Keishla Lucena, University of Puerto Rico Lauren Mondin, Sam Houston State University Advisor: Dr. Joe Cavanaugh, University of Iowa

Analysis of Data from the Iowa Child Passenger Safety Survey

Children and Motor Vehicle Accidents

- National Kids Coalition
 - Leading cause of death in US for children from 3 to 14 years
- Iowa Department of Public Safety, 2004
 - 40 children killed statewide each year
- National Highway Traffic Safety Administration, 2004
 - Reduced risk of death:
 - 71% for infants
 - 54% for children aged 1 to 4 years
- Durbin et al., 2003
 - Booster seats reduce injury risk by 59% compared to seat belts alone for children 4 to 7 years
- The proper use of child safety seats, booster seats, and seat belts is the best protection available to keep children safe in motor vehicles.

Outline

- Survey Background
- Methods
 - Data collection
 - Statistical methods
- Results
- Conclusions

lowa Laws

- Since 1985, children required to be properly protected through the use of child safety seats, booster seats and/or seat belts
- In 2004, the law was revised to require the following:

Ages of Children	Restraint Use
0-1	Rear-Facing Child Safety Seat
2 – 5	Child Safety Seat or Booster Seat
6 – 10	Booster Seat or Seat Belt

18-month education phase

Rear-Facing Safety Seat

Front-Facing Safety Seat

Booster Seat/Seat Belt

Child Passenger Safety Survey Project

- Conducted by University of Iowa Injury Prevention Research Center
- Contracted by Iowa Governor's Traffic Safety Bureau
- Principal Investigator: John Lundell
- Results reported to Iowa state legislature

- Design before 2005
 - Based on drive-by observation
 - Underrepresented rural communities
- Target sample size for entire state is n = 3,000
- New objective:
 - Survey data to resemble the composition of urban and rural areas of the state

Current Design

- Three surveyors
- A card is given to the driver explaining the study
- The driver is asked the age of each child
- The restraint status of each child is directly observed
- The restraint status of the driver and the vehicle type are also recorded
- No identifying information is collected

Rural Communities 1,000 – 2,499

- n = 50
- Corydon, Guthrie Center, Guttenburg, Hawarden, Holstein, Laporte City, Mount Ayr, Northwood, Pocahontas, Sumner, Wapello, and Wellman
- Towns 2,500 9,999
 - n = 75
 - Algona, Belle Plaine, Cherokee, Jefferson, Manchester, Mount Pleasant, Red Oak, and Waverly

- Suburban Communities 10,000 49,999
 - n = 100
 - Clinton, Fort Dodge, Marshalltown, Mason City, Newton, Ottumwa, and Spencer
- Urban Communities 50,000+
 - n = 125
 - Ames, Cedar Rapids, Council Bluffs, Davenport, Des Moines, Dubuque, Iowa City, Sioux City, and Waterloo

Variables

- Outcome Variable
 - Proper restraint (binary)
- Explanatory Variables
 - Age of child (ordinal)
 - Community type (ordinal)
 - Vehicle size (ordinal)
 - Driver belted (binary)

Preliminary Analyses

Univariate:

Descriptive statistics of individual variables

Bivariate:

- Tabular summaries of two variables:
 - Independent/dependent
 - To illustrate conditional associations
- Chi-Square tests to assess dependence

Modeling Analyses

- Models a response probability, p, by a given set of explanatory values, X.
- Regular logistic function:

$$p = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Our logistic function:

$$e^{\alpha + AGE + COM + CAR + DB}$$

NLRY

 $p = \frac{1}{1 + e^{\alpha + AGE + COM + CAR + DB}}$

Why not simply a linear regression model?

