Biomarker Analysis for Early Signs of Cancer Treatment Response

Mark Chikwem Alex Sawyer Carey Stuart

Background

- The term leukemia is used to describe cancer of white blood cells in the blood or bone marrow.
- Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in the western world.
- CLL is a type of leukemia that affects lymphocytic white blood cells.

Background

• A lymphocyte is a type of white blood cell in the vertebrate immune system.

One type of lymphocyte is the B cell, which is responsible for humoral immunity (antibodies).
T cells are the other type of lymphocyte present in human body.

An antibody is a protein produced by the immune system in response to the presence of an antigen

Red blood cell

FADAM.

Pathogenesis

- CLL starts in the bone marrow and spreads to the blood.
- Lymphocytes are made in the bone marrow.
- CLL results from an acquired injury to the DNA of a single marrow cell that is to become a lymphocyte.

Pathogenesis

- When the damaged cancerous cell reproduces, the new cells are able to proliferate better than normal lymphocytes.
- CLL however does not actually impede the growth of normal white blood cells.
- CLL is characterized by a gradual increase in the number of white blood cells.

Risks

- CLL has not been associated with any environmental factors.
- Whites have been observed to have a higher risk of developing the disease. Men have a higher incidence of the disease than women.
- Older individuals have a higher risk of developing CLL, with the average age being 70.

Demographics

Chronic Lymphocytic Leukemia-Age-Specific Incidence Rates 1998-2002

Age (years)

Treatments/Side Effects

- Previous and preferred form of treatment was Chlorambucil.
- Now treatment uses Fludarabine, which yielded a higher response rate and longer progression-free survival.
- Side effects: fever, nausea, fatigue, diarrhea, changes in menstrual period, just to name a few.

New Treatment-CpG 7909

- CpG Oligodeoxynucleotides (ODN) can be in the form of Bacterial DNA or synthetic ODN containing the CpG motif.
- CpG ODN induce apoptosis of CLL cells.
- Treatment increases the expression and sensitivity of protein surface markers to antibodies. This helps the body elicit an immune response against the CLL cells.

Clinical Trial

- A clinical trial was carried out jointly at the University of Iowa and Mayo Clinic.
- The objective of the Phase I clinical trial was to establish a safe dose with biological activity.
- The purpose of the clinical trial was to determine the relative increase in surface expression of CD20 and assess the safety of CpG 7909.

Objective

• The goal of our project is to analyze biomarkers, collected in the clinical trial, for early evidence of treatment efficacy.

Study Design

- Phase I Clinical Trial
- 3 Dose levels and 2 routes of administration (IV and SQ)
- 6 patients per group
- Surface protein markers measured at baseline and Days 3, 7, and 28.
- Number of markers observed was 116.

Dataset

- For the actual data, we removed patients that didn't have any observations.
- We also noticed that only a few patients had data for Day 28.

Dataset Numbers

Day3		Day7		Day 28	
IV/Dose	Ν	IV/Dose	Ν	IV/Dose	Ν
1	6	1	5	1	2
2	5	2	4	2	5
3	5	3	5	3	5

Day3		Day7		Day 28	
SQ/Dose	Ν	SQ/Dose	Ν	SQ/Dose	Ν
1	5	1	4	1	0
2	6	2	6	2	5
3	5	3	4	3	5

Protein Markers

CD22+ CD19-

- CD22+ CD19+
- CD22- CD19-
- CD22- CD19 +
- CD27+CD19-
- CD27+CD19+
- CD27-CD19-
- CD27-CD19+
- CD22+ CD<u>27-</u>
- CD22+ CD27+
- CD22- CD27-
- CD22- CD27+
- CD86+CD80-
- CD86+CD80+
- CD86-CD80-
- CD86-CD80+
- CD3+CD8o-
- CD3+CD80+
- CD3-CD8o-
- CD3-CD80+
- CD86+CD3-
- CD86+CD3+
- CD86-CD3-
- CD86-CD3+
- CD95+CD3-

