutical Companies Responded to the Call for New Antibiotics -- with Diversity

- Multiple β-lactam antibiotics
 - Penicillins
 - Cephalosporins
- Erythromycin
- Clindamycin
- Streptomycin, gentamicin, tobramycin
- Sulfamethoxazole with trimethoprim
- Tetracycline, doxycycline, minocycline
- Rifampicin
- Polymyxin

Time period: ~1943 - 1975
Most were Isolated from Natural Products, Especially Soil Samples
β-Lactam-Containing Antimicrobial Agents, Like Most Antibiotics, Originated from Natural Sources

- Penicillin (1928) (mold)
- Cephalosporin (1955) (fungus in sewage sludge)
- Carbapenem (1976) (soil samples)
- Oxapenam (Clavam) (1976) (soil sample)
- Monobactam (1979) (soil, bog, water samples)
But, Resistance To Our Known Antibiotics Became a BIG Issue
Rapid Reports of Resistance Associated With Introduction of New Agents

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Agent</th>
<th>FDA Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>Penicillin</td>
<td>1943</td>
</tr>
<tr>
<td>1947</td>
<td>Streptomycin</td>
<td>1947</td>
</tr>
<tr>
<td>1956</td>
<td>Tetracycline</td>
<td>1952</td>
</tr>
<tr>
<td>1970</td>
<td>Gentamicin</td>
<td>1967</td>
</tr>
</tbody>
</table>
Resistance to β-Lactams -- Important

• β-Lactam resistance is often used as a marker for other plasmid-encoded resistances
 – Co-resistance is common
• Focus for the rest of the talk

Modified from Bush and Bradford, Cold Spr. Harbor, 2016
Resistance to β-Lactams

- Gram-positive bacteria
 - Altered Penicillin-Binding Proteins (PBPs/cell wall synthesizing enzymes)
 - Staphylococcal penicillinases
- Gram-negative bacteria
 - Efflux
 - Decreased permeability
 - β-Lactamase production
 - With or without efflux or porin defects
 - Altered PBPs
β-LACTAMASES:
THE MOST PREVALENT RESISTANCE MECHANISM FOR β-LACTAM ANTIBIOTICS
β-Lactamases

- Enzymes that can hydrolyze penicillins, or carbapenems, or cephalosporins, or monobactams, or any other β-lactam
- The primary resistance mechanism operative for β-lactam antibiotics in Gram-negative bacteria
Rapid Resistance to Penicillin After Its Introduction During WW II

- Initial use of penicillin to treat streptococcal infections
- Penicillin-resistant *Staphylococcus aureus* soon reported
 - United States
 - 1942: 4 patients receiving penicillin
 - 1944: 7 patients not receiving penicillin
 - England
 - Penicillinase (St. Thomas Medical School)

Early Compilations of Unique Natural β-Lactamases in Gram-Negative Bacteria

<table>
<thead>
<tr>
<th>Classification</th>
<th>Year</th>
<th>Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack and Richmond</td>
<td>1970</td>
<td>13</td>
</tr>
<tr>
<td>Richmond and Sykes</td>
<td>1973</td>
<td>27</td>
</tr>
<tr>
<td>Sykes and Matthew</td>
<td>1976</td>
<td>57</td>
</tr>
</tbody>
</table>

Recognition of Transferable β-Lactamases in Gram-Negatives

- Earliest reported β-lactamases were chromosomal
- In the mid-1960s “R-factors” conferring resistance to β-lactams were described in Gram-negative bacteria
 - Plasmids encoding β-lactamases
 - Japan, England, Greece
- Substrate profiles for many of these enzymes included new penicillins and cephalosporins that had been introduced following the identification of cephalosporin C in the 1950s
- By the 1970s RTEM (TEM-1) became the most prevalent plasmid-encoded β-lactamase in surveillance collections

The Promiscuous Spread of TEM-1 into *Neisseria gonorrhoeae* in 1976

- Plasmid-encoded “RTEM” entered *Neisseria gonorrhoeae* and traveled around the world
 - Two strains circulating with penicillin – and tetracycline -- resistance
 - Asia (Philippines, especially among prostitutes)
 - West Africa (Ghana)
- Dissemination assisted by sailors who imported strains to Ghana and, the UK, and elsewhere
- Great concern among the military & CDC
 - Single dose of penicillin was no longer effective
- Panic ensued from the pharmaceutical world
 - How can we contain this RTEM enzyme?

