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Background on Glaucoma 

•A sight-threatening disorder marked by an 
increase in intraocular pressure that leads to 
complete blindness if untreated. 

 

•Affects 1-2% of the US population. 

 

•The number of persons estimated to be blind as a 
result of glaucoma is 4.5 million. 

 



Objectives and Research Questions 

•Model progression of glaucoma 

•Can we predict how quickly the disease is 
spreading? 

•Can we see if the eyesight is deteriorating at a 
faster-than-normal rate? 

•Can we determine whether patients are diseased 
based on some mathematical model? 

 



Data Collection 



Study Data 

•120 patients with glaucoma 

 

•60 normal patients 

 

•10 visits each.  One every 6 months. 

 

•Missing data 



Normal versus Diseased Eyes 

    Normal Patient                       Diseased Patient 



Animated Progression of Disease 



Partial Differential Equations 

Theoretical Reaction-Diffusion Model: 

δ/ δt zt(x,y) =β[δ2/ δx2 + δ2/ δy2 ] + α* zt(x,y) 

 

Approximate model based on discrete study data: 

zt+1(x,y)=β[zt(x+1,y)-2*zt (x,y) + zt (x-1,y) +zt 

(x,y+1)-2*zt (x,y) + zt (x,y-1)] + (α+1) zt(x,y) 

 

- β is the rate of spatial change 

 

- α is the rate of temporal change 



Challenges with Differential Equations 

Boundary points 

-We assumed there was no change in vision 
beyond boundary points 

 

-Theoretical simulations suggested this was the 
most appropriate way to model the spread of the 
disease. 

 



Simulation of Disease Spread 



Linear Regression Model 
•Response: Measurement at time t+1 at (x,y) 

•Predictors: 

 -Measurement at time t at location (x,y) 

 -Sum of partial derivatives at time t at location 
  (x,y) 

 

zt+1(x,y)=β[zt(x+∆x,y)-2*zt (x,y) + zt (x-∆x,y) +zt 

(x,y+∆y)-2*zt (x,y) + zt (x,y-∆y)] + (α+1) zt(x,y)+ε 

 

Error~N(0,σ2) 



Simulation data with noise 



Results 

zt+1(x,y)=β[zt(x+∆x,y)-2*zt (x,y) + zt (x-∆x,y) +zt 

(x,y+∆y)-2*zt (x,y) + zt (x,y-∆y)] + (α+1) zt(x,y) 
+ε 

 

 

 

 

 

 

 

Patient # α α p-value β β p-value 

1 0.001485 0.8131 0.030078 < 0.0001 

2 -0. 001842 0.6538 0.031128 < 0.0001 

3 -0.004483 0.5861 
 

0.048816 < 0.0001 



Confidence intervals 

Patient 1 

 

95% confidence interval for α 

(-0.01084420, 0.01381332) 

 

95% confidence interval for β 

(0.01793912, 0.04221690) 

 



Regression Assumptions 

•Regression assumes that error terms are normally 
distributed 



Residuals by Location 



Assumptions/Residuals 

•Regression assumes variance of the error term is 
constant across observations (homoscedasticity) 

 



Problems with Data-Blind spots 

•Every human has a blind spot, causing a value of 0 
in the dataset. 

 

•This misrepresents the disease level in that part of 
the eye, causing error in our prediction 

 

•Possible solution: Treat the blind spot the same as 
a boundary point 

 



Problems: Ongoing Treatment 

•For ethical reasons, patients were being treated 
for their disease, so some areas did show 
improvement. 

 

•It was not possible to know which improvement 
was caused by measurement error and which was 
caused by medical intervention. 

 



Conclusions and Future Work  

 

•Model is promising because our regression 
assumptions to do not appear to be violated. 

 

•More accurate model will be possible when 
controlling for blind spots. 

 

•Future work will include finding β for all patients, 
diseased and normal, in order to find the 
distribution of β. 



Future Work 

•We must compare this model to a model for non-
diseased patients. 

 

•We need to find a way to incorporate the effects of 
treatment into the model. 

 

•We may need to account for the lower bound of 
possible measurement values. 
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