Using Actigraphy Watches to Measure Sleep Activity in Subjects with Obstructive Sleep Apnea & <3

Ariel Bowman

Dayanara Lebron

Hilary Marshall

Background Information

- Obstructive Sleep Apnea (OSA) literally translates to "without breath during sleep" where the upper airway repeatedly closes throughout a sleep interval.
- ⁸⁰ The airway consists of the:
 - o Nose
 - o mouth
 - throat
 - windpipe
- So Various risk factors could have a possible relation to a person eventually developing this chronic illness which can include:
 - o obesity,
 - high blood pressure,
 - heart disease,
 - Diabetes
 - Smoking
- SO OSA has been proven to lead to higher risk of stroke or death

Background Continued

- so The airway works a system to keep the pressure balanced.
 - Oxygen enters
 - Carbon Dioxide exits
- Bo It consists of all compliant structures
 - A negative transmural pressure will result in the airway closure
 - A positive transmural pressure means an open airway

More Background

- Episode of Obstruction: when a signal should be sent to the brain so that the person will gasp and increase the amount of air into the lungs
- So Sleep Apnea ranges from mild to severe.
- So The difference between a person with a mild condition and a severe condition usually entails the amount of episode occurrences.
- n Descriptive Video OSA

- © Continuous Positive Airway Pressure (CPAP) machine is a common treatment for a person with sleep apnea.
- so Approximately after the first week within the study, OSA subjects began using CPAP devices to treat their condition.

- 80 16 control subjects
- so 30 subjects with Obstructive Sleep Apnea.
- All subjects who were selected wore wrist actigraphy watches with built-in accelerometers to objectively monitor sleep patterns over a 3-month period.
- So Collected data was then sorted by time intervals :
 - Sleep (Our Focus)
 - Awake

Actigraphy Watch

Data Continued

So Objective: To use actigrahy watches to find a significant improvement of the sleep patterns in sleep apnea patients with treatment in comparison to control patients.

no The data collected:

- recorded wake time
- snooze time
- average sleep time
- o average wake time
- sleep bouts
- wake bouts
- o efficiency

More Data

- so Efficiency was the main observation for data interpretation.
- so Sleep efficiency: The ratio of actual sleep time to total time in bed.
- Average sleep efficiency was then calculated for data interpretation:
 - First 7 days
 - First 14 days
 - between the 60+ days of the trial relative to the first week
 - All days

Research Questions

- I. Are the two groups similar or different during the 1st week?
 - 1. 2 sample t-test between the 2 groups (OSA and Control) for average efficiency
 - 2. Wilcoxon rank-sum tests for the 2 groups for average efficiency
- So 2. Are the two groups similar or different during the 2nd week?
 - **1**. Repeated steps from question above
- So 3. Did the groups change over time (60+days vs. first week)?
 - 1. Paired t-test within each of the groups for average efficiency
 - 2. Wilcoxon signed-rank tests for the 2 groups for average efficiency

1. Results: First Week Comparison

Group	Mean (SD)	Median	T-test p-value	Wilcoxon Rank- Sum p-value
Control	79.4 (11.2)	82.38	0.0012	0.0016
OSA	74.61 (13.9)	78.46		

- a) 95% confident that the average efficiency in OSA group is between 1.9 7.7 lower than control group
- b) If no difference in population means for the 2 groups then the observed value would only occur 0.1211% of the time

Boxplot: Control & OSA Efficiencies

Boxplot for Average Sleep Efficiency for the First Seven Days

Relative Frequency Polygon First Week

Relative Frequency Polygon for the First 7 Days

Efficiency vs Relative Days

Efficiency vs Relative Days for the First Seven Days

Relative Days

2. Results: First Fourteen Days Comparison

Group	Mean (SD)	Median	T-test p- value	Wilcoxon Rank Sum p-value
Control	79.3 (11.3)	82.45	1.445e-06	1.76e-05
OSA	73.9 (14.9)	78.65		

a) 95% confident that the average efficiency in OSA group is between 3.2 and
7.6 lower than control group