The Pharmaceutical World and β-Lactamases in 1977

- TEM-1 appeared in *Neisseria*, and then in *Haemophilus influenzae*
- Increased urgency to find new β-lactams
- European companies were trying to counteract TEM-1 and chromosomal cephalosporinases
 - β-lactams stable to hydrolysis
 - Inhibitors of enzymatic activity

Gunn ... Thornsberry, Lancet 2:845 (1974); Percival et al. Lancet 2:1379 (1976);
My Entry Into the World of β-Lactamases at Squibb in 1977

• Like other companies, E. R. Squibb implemented β-lactam-focused antibiotic discovery programs
 – Directed by Miguel Ondetti and Richard Sykes
 – Biochemists screened for novel β-lactamase inhibitors based on mechanistic and medicinal chemistry approaches
 – Microbiologists conducted targeted screening of natural products for novel β-lactams
• Results
 – Identification of 6-β-bromopenicillanic acid sulfone and non-druggable natural product inhibitors
 – Discovery of the monobactams
 – Development of aztreonam
 • Activity only against Gram-negative bacteria
Introduction of New β-Lactams and Emergence of New β-Lactamases

1940
Penicillin G

1950

1960
Cephalosporins

1970

1980
Carbapenems
ES-cephs

1990

2000

2010

Monobactams

Mostly Chromosomal β-lactamases

Mostly Plasmid-encoded β-lactamases

More carbapenems & ES-cephs

Bush, Personal Communication. 50 Years of ICAAC, ASM Press (2010)
Antibiotic Resistance: Past, Present and Future
Centers for Disease Control and Prevention (CDC)
Antibiotic Threat Report – 2013

CDC, Threat Report, September 16, 2013
“Multidrug-Resistant (MDR) Gram-Negatives: On the Highway to Hell”
Relations Among Functional Group & Molecular Class and Preferred Substrates

β-Lactamases

Serine

- Functional Group 2
 - Molecular Class A
 - Cephs
 - Group 2d
 - Pens (Cephs) (Carbapenems)

Metallo (Zn)

- Functional Group 3
 - Molecular Class B
 - Carbapenems, Pens, Cephs

Increasing Numbers of β-Lactamases (N = 2106)

Compilation of Unique β-Lactamase Sequences from Natural Isolates

CEPHALOSPORIN RESISTANCE DUE TO EXTENDED-SPECTRUM β-LACTAMASES (ESBLs)
Cephalosporin-Nonsusceptibility in European *Klebsiella pneumoniae* [EARSS/EARS-Net data 2005 - 2014]

Data from EARSS website: http://www.rivm.nl/earss/database/
ESBL Prevalence among *Enterobacteriaceae* Isolates from 72 U.S. Hospitals in 2012

Overall USA 12.2%

K. pneumoniae 27%

K. pneumonia 35%

CARBAPENEM RESISTANCE DUE TO CARBAPENEMASES
Carbapenem-Resistant *Enterobacteriaceae* (CRE)

- Carbapenems are the antibiotics with the greatest potency against the largest number of bacterial species
 - Carbapenems are often reserved in hospitals for the most critical patients
- Carbapenem-Resistant *Enterobacteriaceae* (CRE) are on the “Urgent Threat” list from the CDC
- Organisms are resistant to many, or all, antibiotics
- If carbapenems are not effective, most other antibiotics will not work either.
 - Resistance genes for other antibiotics are transferred together with carbapenemase genes
- Mortality in some hospitals can be as high as 70%
- High costs for a single CRE infection: up to $66,000

Carbapenemases – Main Cause for CRE

- β-Lactamases that are found on mobile elements (plasmids, integrons) that can be transferred freely among bacteria

- Class A carbapenemases with serine at active site (KPC)
 - Hydrolyze virtually all β-lactams
 - Most frequently found in the USA, Western Europe, China

- Metallo-β-lactamases (MBLs) contain at least one active zinc (VIM, NDM)
 - Hydrolyze all β-lactams except monobactams
 - MBLs more frequent in Asia-Pacific region and Mediterranean, but KPC now often in Italy and Greece
 - NDM-1, originating in India and Pakistan, is becoming widespread – including Indiana

- Unusual to find both kinds of enzymes in one organism, but IU students found isolates like these.