Within Vehicle Clustering

- To assess dependence between the proper restraint status of children in vehicle with 2 or 3 child passengers
- Chi-square test
- Conditional on the restraint status of the younger child

Univariate Results

Proper Restraint

the second s				
	Fre	equency	Percent	
Ο		534	11.01	
1		4316	88.99	
AgeType				
Frequency Percent				
Infant		522	10.76	
Toddler		1984	40.91	
Young Child		2344	48.33	
Driver Belted				
Frequency Percent			Percent	

556

4294

0

1

11.46

88.54

Car Type			
	Frequency	Percent	
Large	2221	45.79	
Medium	2425	50.00	
Small	204	4.21	
Community Type			
Frequency Percent			
Rural	976	20.12	
Town 943		19.44	
Suburban	1130	23.30	

Bivariate Results

Proper Restraint by Age Type			
Proper Restraint			
Age Type	0	1	
Infant	2.49	97.51	
Toddler	15.02	84.98	
Young	9.51	90.49	
Child			
$X^{2}(2)$:	Value = 76.5891	p-value < 0.0001	

Proper Restraint by Community Type				
Proper Restraint				
Community Type	e o 1			
Rural	16.91 83.09			
Town	12.20 87.80			
Suburban	8.58 91.42			
Urban	8.72	91.28		
$X^{2}(3)$:	Value = 52.4254	p-value < 0.0001		

Bivariate Results

Proper Restraint by Restraint Use				
Proper Restraint				
Restraint Use	0 1			
Belted	11.48 88.52			
Booster	0.48 99.52			
Child Safety	0.37	99.63		
Seat				
X ² (2):	Value = 2723.4631	p-value < 0.0001		

Proper Restraint by Driver Belted			
Proper Restraint			
Driver Belted	0 1		
0	33.81	66.19	
1	8.06	91.94	
X ² (1):	Value = 333.2618	p-value < 0.0001	

Proper Restraint by Car Type			
Proper Restraint			
Car Type	0 1		
Small	26.96	73.04	
Medium	1 12.37 87.63		
Large 8.06 91.94			
X ² (2): Value = 77.2927 p-value < 0.0001			

Modeling Results

Situation	Odds Ratio	95% Confidence Interval
Infant vs. Toddler	3.2598	(1.8289, 5.8101)
Urban vs. Rural	1.4728	(1.1429, 1.8978)
Large vs. Small	3.3263	(2.2851, 4.8418)
Belted vs. NOT Belted	5.3309	(4.2686, 6.6577)

Modeling Results

Situation	Probability	95% Confidence Interval
Infant in urban area in large car with the driver belted	0.9871	(0.9770, 0.9928)
Toddler in rural area in small car with driver not belted	0.2936	(0.2168, 0.3843)
Toddler in urban area with driver not belted	0.5394	(0.4673, 0.6099)
Infant in large car	0.9669	(0.9425, 0.9811)
Infant with driver not belted	0.8792	(0.8012, 0.9293)
Young child in a small car and in a suburban area	0.7743	(0.6979, 0.8360)

Within Vehicle Clustering

Vehicle with Two Children		
	Older Child Pro	per Restraint Status
Younger Child Proper Restraint Status	0	1
0	47.06	52.94
1	5.34	94.66
X ² (1):	Value = 145.789	p-value < 0.0001

Vehicle with Three Children			
	Number of Older Cl	hildren Who Are Pro	operly Restrained
Youngest Child Proper Restraint Status	Ο	1	2
0	20.00	20.00	60.00
1	1.56	7.29	91.15
X ² (2):	Value = 24.0856	p-value <	0.0001

Conclusion

- This methodology could be applied to any state, with data is analyzed the same for every state but with different methods of conducting the survey.
- Toddlers have the lowest probability of being properly restrained.
- The highest proper restraint probability situation is an infant in an urban area in a large car with the driver belted.
- The lowest proper restraint probability situation is a toddler in a rural area in a small car when the driver is not belted.
- There is a strong dependence of proper restraint between the children within a vehicle.
- More education is needed in the rural areas of lowa on proper restraint use for children.

Acknowledgments

- Supported by the University of Iowa Department of Biostatistics NHLBI-NCRR-NIH training grant (T15-HL097622-01 NHLBI)
 Thanks to:
 - - Dr. Cavanaugh
 - University of Iowa, Department of Biostatistics
 - John Lundell
- References:
 - 2009 and 2010 Iowa Child Passenger Safety Survey Project (https://iprc.public-health.uiowa.edu/resources/)
 - July 7th and 8th 2011. ISIB Lecture. Dr. Jacob Oleson.