Boxplot: Control & OSA Efficiencies

Boxplot for Average Sleep Efficiency for the First Fourteen Days

Relative Frequency Polygon for First Fourteen Days

Relative Frequency Polygon for the First Fourteen Days

17

Efficiency vs Relative Days

Efficiency vs Relative Days for the First Fourteen Days

Relative Days

3. Results for Within Group Comparisons 60⁺- (1-7)

Group	Days 1-7 Mean (SD)	Days 60+ Mean (SD)	Difference 60+ - (1-7) Mean (SD)	Paired T- test P-value	Wilcoxon Signed- Rank Test P-value
Control	79.4 (7.9)	78.9 (6.6)	-0.48 (3.1)	0.5422	0.1928
OSA	74.5 (12.1)	73.4 (10.3)	-1.07 (9.8)	0.5942	0.5291

- a) 95% confidence interval of (-2.1, 1.2) for the average efficiency of the control group.
- b) 95% confidence interval of (-4.7, 2.6) for the average efficiency of the OSA group.

Boxplot for Comparing First Seven Days to 60 days or More

Results: Comparison between groups of days 60^+ – (1-7)

Group	Difference 60+ - (1-7) Mean (SD)	Median	T-test p- value	Wilcoxon Rank Sum Test p- value
Control	-0.48 (3.1)	82.7	0.7621	0.5759
OSA	-1.07 (9.8)	77.4		

- a) The mean efficiency is not statistically different between the control and OSA group.
- b) 95% confidence interval (-4.53, 3.34)

Boxplot: Control & OSA Efficiencies

Boxplot for Average Sleep Efficiency for the All Days

Relative Frequency Polygon

Relative Frequency Polygon For All Days

Efficiency

Limitations

- Data collected from the actigraphy watches was not always consistent. There are various days missing for certain patients for unknown reasons.
- Sleep is not a constant activity for any subjects, the amount changes day-to-day

Future Works

- If this study was to be more longitudinal, data interpretation comparing the last month to the first seven days could be more significant
- Intervention time would be much longer, more treatment would most likely mean increased sleep efficiency for OSA subjects.

Conclusion

90 We found that the OSA group did have less efficient sleep patterns pre-treatment, and that these did not improve significantly over the course of the study.

- Strollo, Patrick; Rogers, Robert, "Obstructive Sleep Apnea", The New England Journal of Medicine, 1996; 334:99-104
- Lyle Victor M.D, "Obstructive Sleep Apnea", Am Fam Physician 1999;60:2279-86.
- Asher Qureshi, Robert D Ballard, Harold S Nelson; "Obstructive Sleep Apnea Journal of Allergy and Clinical Immunology", Volume 112, Issue 4, Pages 643-651
- Srinivasan, Raghavendiran, "Activity Recognition using Actigraph Sensor", Washington State University,2010.
- National Health Lung and Blood Institute, "What's Sleep Apnea?",08 June 2011. <<u>http://www.nhlbi.nih.gov/health/health-</u> topics/topics/sleepapnea/> 02 July 2012
- Marshall, Gregg. The Role of Actigraphy in Sleep Assessment and Screening. Texas Society of Sleep Professionals, 28-29 Oct. 2011. Web. 13 July 2012. <www.txssp.org/wp.../12/TSSP-2011-Role-of-actigraphy-REV.pptx>.

Acknowledgements

- 80 Monelle Tamegnon, Teacher's Assistant
- 🔊 Fan Tang, Teacher's Assistant
- no Matthew Rizzo, Principal Investigator
- no Nazan Aksan, Research Scientist
- so The OSA study was funded by NIH grant R01 HL091917.

Mentor

- ю Jeffrey Dawson, Sc. D
 - Professor
 - Associate Dean for Faculty Affairs
 - Department of Biostatistics

ы THANK YOU TO OUR MENTOR DR. DAWSON! ©

Thank You!