COMPARING THE SPATIAL QUALITIES FROM TWO MEASUREMENTS OF AIR QUALITY OVER CHICAGO Marie Ozanne Mount Holyoke College Alliance (DMS 0502354) – University of Iowa Department of Biostatistics

OUTLINE

- Background
- Linear Regression
- Variograms
- Spatial Models
- Results
- Conclusions
- Challenges

IMPORTANT TERMS

- Particulate matter (particle pollution, PM): mix of solid particles and liquid droplets found in the air
- Aerosol Optical Depth (AOD): measure of the degree to which airborne particles absorb light
- Variogram: function describing degree of spatial dependence of a spatial random field or stochastic process

PARTICULATE MATTER

• Two classes of particulate matter:

- PM_{10} : "inhalable coarse particles" 2.5µm -10µm in diameter
 - "Primary particles"
- $PM_{2.5}$: "fine particle" air pollution of diameters less than or equal to $2.5 \mu m$
 - "Secondary particles"

• Sources:

- PM₁₀: construction sites, fields, unpaved roads, smokestacks, fires
- $PM_{2.5}$: industrial processes, automobiles, power plants

WHY PM_{2.5}? HEALTH

• Health Concerns:

- Smaller particles pose a greater threat
- According to the EPA, effects of exposure include:
 - increased respiratory symptoms
 - decreased lung function
 - aggravated asthma
 - development of chronic bronchitis
 - irregular heartbeat
 - nonfatal heart attacks
 - premature death in people with heart or lung disease

• Information Source:

http://www.epa.gov/air/particlepollution/health.html

Why $PM_{2.5}$? Environment

- Major cause of "haze" in the United States
- Fine particles can be carried long distances by the wind and can settle:
 - Making lakes and streams acidic
 - Changing nutrient balance along the coasts and large river basins
 - Leaching nutrients from the soil
 - Damaging forests and crops
 - Affecting ecosystems

Why $PM_{2.5}$? Aesthetic Damage

• Buildings and Monuments:

- Staining
- Decay of stone
- Corrosion of metal
- Deterioration of paint
- Automotive coatings
 - Permanently etched surfaces
- Reduces societal value:
 - Bridges
 - Tombstones
 - Statues
 - Monuments

AOD: A Predictor of $\mathrm{PM}_{2.5}$ Levels

• Advantages:

- Read by satellites at consistent time intervals
- Easy to obtain for any location
- Contain predictors of $PM_{2.5}$ levels
- Challenges:
 - Contain information on entire atmosphere
 - Need to create spatial models with appropriate predictor variables

EPA SPECIAL TRENDS NETWORK (STN)

- ${\color{blue}\circ}$ Established in 2000 to measure $\rm PM_{2.5}$ composition
- Originally had 13 sites
- Now has 54 trends sites and 150 state and local sites following protocol
- Sampling schedules: 1 in 3 days

IMPROVE (INTERAGENCY MONITORING OF PROTECTED VISUAL ENVIRONMENTS)

- Sampling network primarily focused on preserving visibility in parklands
- Most of the ~150 IMPROVE sites are in rural areas
- Sampling schedules are 1 in 3 days

MODIS (MODERATE IMAGING SPECTRORADIOMETER)

- Onboard NASA Terra satellite
- Provides near global coverage daily
- Measures satellite aerosol optical depth
- Data available for download from NASA

AIR QUALITY IN THE CHICAGO AREA

• Ground Sites:

- Fifteen sites
- Only nine sites had sufficient data to be statistically useful in this analysis
- Satellite Data Collection
 - AOD readings are taken every hour of every day
- Project Intent:
 - Find statistically significant predictors of $PM_{2.5}$ ground level values AOD measurements
 - Provide continuous $PM_{2.5}$ readings for the region

SIMPLIFICATION: REMOVING TIME

- Methods:
 - Measurements averaged over time at each geographic location
 - Locations with sufficient data collection included in averaged data
- Reasons:
 - Including time makes computations much more difficult
 - Running data in its raw form takes a long time

Linear Regression: $PM_{2.5}$ Data

• $PM_{2.5} = 6_0 + 6_1 \text{*lat} + 6_2 \text{*lon} + \varepsilon$

- "lat": latitude
- "lon": longitude
- E: error

$\mathrm{PM}_{2.5}$ Regression Summary

• Residuals:

```
• Min 1Q Median 3Q Max
```

o -0.9234 -0.6891 -0.0714 0.3225 2.3666

• Coefficients:

