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What is Survival Analysis?

Survival analysis is a field of statistics that analyzes and
models time-to-event data.

This area of statistics is widely used in medical research,
economics, and reliability.

Examples:

Time from cancer remission to relapse.
Duration between administering a treatment and recovery.
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Special Features of Survival Data

One problem we encounter with time-to-event data is
censoring.

Censoring occurs when an individual’s end-point of interest
has not been observed.

This can be the result of different circumstances.

Examples:

Data from a study is to be analyzed at a point of time when
some individuals’ events have not occurred yet.
Individuals whose survival times can not be analyzed because
they have been lost to follow-up.
Occurance of an event due to a cause other than one of
interest.
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Terminology

Suppose there are n individuals with observed survival times
t1, t2, t3, . . . , tn.

It is possible that some of these individuals have censored
observation times and that some may have the same observed
survival time.

Let r be the number of event times amongst the individuals,
so that r ≤ n, where r does not include censored times and
duplicate times are considered as one time.

Now let t(j), for j = 1, 2, 3, . . . , r , be the r ordered event times
such that t(1) < t(2) < . . . t(r).
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Terminology

Let nj be the number of individuals at risk just before t(j).

Let dj denote the number of events at t(j).

The survival function, S(t), is the probability that the time
of event is later than some specified time t.

S(t) = Pr(T > t)

A common way of estimating the survival function is the
Kaplan-Meier estimator. (Kaplan, E.L & Meier P., 1958)
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The Kaplan-Meier Estimator

Kaplan-Meier (Product Limit) Estimate:

Ŝ(t) =
∏r

j=1

{
1− dj

nj

}
SE Ŝ(t) ≈ Ŝ(t)

{∑r
j=1

dj
nj (nj−dj )

} 1
2

(1− α) ∗ 100% Confidence Intervals of Ŝ(t):

Ŝ(t)± zα/2∗ SE Ŝ(t)
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Illustrative Example of Kaplan-Meier

Example

Suppose there is a sample of 12 hemophiliacs under the age of 40
with HIV seroconversion.
Instead of using time intervals, exact times at which failures
occured are used.
These times, in months, are listed below:

Patient 1 2 3 4 5 6 7 8 9 10 11 12
Months 2 3* 6 6 7 10* 15 15 16 27 30 32

NOTE: * denotes censored values.

E.Kawaguchi (CPP) K.Harper (Carleton) Iowa Summer Institute in Biostatistics 2012



Introduction Single Event Analysis Recurrent Event Analysis Data Analysis Conclusion

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimation of the Survival Function

time (months)

S
(t

)

E.Kawaguchi (CPP) K.Harper (Carleton) Iowa Summer Institute in Biostatistics 2012



Introduction Single Event Analysis Recurrent Event Analysis Data Analysis Conclusion

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimation of the Survival Function

time (months)

S
(t

)

E.Kawaguchi (CPP) K.Harper (Carleton) Iowa Summer Institute in Biostatistics 2012



Introduction Single Event Analysis Recurrent Event Analysis Data Analysis Conclusion

Survival Function Estimation with Recurrent Events:

The purpose of our project is to estimate the survival function of
recurrent event data.

When multiple events occur within the same subject, they are
known as recurrent events.

Examples include migraines, seizures, heart attacks, strokes
etc.
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Terminology

Wang and Chang (1999) developed a non-parametric estimator of
the survival function for recurrent events.

Let i be the index for an individual or subject.

Let j be the index for an event.
j = 0 denotes the index for the initial event.

Let Tij be the time from the (j − 1)th to the j th event for
subject i .

Let the censoring time, Ci , be the time between the initial
event and the end of follow-up for subject i .
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Terminology

Let mi denote the index satisfying:∑mi−1
j=1 Tij ≤ Ci

and ∑mi
j=1 Tij > Ci

Let mi be the number of recurrent events for subject i .
m∗

i is the number of uncensored recurrent events for subject i .

m∗
i =

{
1 if mi = 1

mi − 1 if mi ≥ 2

Let yij be our observed recurrence times defined by:

yij =

{
tij if j = 1, . . . ,mi − 1

t+i ,mi
if j = mi
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Terminology

Let R∗(t) be the total mass of the risk set at time t be
calculated as:

R∗(t) =
∑n

i=1

[
ai
m∗

i

∑m∗
i

j=1 I (yij ≥ t)
]

Let ai be defined as a positive-valued function of the censored
value subject to the constraint E (a2i ) <∞.
The indicator function, I (yij ≥ t), is a binary operator with
values 0 if yij < t and 1 if yij ≥ t.
R∗(t) is the summation of the weighted average of the total
number of observed uncensored recurrent times for a subject
that are greater than or equal to t.
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Wang and Chang Product-Limit Estimation (1999)

Letting y∗1 , y
∗
2 , . . . , y

∗
K be the ordered, and distinct uncensored

times, Wang and Chang created a Kaplan-Meier type
estimator:

Ŝn(t) =
∏

y∗
i ≤t

{
1− d∗(y∗

i )
R∗(y∗

i )

}

This estimator also sets ai equal to 1, giving every estimate
equal weight.
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Ŝn(t) =
∏

y∗
i ≤t

{
1− d∗(y∗

i )
R∗(y∗

i )

}
This estimator also sets ai equal to 1, giving every estimate
equal weight.

E.Kawaguchi (CPP) K.Harper (Carleton) Iowa Summer Institute in Biostatistics 2012



Introduction Single Event Analysis Recurrent Event Analysis Data Analysis Conclusion

Product-Limit Estimate
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Analysis

Using the R package survrec, we found the median survival
time, t.5, to be 16.6 ms.

The 95% confidence interval around the median survival time
is (0.4693057, 32.7306943).

The standard error was found through Greenwood’s formula.
(Greenwood M., 1926)
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WC Plot for 2 Inter-Event Times:

Median Survival Time: 138 ms
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WC Plot for 3 Inter-Event Times:

Median Survival Time: 35 ms
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WC Plot for 4 Inter-Event Times:

Median Survival Time: 21.5 ms
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Future Work

Latency

Correlation

More Subjects
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