- CD95+CD3+ CD95-CD3-CD95-CD3+ CD154+CD3-CD154+CD3+ CD154-CD3-CD154-CD3+ CD95+CD154-CD95+CD154+ CD95-CD154-CD95-CD154+ TRAIL+CD19-TRAIL+CD19+ TRAIL-CD19-TRAIL-CD19+ CD40+CD19-CD40+CD19+ CD40-CD19-CD40-CD19+ TRAIL+CD40-TRAIL+CD40+ TRAIL-CD40-
 - TRAIL-CD40+
- CLASS II+CD19-
- CLASS II+CD19+

- CLASS II-CD19-CLASS II-CD19+ CLASS I+CD19-CLASS I+CD19+ CLASS I-CD19-CLASS I-CD19+ CLASS II+CLASS I-CLASS II+CLASS I+ CLASS II-CLASS I-CLASS II -CLASS + Lin1-CD11C+CD123-Lin1-CD11C+CD123+ Lini-CDiiC-CDi23-Lin1-CD11C-CD123+ Lin1+CD11C+CD123 Lin1+CD11C+CD123 Lin1+CD11C-CD123-Lin1+CD11C-
 - CD123+
- CD38+CD3-CD38+CD3+
- CD38-CD3-
- CD38-CD3+

- CD52+CD3-
- CD52+CD3+
- CD52-CD3-
- CD52-CD3+
- CD38+CD52-
- CD38+CD52+
- CD38-CD52-
- CD38-CD52+
- CD3-CD32+CD56-
- CD3-CD32+CD56+
- CD3-CD32-CD56-
- CD3-CD32-CD56+
- CD3+CD32+CD56-
- CD3+CD32+CD56+
- CD3+CD32-CD56-
- CD3+CD32-CD56+
- CD3-CD64+CD56-
- CD3-CD64+CD56+
- CD3-CD64-CD56-
- CD3-CD64-CD56+
- CD3+CD64+CD56-
- CD3+CD64+CD56+
- CD3+CD64-CD56-
- CD3+CD64-CD56+
- CD3-CD16+CD56-

- CD3-CD16+CD56+
- CD3-CD16-CD56-
- CD3-CD16-CD56+
- CD3+CD16+CD56-
- CD3+CD16+CD56+
- CD3+CD16-CD56-
- CD3+CD16-CD56+
- CD20+CD5-
- CD20+CD5+
- CD20-CD5-
- CD20-CD5+
- CD19+CD5-
- CD19+CD5+
- CD19-CD5-
- CD19-CD5+
- CD20+CD19-
- CD20+CD19+
- CD20-CD19-
- CD20-CD19+

Methods

- The change in markers was monitored from baseline to day 3, baseline to day 7, and baseline to day 28.
- Hierarchical clustering was used to get some idea of how certain markers would be clustered together later on.
- Similarity was quantified using Euclidian distance to form clusters of markers.

Dendogram

Principal Components

 Principal components or eigenmarkers are linear combinations of a group of variables (in this case, the markers) that represent the dataset well.

$$Z_{i} = \alpha_{1i} X_{1} + \alpha_{2i} X_{2} + \dots + \alpha_{116i} X_{116}$$

• Often the variability in the original markers can be represented by a smaller number of eigenmarkers.

Eigenmarker Plot

Inference

- Linear regression was used to model the eigenmarkers as a function of dose and route of administration.
- Multiple types of linear regression were attempted: regression with categorical variables, regression with numerical and categorical variables, and regression using interaction terms.
- Based on the AIC model fit criterion, the models with categorical variables were chosen.

Linear Regression Formula • $y = \beta_0 + \beta_1 Dose_2 + \beta_2 Dose_3 + \beta_3 SQ + \epsilon$ • y is the baseline change in a given marker. ε~N(0,1) • $Dose_i = 1$ if subject received dose i = o if otherwise • SQ = 1 if subcutaneous = o if otherwise • We ran the linear regression model to explain the first three eigenmarkers for all three days.