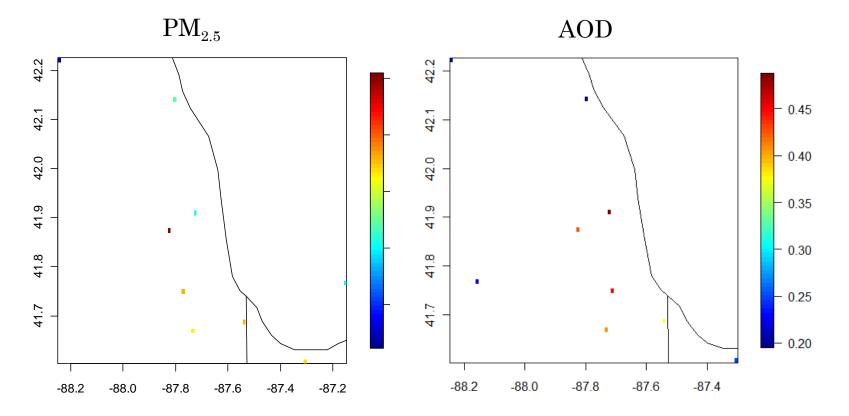
- Estimate Std. Error t value Pr(>|t|)
- o (Intercept) 267.045 127.274 2.098 0.0807.
- o lat.avg.new -2.426 2.566 -0.945 0.3810
- o lon.avg.new 1.751 1.912 0.916 0.3952

o ---

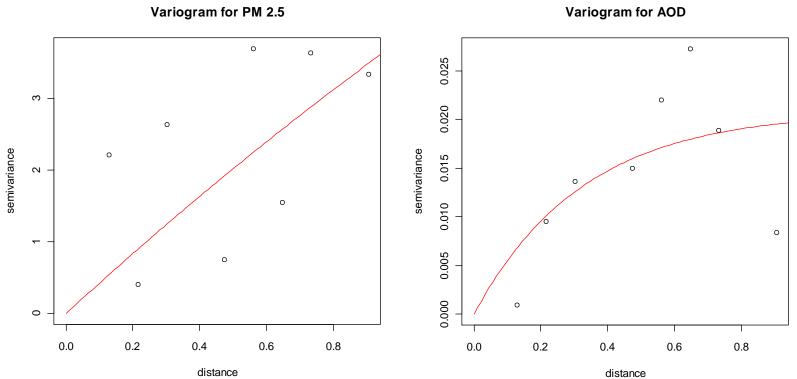
- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
- Residual standard error: 1.168 on 6 degrees of freedom
- Multiple R-squared: 0.4534, Adjusted R-squared: 0.2712
- F-statistic: 2.488 on 2 and 6 DF, p-value: 0.1633

LINEAR REGRESSION: AOD DATA

- AOD = $\delta_0 + \delta_1^*$ lat + δ_2^* lon + δ_3^* temp + δ_4^* wind + ϵ
 - "lat": latitude
 - "lon": longitude
 - "temp": temperature
 - "wind": wind speed
 - E: error


AOD REGRESSION SUMMARY

- Residuals:
- 1 2 3 4 5 6 7 8
- **o** 0.05072 -0.04852 -0.04412 -0.09615 -0.01128 0.10277 0.03580 0.04843
- **o** 9
- **•** -0.03764
- Coefficients:
 - Estimate Std. Error t value Pr(>|t|)
- (Intercept) -3.42650 12.17277 -0.281 0.7923
- o lat.aodmeans 0.85452 0.42528 2.009 0.1149
- o lon.aodmeans 0.37042 0.19677 1.882 0.1329
- aodwnd 0.48757 0.19167 2.544 0.0637.
- o ----


0

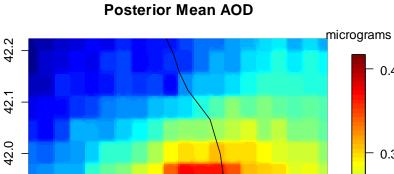
- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
- Residual standard error: 0.08924 on 4 degrees of freedom
- Multiple R-squared: 0.713, Adjusted R-squared: 0.426
- F-statistic: 2.484 on 4 and 4 DF, p-value: 0.1998

