Asthma and Particulate Air Pollution: A Spatial Analysis

Tara Negron UPR, Rio Piedras ISIB - University of Iowa Department of Biostatistics Toni Salvatore DePaul University ISIB - University of Iowa Department of Biostatistics Emily Simmons Willamette University ISIB - University of Iowa Department of Biostatistics

Dr. Kate Cowles, Associate Professor Department of Statistics University of Iowa

Background Information

Particulate Matter

- Mixture of extremely small particles and liquid droplets.
- Different sizes pose different risks.
- PM 2.5: Why do we care?
 - Emitted from forest fires; also form when gases emitted from power plants, industries and cars react in the air.

Health risks

• Linked to asthma and other respiratory problems.

Asthma

- Disease that affects the lungs.
- Asthma causes repeated episodes of wheezing, breathlessness, chest tightness, and nighttime or early morning coughing.
- Triggers differ from person to person and consist of house dust mites, tobacco smoke, outdoor air pollution, pets, mold, and other illnesses.

Data

• PM 2.5

- Monitors at specific sites.
- Point-source data.
- Mean annual values for PM 2.5 at these locations.

 Obtained from Environmental Protection Agency (EPA) website;

http://www.epa.gov/air/data/index.html

Asthma

- How many adults who have been diagnosed with asthma had one or more asthmatic episodes (periods of worsening) in the past year.
- Obtained from the Center for Disease Control and Prevention (CDC).
- Collected as survey.

Percent of Episodes Within the Asthmatic Population in 2008 data provided by the CDC

Research Questions

- How can we take the PM 2.5 point source data and produce an estimated surface?
- Are states with more industry more prone to air pollution-according to our maps?
- What does the whole surface of predicted PM 2.5 values look like?
- Is there a visible correlation between the asthma and the particulate matter data?

California

lowa

Indiana

lon

United States

Point Source Maps for 2.5µg/m3 Particulate Matter in 2008 from EPA

Scatter plot of asthma control percentages vs. PM 2.5 concentration by state

PM25

Results

Trends in PM 2.5 concentration.

 States with more industry do have more particulate pollution.

 Correlation value of -0.09, 95% confidence interval of (-0.42,0.26) and a p-value of 0.61; thus, no correlation between asthma and PM 2.5.

Conclusions

- No significant correlation between asthma control percentages and PM 2.5 data.
 - Asthma data recollection method (survey vs. state registry).
 - People have variable asthmatic triggers and they can limit their time outside if they know that outdoor air pollution is a trigger, which may be why we did not find a correlation.

Future Work

- Estimate the average level of PM 2.5 for each state using the point source data and the ramps and geoR packages.
- Look at specific occupations which pose an increased exposure to PM 2.5 and find a correlation between these and the ability to control the asthma episodes.
- Since particulate matter has been shown to trigger the development of chronic bronchitis, find a correlation between prevalence of this and the state concentrations of PM 2.5.

Citations and References

- R: R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL <u>http://www.R-project.org/</u>.
- geoR: Paulo J. Ribeiro Jr & Peter J. Diggle geoR: a package for geostatistical analysis R-NEWS, 1(2):15-18. June, 2001
- Maps: Original S code by Richard A. Becker and Allan R. Wilks. R version by Ray Brownrigg Enhancements by Thomas P Minka (2010). maps: Draw Geographical Maps. R package version 2.1-5. http://CRAN.Rproject.org/package=maps

- Ramps: Smith, B. J., Yan, J., and Cowles, M. K. (2008) Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps, Journal of Statistical Software, 25(10), 1-21.
- Animation: Yihui Xie (2009). Animation: Demonstrate Animations in Statistics. R package version 1.0-10. http://CRAN.Rproject.org/package=animation

 United States Environmental Protection Agency (EPA). "Air Data: Access to Air Pollution Data".

http://www.epa.gov/air/data/index.html

 Center for Disease Control and Prevention (CDC). Partly supported by the University of Iowa Department of Biostatistics NHLBI—NCRR—NIH training grant (T15-HL097622-01 NHLBI)