Day 3 Mean Change/ 95% CI

Dose Modality (mg/kg) Eigenmarker 1 Eigenmarker 2 Eigenmarker 3

		20.4	1.3	2.2
IV	0.15	(-7.1, 47.9)	(-9.8, 12.6)	(-8.0, 12.5)
				0
		12.6	-2.7	-3.8
	0.45	(-14.6, 39.8)	(-13.8, 8.3)	(-14.1, 6.3)
		29.0	-2.9	1.5
	0.75	(1.4, 56.5)	(-14.1, 8.3)	(-8.7, 11.8)
		-19.1	4.2	2.5
SQ	0.15	(-46.7, 8.3)	(-7.0, 15.4)	(-7.7, 12.8)
		-26.9	0.1	-3.5
	0.45	(-52.9, -0.9)	(-10.4, 10.6)	(-13.3, 6.1)
		-10.5	-0.1	1.8
	0.75	(-38.1, 16.9)	(-11.2, 11.1)	(-8.4, 12.1)

Day 7 Mean Change/ 95% CI

Dose

Modality (mg/kg) Eigenmarker 1 Eigenmarker 2 Eigenmarker 3

IV	0.15	-53·3 (-92.8, -13.8)	3.3 (-10.9, 17.6)	3.5 (-4.8, 12.0)
	0.45	-5.4 (-49.3, 38.3)	1.3 (-14.5, 17.2)	0.6 (-8.6, 10.0)
	0.75	-13.0 (-55.0, 29.0)	7·3 (-7.9, 22.6)	-2.6 (-11.6, 6.3)
SQ	0.15	-2.9 (-46.7, 40.8)	-4.6 (-20.6, 11.2)	2.2 (-7.1, 11.6)
	0.45	44.8 (5.4, 84.3)	-6.7 (-21.0, 7.5)	-0.6 (-9.1, 7.7)
	0.75	37·3 (-7.0, 81.7)	-0.7 (-16.8, 15.3)	-4.0 (-13.4, 5.4)

Day 28 Mean Change/ 95% CI

Modality (mg/kg) Eigenmarker 1 Eigenmarker 2 Eigenmarker 3

		-4.9	23.7	-2.2
IV	0.15	(-58.1, 48.3)	(-19.1, 15.2)	(-19.2, 14.7)
			9.6	
		6.4	(0.2, 19.1)	-3.6
	0.45	(-22.7, 35.5)		(-12.9, 5.6)
		1.4	-9.8	-0.5
	0.75	(-27.7, 30.6)	(-19.3, -0.4)	(-9.80, 8.7)
			-1.3	
		-11.8	(-21.7, 19.0)	2.4
SQ	0.15	(-74.8, 51.1)		(-17.6, 2.5)
		-0.4	10.2	1.0
	0.45	(-29.6, 28.7)	(0.8 , 19.7)	(-8.2, 10.3)
		-5.4	-9.3	4.1
	0.75	(-34.6, 23.7)	(-18.7, 0.1)	(-5.1, 13.4)

Conclusion

- The fact that CD20 markers were clustered together supports the study of this marker for evidence of efficacy.
- There is some evidence of significance in the eigenmarkers.
- Grouping for the principal components tended to be similar to hierarchical clustering.
- The results should be taken with care because multiple comparisons were done without adjustment.

Acknowledgments

- University of Iowa, Biostatistics Department
- The investigators and personnel who conducted the original study at the University of Iowa and the Mayo Clinic
- Dr. Brian J. Smith, Ph.D.

References

• Chronic Lymphocytic Leukemia (2007). Retrieved July 17, 2010 from

• Venkat, C. (2002). *IgVH Gene Mutation Status and CD*38 *Expression*. Retrieved July 17, 2010 from

• Kline J, Krieg A. CpG Oligodeoxynucleotides. Prog Respir Res. Basel, Karger 2001; 31:229-232.

Chronic Lymphocytic Leukemia (2010). Retrieved July 17, 2010 from http://bodyandhealth.canada.com/condition_info_details.asp?c hannel_id=o&relation_id=o&disease_id=269&page_no=1