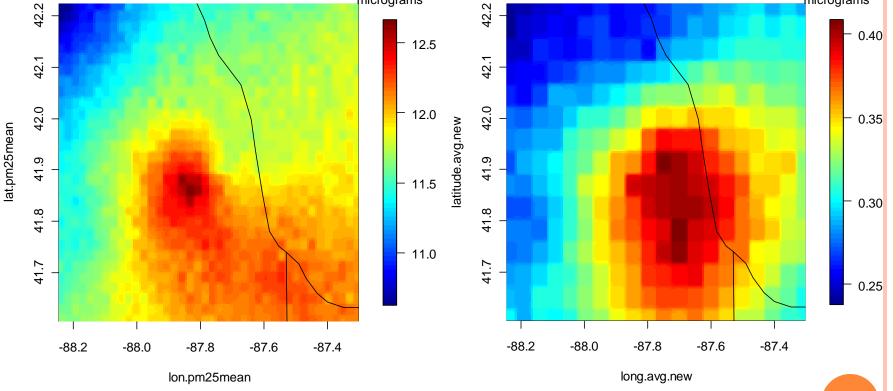
LOCATIONS

VARIOGRAMS

SPATIAL MODELS

- Phi (φ): range
- Sigma2.z (σ_z^2): variance due to spatial error
- Sigma2.e (σ_e^2): variance of measurement error
- Beta (6): fixed effects coefficient

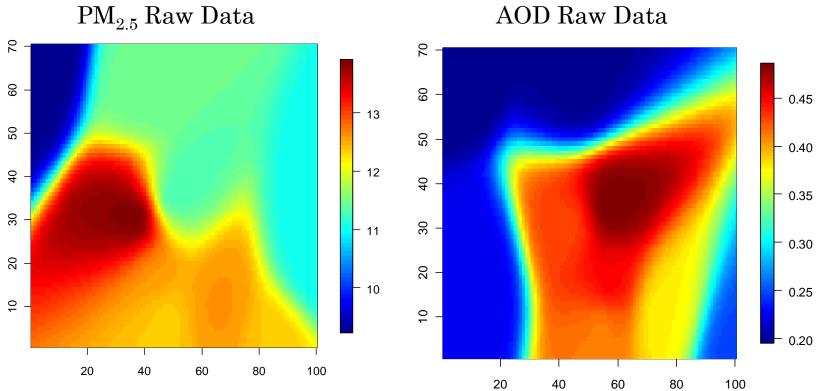

SPATIAL MODELS


- library(ramps)
- control.pm25 <- ramps.control(iter = 1100,
- phi = param(NA, "uniform", min = 1, max = 60, tuning = 0.5),
- sigma2.z = param(NA, "invgamma", shape = 0.01, scale = 0.01),
- sigma2.e = param(NA, "invgamma", shape = 0.01, scale = 0.01),
- beta = param(rep(0, 1), "flat"),
- file = c("pm25params.txt", "z.txt"))
- fit.pm25 <- georamps(fixed = pm25mean.new ~ 1,
- correlation = corRExp(form = ~lon.pm25mean + lat.pm25mean, metric = "haversine"),
- o control = control.pm25)

POSTERIOR MEAN: $PM_{2.5}$ and AOD

micrograms

Posterior Mean PM2.5


Posterior Standard Deviation: $\mathrm{PM}_{2.5}$ and AOD

Posterior Standard Deviation: PM2.5 micrograms micrograms 42.2 42.2 0.20 1.9 42.1 42.1 - 0.19 1.8 42.0 42.0 0.18 atitude.avg.new lat.pm25mean 1.7 41.9 41.9 - 0.17 1.6 0.16 41.8 41.8 1.5 0.15 41.7 41.7 1.4 0.14 -88.2 -88.0 -87.8 -87.6 -87.4 -88.2 -88.0 -87.8 -87.6 -87.4 lon.pm25mean

Posterior Standard Deviation: AOD

long.avg.new

RAW DATA

AOD Raw Data

CONCLUSIONS

- Location is not the only important factor
- AOD itself is not appropriate for predicting health problems
- AOD is related to PM_{2.5}, which is appropriate for such predictions
- Bayesian statistical methods are used
- Simplified model

CHALLENGES

- Large data sets
 - Computing time
- Spatial correlation
- Interpretation
 - Averages

FURTHER STUDY

- Include land use as a predictor variable
- Include time as a predictor variable
 - Seasonal variability
 - Day to day changes
- Link $PM_{2.5}$ readings to health records in Chicago area
- Use AOD predictions to study health effects
- Pinpoint causes of $PM_{2.5}$ pollution

CITATIONS

• "Particulate Matter," *EPA*. 25 February 2010. U.S. Environmental Protection Agency. 20 July 2010.

<u>http://www.epa.gov/air/particlepollution/index.ht</u> <u>ml</u>

 Smith, B. J., Yan, J., and Cowles, M. K. (2008) Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps, Journal of Statistical Software, 25(10), 1-21

THANKS

- o Dr. Jacob Oleson, PhD
- Aaron Porter
- University of Iowa, Department of Biostatistics
- Environmental Protection Agency