Prevalence of Carbapenem Resistance

KPC carbapenemases reported in the United States

Carbapenem Resistance in *K. pneumoniae* in Europe (2014)

Map was updated in April 2017

Carbapenem- Non-Susceptibility in European *Klebsiella pneumoniae* [EARSS data 2006 - 2014]

K. pneumoniae 2006

K. pneumoniae 2014

<table>
<thead>
<tr>
<th>Percentage resistance</th>
<th>2006</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50%</td>
<td>25 - <50%</td>
<td>10 - <25%</td>
</tr>
</tbody>
</table>

Data from EARSS website: http://www.rivm.nl/earss/database/
NDM (New Delhi Metallo-β-Lactamase)

- First identified in 2009 from patients with connections to India and Pakistan
- Isolates are highly resistant to almost all antibiotics
- Great outrage from the Indian government because this “superbug” was associated with medical treatment in India
- But, many public health issues in that area of the world
 - Counterfeit antibiotics available in incomplete doses on the street
 - Some hospitals used for medical tourism had poor infection control practices
 - Poor public sanitation throughout the country
- Now NDM enzymes are found globally (including USA) in bacteria that respond to few, if any, antibiotics

NDM-1 Metallo-β-Lactamases (MBLs) in the USA (Jan. 6, 2017)

https://www.cdc.gov/hai/organisms/cre/trackingcre.html
Carbapenemase-producing Enterobacteriaceae (CPE) in Canada: the Canadian Public Health Laboratory Network (CPHLN) data, 2008 to 2014

NDM Raised Issues with Antibiotic Usage and Public Health Issues in India

- Survey from Sept 26 to Oct 10, 2010
 - 171 seepage samples and 50 tap water samples from New Delhi
 - Controls: 70 sewage effluent samples from Wales
- $\text{bla}_{\text{NDM-1}}$ and NDM-1-producing organisms
 - 2 drinking-water samples
 - 51 seepage samples from New Delhi
 - Eleven “new” species including *Shigella boydii* and *Vibrio cholerae*
- As a result of this “public shaming” the Indian government instituted stricter controls on the sales of antibiotics
- Public sanitation is still an issue
 - Less that 31% of India’s 1.2 billion population has access to sanitation facilities.

CRE In Indiana – IU Collaboration

• Carbapenem resistance was rare in Indianapolis before 2009
• Surveillance begun in July 2009 at a central laboratory at the IU Pathology laboratory (G. Denys, IU Medical School) serving
 – Two large Indianapolis hospitals
 – Twelve smaller Health Care Centers (HCCs)
• CRE identified based on CDC guidelines
• Molecular characterization of CRE isolates
 – IU Biotechnology students
 – PCR conducted for
 • Serine and metallo-carbapenemases
 • Other β-lactamases
 – Gene sequencing conducted on enzymes of interest

Denys et al., Presented at ICAAC 2013
Our IU Lab Began to Track CRE in Indianapolis Health Care Centers

• Beginning in July 2009, surveillance of CRE in patient isolates was initiated.
 • 2 to 5 large urban hospitals in Indianapolis
 • 12 to 14 central Indiana health care centers (HCCs).

Results:
• Stricter infection control practices were instituted approx. 2011-2012.
• CRE incidence has plateaued

Kashikar et al. ICAAC 2015
Co-Production of Carbapenemases with Other β-Lactamases

<table>
<thead>
<tr>
<th>β-Lactamase</th>
<th>E. cloaca (n=3)</th>
<th>E. coli (n=5)</th>
<th>K. pneumonia (n=96)</th>
<th>S. marcescens (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPC-2</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>KPC-3</td>
<td>3</td>
<td>4</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>KPC-3 + VIM-1</td>
<td>3</td>
<td>0</td>
<td>(4)*</td>
<td>0</td>
</tr>
<tr>
<td>KPC-3 + NDM-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SME-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>KPC + SHV</td>
<td>2</td>
<td>4</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>KPC + TEM</td>
<td>3</td>
<td>5</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>KPC + CTX-M-15</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>KPC + TEM + SHV + CTX-M-15</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>KPC + TEM + SHV + OXA</td>
<td>3</td>
<td>4</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>

*VIM-encoding plasmids lost on storage

Zhang et al., ASM 2016
Timeline for MBLs in Indianapolis

Stable production
Transient production

VIM-1
(n=2)

