A Pilot Study of Endocrine Disrupting Chemicals in Iowa Public Drinking Water

Rena R. Jones, PhD, MS

Occupational & Environmental Epidemiology Branch
Division of Cancer Epidemiology & Genetics

Challenges to Providing Safe Drinking Water in the Midwest
September 21, 2017
NITRATE

- MCL for nitrate-nitrogen (NO₃-N), 10 mg/L
 - Methemoglobinemia
- IARC Group 2A: N-nitroso compounds (NOCs) formed after nitrate/nitrite ingestion are probable human carcinogens

ATRAZINE

- MCL, 3 ppb
- Cardiovascular and reproductive effects
- IARC Group 3: not classifiable as to human carcinogenicity
Nitrate and cancer

- Two cohorts: drinking water source data, residence histories
 - Iowa Women’s Health Study (IWHS) -- public water
 - Agricultural Health Study -- public water, private well estimates (Wheeler et al. STOTEN, 2015)

- Nitrate associated with risk of several cancers that have suspected hormonal etiology
 - Ovary, thyroid, bladder

- Is it nitrate? Something else?
EDC in drinking water

- Many known EDC; few are regulated in drinking water
- Conventional water treatment may not remove all EDC
- Traditional single chemical assays cannot capture a wide range of known and emerging EDC in drinking water
- New methods that broadly assess EDC activity in a complex mixture are needed for epidemiologic studies
- Are people exposed to EDC in treated drinking water?
Objective: Characterize global endocrine disruption activity in samples from public water utilities in Iowa

No study has evaluated holistic exposure to EDC in drinking water and cancer risk

Secondary aim: Evaluate feasibility for developing an exposure model that relates EDC activity to known water characteristics
Mammalian cell-based assays to detect global EDC activity

- Bioassay developed by the NCI Center for Cancer Research
- Capture total endocrine disruption as a global index of EDC activity, rather than a single hormone
- Steroid receptors reside in the cytoplasm bound to GFP, translocate to the cell nucleus upon hormone binding
- Translocation quantified expressed as ratio of nuclear vs. cytoplasmic intensity normalized to a DMSO-treated control
Mammalian cell-based assays to detect global EDC activity

- Estrogen
- Aryl hydrocarbon
- Androgen
- Glucocorticoid
- Thyroid β

Stavreva et al., *Sci Rep*, 2012
Stavreva et al, *Toxicology*, 2016
GFP-tagged translocation of known concentrations of hormones

![Bar chart showing translocation of GFP-GR in response to different concentrations of hydrocortisone, dexamethasone, and corticosterone.](image)

- **GFP-GR**
- **Concentration (nM)**: 0, 1, 3, 5, 10, 15, 20
- **Translocation**
 - **Hydrocortisone**
 - **Dexamethasone**
 - **Corticosterone**

* indicate statistical significance.
Pilot study: selection of utilities for water sample collection

- N=473 in IWHS
- Identified key predictive characteristics for EDC from the literature
 - e.g., NO₃-N, TTHMs, CAFOs
- Selected utilities that covered both population and diversity across these characteristics
Characteristics of 10 utilities in pilot study

<table>
<thead>
<tr>
<th>Utility</th>
<th>Water Source</th>
<th>Tertiary treatment*</th>
<th>Atrazine (ppb)</th>
<th>NO$_3$-N (mg/L)</th>
<th>TTHM* (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shallow alluvial groundwater</td>
<td>Activated carbon (AC)</td>
<td>-</td>
<td>2.98</td>
<td>41.1</td>
</tr>
<tr>
<td>2</td>
<td>Surface water</td>
<td>No AC</td>
<td>0.10</td>
<td>3.19</td>
<td>67.2</td>
</tr>
<tr>
<td>3</td>
<td>Shallow alluvial groundwater</td>
<td>No AC</td>
<td>0.17</td>
<td>3.69</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>Surface water</td>
<td>No AC</td>
<td>-</td>
<td>2.45</td>
<td>62.2</td>
</tr>
<tr>
<td>5</td>
<td>Deep groundwater</td>
<td>No AC</td>
<td>-</td>
<td>-</td>
<td>53.1</td>
</tr>
<tr>
<td>6</td>
<td>Surface water</td>
<td>No AC</td>
<td>0.93</td>
<td>4.65</td>
<td>58.4</td>
</tr>
<tr>
<td>7</td>
<td>Surface water</td>
<td>AC</td>
<td>-</td>
<td>-</td>
<td>31.5</td>
</tr>
<tr>
<td>8</td>
<td>Deep groundwater</td>
<td>No AC</td>
<td>-</td>
<td>5.59</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>Deep groundwater</td>
<td>No AC</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>Deep groundwater</td>
<td>No AC</td>
<td>-</td>
<td>0</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Water sample collection & processing
-- May & November 2016

- Collection on approximately the same day
- Extracted according to USGS protocol & concentrated
- 31 raw & 31 finished each season (N=62)
1) Detection of biologic activity in each sample compared to a negative control

2) Prevalence of activity for each global EDC class

3) Contrast EDC detections by:
 - Ground vs. surface supplies
 - Season
 - Raw vs. finished samples
 - Levels of nitrate, TTHMs
Preliminary results: summary

- At 200x, both raw and finished water samples screened positive for AhR and androgen activity

- Seasonal differences, greater detections in surface source waters and in raw water samples

- At 100x, screens weakly positive or null
Discussion: Epidemiology

- Scalability to large population
 - How to use to assess “exposure”
 - Historical extrapolation difficult

- Possible interference with estrogen assay

- The biological relevance of positive screens is unclear
Discussion: Iowa water quality

- Source water contamination unique
- Low/no estrogen, thyroid, glucocorticoid receptor activity
- Next steps
 - Higher potential prevalence (EPA UCMR database)
 - Private well samples
Acknowledgements

NCI- DCEG
Maki Inoue-Choi
Laura Beane Freeman
Nicole Chavis (GWU)
Meredith Cervi (Purdue)
Mary Ward

NCI- CCR
Lyuba Varticovski
Diana Stavreva
Gordon Hager

University of Iowa, CHEEC
Pete Weyer

Iowa State Hygienic Laboratory
Terry Cain
Michael Wichman
Sherri Marine

Westat GIS
Matt Airola
Abby Flory
Tumi Sevilla

Participating utilities

- Des Moines
- Iowa City
- Cedar Rapids
- Dubuque
- Ottumwa
- Waterloo
- Sioux City
- Mason City
- Council Bluffs
- Keokuk