Measuring periciliary liquid depth in newborn pigs with cystic fibrosis disease and in control pigs

Lisaurie Lopez Rivera¹, Dr. Kathryn Chaloner², Jingyang Zhang³

[1] Department of Biostatistics, ISIB - University of Iowa,

Department of Biology, University of Puerto Rico, Mayagüez Campus

[2] Professor, Head of the Department of Biostatistics, University of Iowa

[3] Graduate Student Mentor, Department of Biostatistics, University of Iowa

Tuesday

Research Team

- Dr. David Stoltz, Assistant Professor, Carver College of Medicine, University of Iowa
- Michael V. Rector, Research Assistant, Carver College of Medicine, University of Iowa
- Dr. Michael J. Welsh, Professor, Howard Hughes Medical Institute, Carver College of Medicine, University of Iowa

Introduction

- What is cystic fibrosis (CF)
- How is CF caused
 - CFTR protein
- Primary problem: lung disease and mucus in the airways

Mucociliary Clearance

•Mucociliary clearance is by airway surface liquid and cilia.

•When CFTR is absent, water is transported out of the epithelium

PCL depth

Boucher, R. C. (2007). Airway Surface Dehydration in Cystic Fibrosis: Pathogenesis and Therapy. *The Annual Review of Medicine*, 157-170.

Hypothesis

 In CF pigs, PCL depth is reduced through the sodium ion transport channel in the epithelial cells at the airway surface.

Objectives

- To model the data from the experiment measuring PCL in newborn pigs
- To estimate of the variance components
- To examine if there is a difference in the Periciliary Liquid (PCL) depth between CF and Non-CF newborn pigs

Justification

- PCL depth is hard to measure in humans
- PCL depth was measured in pigs
- The pig model was generated by researchers at the University of Iowa (mice with CF genotype do not get sick)

Pigs litter (Pictures taken from Dr. Welsh laboratory)

PCL depth (Pictures taken from Dr. Welsh laboratory)

Experimental Methods

- Pigs with mutated *CFTR* gene
- Airway surface was analyzed in 16 pigs; 5 of them newborns with CF and 8 newborn controls, as well as 3 additional pigs.
- Each trachea was divided into 4 segments, and 5 slides were made from each segment.
- 20 measurement of PCL depth (μm)were made by each of 3 independent observers on each slide.
- Over 18,000 measurements to analyze.