VIM-1
(n=1)

VIM-1-type
(n=4)

VIM-1-type
(n=3)

NDM-1
(n=2)

Jan 2011
Jan 2012
Jan 2013

Bush lab, compiled from 2010 through 2013; Kashikar et al. ICAAC 2015
Timeline for MBLs in Indianapolis

Stable production
Transient production

VIM-1 (n=2)
VIM-1 (n=1)
VIM-1-type (n=4)
VIM-1-type (n=3)
NDM-1 (n=2)
NDM-1 (n=3)

Bush lab, compiled from 2010 through 2013; Kashikar et al. ICAAC 2015; Tulpule 2016
Molecular Relationships Among Isolates that Originally Produced both KPC and an MBL

- **Sequence typing for* K. pneumoniae**
 - Analyze the nucleotide sequences of 7 housekeeping genes
 - Compare to STs in international database at the Pasteur Institute

- **Determine the “pulsotype” of each strain based on the gel electrophoresis profile of an enzymatic digest of whole genomic DNA**

A. Tulpule, Microbe 2017
Molecular Relatedness of *K. pneumoniae* Isolates that Originally Produced both a KPC and MBL

<table>
<thead>
<tr>
<th>KPC-3 producing isolate</th>
<th>MBL</th>
<th>Sequence Type</th>
<th>Pulsotype</th>
<th>Health Care Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP-88</td>
<td>NDM</td>
<td>ST674</td>
<td>KpA</td>
<td>1</td>
</tr>
<tr>
<td>KP-49</td>
<td>VIM</td>
<td>ST258</td>
<td>KpA</td>
<td>2</td>
</tr>
<tr>
<td>KP-83</td>
<td>VIM</td>
<td>ST258</td>
<td>KpA</td>
<td>3</td>
</tr>
<tr>
<td>KP-84</td>
<td>VIM</td>
<td>ST258</td>
<td>KpA</td>
<td>4</td>
</tr>
<tr>
<td>KP-80</td>
<td>VIM</td>
<td>ST258</td>
<td>KpB</td>
<td>5</td>
</tr>
<tr>
<td>KP-85</td>
<td>VIM</td>
<td>ST258</td>
<td>KpB</td>
<td>6</td>
</tr>
<tr>
<td>KP-86</td>
<td>VIM</td>
<td>ST258</td>
<td>KpB</td>
<td>6</td>
</tr>
</tbody>
</table>

A. Tulpule, Microbe 2017
Antibiotic Resistance: Past, Present and Future
Stabilization of Resistance?
ESBLs in Intraabdominal Infections
SMART Study for 2009-2013 (USA)

Trends in prevalence of phenotypically ESBL-positive *E. coli* isolates from IAI in the USA (2009-2013)
29 hospitals, n=2897

“3rd Generation” Cephalosporin Resistance in European Invasive Isolates

E. coli

K. pneumoniae

Changes in CRE Incidence in Enterobacteriaceae After Strict Infection Control in NYC

1. Infection control program initiated in a 10-bed medical and surgical ICU in New York City (2006)
 – Mean number of new patients per 1,000 patient-days per quarter with cultures yielding carbapenem-resistant *K. pneumoniae*
 – Decreased from 9.7 before the intervention to 3.7 after the intervention (*P* < 0.001).
 – No change in carbapenem-R in *Acinetobacter* or *Pseudomonas*

2. 14 hospitals in NYC
 – 2009 compared to 2006
 – KPC in *K. pneumoniae* decreased from 38% to 29%
 – But Imipenem resistance increased:

	2006	2009
Acinetobacter	63%	82%
Pseudomonas	31%	39%

Appearance of the Transferable Colistin Resistance gene \textit{mcr} in the Asia-Pacific Region

- Transferable colistin resistance due to \textit{mcr}-1 gene
 - Phosphoethanolamine transferase enzyme family
 - Expression in \textit{E. coli} results in addition of phosphoethanolamine to lipid A
- First reported in a Chinese pig isolate in 2015. From 2011 to 2014 (in China)
 - 78 (15\%) of 523 samples of raw meat
 - 166 (21\%) of 804 animals (chickens and pork)
 - 16 (1\%) of 1322 samples from inpatients with infection
- Two 2015 \textit{K. pneumoniae} (n=2 with NDM-5 and \textit{mcr}-1) patient isolates resistant to carbapenems, not resistant to quinolones
- Appearance of \textit{mcr}-1 in \textit{E. coli} in first United States patient (May, 2016)
- At least two more variants have been identified.

http://www.cdc.gov/media/releases/2016/s0531-mcr-1.html
What Can We Do to Prevent and Treat these “Superbugs”?

• New antibiotics?
 – Limited number of new antibacterial drug discovery programs
 – Decreasing numbers of companies working on these drugs
Potential New Agents to Control Carbapenem Resistance?

- **β-lactamase inhibitor (BLI) combinations**
 - Two approved in 2014-2015
 - Ceftolozane-tazobactam* (especially *Pseudomonas*)
 - Ceftazidime-avibactam* (covers many CRE)
 - Other BLI combinations in development to treat CRE
 - Phase 1/2/3 clinical development = 9, including imipenem-relebactam*
 - At least 2 others in late preclinical evaluation
 - Not all will be successful, commercially or medically

- New aminoglycoside in Phase 3 – plazomicin*
- New tetracycline in Phase 3 – omadacycline and eravacycline*
- New antimicrobial peptides (Discovery work at IU)*

*New agents that have been tested against clinical isolates at IU

Antimicrobial Activities of New Agents Against 110 Indiana CRE Isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th><0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imipenem</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>10</td>
<td>58</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>Plazomicin</td>
<td>27</td>
<td>65</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Eravacycline</td>
<td>2</td>
<td>68</td>
<td>36</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>108</td>
</tr>
<tr>
<td>Ceftazidime-Avibactam</td>
<td>3</td>
<td>12</td>
<td>46</td>
<td>43</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td>Aztreonam-Avibactam</td>
<td>84</td>
<td>21</td>
<td>--</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*FDA approved

Li et al., ICAAC 2014; Zhang et al., ICAAC 2016; Zhang et al., J. Antibiotics 69:600 (2016)
Resistance to New Agents

• Resistance to plazomicin
 – 16S rRNA methyl transferases
 – Transferred on many naturally-occurring plasmids encoding NDM-1

• Resistance to ceftazidime-avibactam
 – Multiple mutations in KPC-3 carbapenemase conferring resistance to avibactam but restoring susceptibility to meropenem – in patients treated with ceftazidime-avibactam
 – Insertion sequences in *E. coli* PBP3 conferring resistance to cephalosporins and aztreonam but not meropenem

What Can We Do to Prevent and Treat these “Superbugs”?

- New antibiotics?
 - Limited number of new antibacterial drug discovery programs
 - Decreasing numbers of companies working on these drugs

- New incentives to entice companies back into the business?
Generating Antibiotic Incentives Now (GAIN) Act

FDA Safety and Innovation Act (signed into law July 9, 2012)

- Limited only to antibacterial and antifungal products for human use that treat serious or life-threatening infections
- HHS developed and will update a list of qualifying pathogens
 - Includes MRSA, *Bacillus anthracis*, CRE
- 5 additional years of Hatch/Waxman patent exclusivity for new antibiotics and antifungals
- Qualified infectious disease products eligible for Fast Track and Priority Review
- Provides advice for the rapid development of antibacterial drugs that target a limited spectrum of pathogens

http://www.idsociety.org/uploadedFiles/IDSA/Policy_and_Advocacy/Current_Topics_and_Issues/Antimicrobial_Resistance/10x20/Letters/To_Congress/IDSA%20Summary%20of%20Antibiotic%20Incentives%20in%20FDASIA.pdf
21st Century Cures Act
(Bipartisan Support, Dec. 2016)

• 94 to 5 Senate vote followed a 392 to 26 House vote
 – Supported by the pharmaceutical industry
 – Criticized by the FDA

• $6.3 billion in funding, mostly for the NIH

• $4.8 billion to NIH for precision medicine and biomedical research

• Expedite the process by which new drugs and devices are approved using “real world” data in addition to controlled clinical trial data
CARB-X

• Combatting Antibiotic Resistance Bacteria – Biopharmaceutical Accelerator established July 2016

• Global public-private partnership launched by HHS, NIAID and BARDA (Biomedical Advanced Research and Development Agency)

• Stimulate development of promising new antibacterial therapies over 5 years with $480 M in funding
 – BARDA
 – Wellcome Trust – London-based global charitable trust

• Announcement on March 30, 2017
 – $48 M for 11 early stage projects from 168 proposals
 – Goal is to fund up to a total of 20 projects

https://www.phe.gov/about/barda/CARB-X/Pages/default.aspx
European Responses

• The European Union
 – “Innovative Medicines Initiative” (IMI), the world's largest public-private partnership in the life sciences;
 – €3.3 billion budget for the period 2014-2024. Much of the funding is focused on antibacterial drugs.

• England’s Chief Medical Officer, Professor Dame Sally Davies
 – Stark warnings about the catastrophes if we do not immediately address the threat of antimicrobial resistance (2015 annual report).

• Members of the European Parliament (MEPs)
 – Action plan for ‘safer healthcare in Europe: improving patient safety and fighting antimicrobial resistance’ (2011-2016)
 – Second AMR Action Plan to be launched in 2017

What Can We Do to Prevent and Treat these “Superbugs”?

• New antibiotics?
 – Limited number of new antibacterial drug discovery programs
 – Decreasing numbers of companies working on these drugs
• New incentives to entice companies back into the business?
• Practice Antibiotic Stewardship
 – Use antibiotics wisely
 – Limit use in feed animals
 – Take antibiotics only when needed and for only as long as they are needed
Closing Thoughts

• Resistance is increasing -- globally
 – Resistance to β-lactams most worrisome because they travel on mobile elements, together with resistance genes that can confer resistance to most antibacterial agents
• Resistance in Indiana isolates is similar to what is being seen in other parts of the United States
• Carbapenem-resistant pathogens can be reduced in number, but never disappear completely
• Some progress has been made in developing new drugs to treat CRE infections, but resistance has already emerged.
New Antimicrobial Agents

RESISTANCE
Biotechnology Antibiotic Resistance Teams at IU

2010-2011

2011-2012

2012-2013

2013-2014

2014-2015

2015-2016

Funding:
Cubist, AstraZeneca, Achaogen, Tetraphase, Forest/Allergan, Merck

2016-2017
Thank you!
Back-Ups
Very Few Large US and European Pharmaceutical Companies Are Still Conducting Antibacterial Research - 2017

<table>
<thead>
<tr>
<th>1980 (N = 36)</th>
<th>1998 (N = 20)</th>
<th>2017 (N = 5-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>Abbott</td>
<td>Glaxo SmithKline</td>
</tr>
<tr>
<td>Astra</td>
<td>Astra</td>
<td>[Johnson & Johnson]</td>
</tr>
<tr>
<td>Ayerst</td>
<td>Bayer</td>
<td>Lilly</td>
</tr>
<tr>
<td>Bayer</td>
<td>Parke Davis</td>
<td>[Merck-ScheringPlough]</td>
</tr>
<tr>
<td>Beecham</td>
<td>Pfizer</td>
<td>Merck</td>
</tr>
<tr>
<td>Bristol-Myers</td>
<td>Bristol-Myers Squibb</td>
<td>Novartis</td>
</tr>
<tr>
<td>Burroughs</td>
<td>Hoechst Marion Roussel</td>
<td>Sanofi-Aventis</td>
</tr>
<tr>
<td>Ciba-Geigy</td>
<td>Roche</td>
<td>Warner-Lambert</td>
</tr>
<tr>
<td>Dow</td>
<td>Roussel</td>
<td>Wellcome</td>
</tr>
<tr>
<td>DuPont</td>
<td>Schering</td>
<td>Wyeth</td>
</tr>
<tr>
<td>Glaxo</td>
<td>Sanofi</td>
<td></td>
</tr>
<tr>
<td>Hoechst</td>
<td>SmithKline</td>
<td></td>
</tr>
<tr>
<td>ICI</td>
<td>Squibb</td>
<td></td>
</tr>
<tr>
<td>Lederle</td>
<td>Upjohn</td>
<td></td>
</tr>
<tr>
<td>Lilly</td>
<td>Warner-Lambert</td>
<td></td>
</tr>
<tr>
<td>Marion</td>
<td>Wellcome</td>
<td></td>
</tr>
<tr>
<td>Merck</td>
<td>Wyeth</td>
<td></td>
</tr>
<tr>
<td>Merrell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medium-sized company with anti-infective R&D