Hierarchical Model: Fixed Effect with Nested Random Effects

24

How the data looks

Observer3_all_measurements - Notepad

File Edit Format View Help

14 -4 14 1 1 4 9 3.996 1 1 4 10 3.406 1 1 4 11 3.062

																												_
																							["pig" 1 1 1	" segment 1 3.82	:" "slid	≘" "ni"	"measurement	- "
																							111	2 3.906				
C.,		9 - (°	u 🔹) 🔹							ASLheightD	ata1-observe	er 3-by fac	tor 2(1) [Co	mpatibility M	ode] - Micr	osoft Excel							1 1 1	. 3 3.832				
	Ho	ne	Insert	Page Layou	t Formula	as Data	Review	View A	crobat														$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$	5 3.956				
-	80	ut		(d	- 10			-		Current				Normal	Dad		Cood	Nou	tral				111	6 3.312				
	1 🝙 🛛	ору	×	erdana	• 10 •	A A	- = = */		ap rext	General				Normal	Dau		0000	Neu	uai		<u> </u>	J Fi	1 1 1 1	. 7 2.662				
Past	⁶ 🎸 F	ormat P	Painter	BIU	• 🖽 • 🖄	• <u>A</u> •		🐖 🔤 Me	rge & Center	\$ %	• • • • • • • • • • • • • • • • • • •	Condition Formattin	nal Format ıg∗asTable∙	Calculation	1 Cheo	ck Cell	Explanator	y Inpu	it	Insert	Delete Form	at 🖉 CI	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	94.168				
	Clipbo	ard	5		Font	5	AI	ignment		× Nun	nber 🕞					Styles					Cells		111	10 3.16	2			
	S6:	L	- (fa fa	e l																		1 1 1 1 1 1 1	12 4 614				
28	А		В	С	D	E	F	G	Н	I	3	К	L	М	N	0	P	Q	R	S	Т	U	111	13 4.302				
29		D1		D1B	D1C	D1D	D1E E	D2 [D2B [02C D	2D D2	2E I	D3	D3B D	3C D	3D I	D3E D4	4 D	4B D4	C D	4D D4	E	111	. 14 2.190	i i			
30 31		1	1 5.854	3.536	3.946	3 4 5 2.402	5.508	6 3.006	4.120	8 4.304	9 4.032	10 6.520	4.338	4.024	13 3.424	14 4.258	15 3.820	16	4.704	18 6.876	2.832	20 3.890	1 1 1 1 1 1 1	. 15 2.72	1			
32		2	5.762	3.046	2.816	2.844	3.522	2.906	3.906	4.604	3.736	6.778	5.456	3.534	3.794	3.276	3.414	1.924	4.418	6.312	4.460	4.430	111	17 2.968	3			
34		4	2.658	3.722	3.982	3.932	1.078	3.200	1.812	2.974	4.428	2.864	4.606	3.770	1.868	5.262	3.276	4.272	6.396	4.828	2.906	3.860	1 1 1	. 18 2.662	2			
35		5	3.668	2.474	3.766	5 3.238 2 5.922	4.402	4.786	2.886 3.650	4.958 5.686	2.658 4.382	1.868	4.964 6.528	4.606	3.894 2.786	5.590 3.794	2.202 2.618	6.014 5.772	6.020 5.404	4.118 2.746	4.676 5.304	4.410 3.828	1 1 1 1 1 1 1 1 1 1 1	. 19 3.7 20 2 906				
37		7	3.922	2.816	3.544	4 5.800 3 4.410	5.108	5.334	3.196	5.300	4.532	3.848	5.024	6.162	2.912	3.206	5.070	3.808	6.364	3.546	6.218	3.414	112	1 2.866	·			
39		9	4.904	2.570	3.832	6.338	4.244	2.418	1.812	2.062	4.588	4.870	4.846	5.326	4.148	4.216	5.414	4.866	3.734	5.148	3.140	2.746	112	2 3.536				
40		10	6.068	2.618	3 3.622	2 6.184	6.198	2.300	2.214 3.956	5.916	4.528	3.500	5.240	4.160 3.362	1.334 4.002	3.506	5.004	5.814 3.036	4.032 5.124	4.118 3.842	4.382 4.046	3.440 3.858	$\begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array}$	2 3 4.77				
42		12	4.770	5.336	3.036	3.536	4.982	4.242	1.504	4.036	3.080	5.536	4.460	4.124	3.080	4.024	3.920	3.436	5.446	4.440	3.048	2.996	112	5 5.644				
44		14	4.272	3.890	3.068	3.290	4.546	4.786	5.178	4.860	3.178	6.236	4.396	3.770	3.700	4.502	3.982	2.570	3.930	4.940	3.330	3.182	112	6 4.606				
45		15	4.178	2.912	2.942	2 2.404	6.042	2.416	3.766	4.140	4.492	5.688	6.988 4.302	2.766	4.744	5.440	3.634	3.178	2.716	2.248	4.860	4.204 2.012	1 1 2	8 4.834				
47		17	6.760 2.416	4.198	3.472	2 3.178	4.826	2.236	4.652	5.248	2.692	5.142	3.008	3.606	3.202	3.314	6.120 4.618	4.522	3.492	3.124	3.982	2.952	ī ī z	9 4.304				
49		19	2.684	3.956	4.304	2.596	7.112	2.508	3.946	5.300	3.606	4.296	3.932	3.770	3.650	4.176	4.402	2.928	4.110	5.798	6.356	3.862	112	10 4.92	,			
50		20	2.642	2.720	5.288	3.448	6.074	3.102	3.102	3.178	4./42	4.296	3.722	3.890	5.922	4.220	3.612	4.438	2.550	5.482	4.295	3.440	1 1 2	12 2.73				
52 53																							112	13 3.69				
54																							112	14 3.72				
56																							1 1 2	10 2.40	Ļ			
57 58																							112	17 4.65	2			
59																							112	18 3.67				
61																							112	20 3.048	3			
62 63																							113	1 3.672				
64																								i 2 5.162 : 3 5 148				
66																							113	4 4.36				
67 68																							113	5 3.28				
69 70																							1 1 3	7 5.06				
71																							113	8 5.63				
73																							113	94.05				
74 75																							1 1 3	11 4.522	2			
76																							113	12 4.88	2			
78																								13 2.942 14 4.07				
79 80																							113	15 3.052	2			
81																							113	16 3.98	2			
83																							113) 17 4.304 18 3.139	1 2			
84	► N A	В	C D	E/F/G	H/1/1	K/L/M	N/O/P	Averages	2X Final Dat	a / 🏞 /			14										113	19 3.63	5			
				- <u>^</u> · <u>^</u>																			113	20 4.68	2			
																							1 1 4	2 4.022				
																							114	3 3.636				
																							1 1 4	4 2.774				
																							114	6 2.916				
																							114	7 3.466				
																							<u>т т 4</u>	0 3.0/2				

Statistical Methods

- No cf effect: $y_{ijklm} = \mu + \delta_i + e_i + e_{i(j)} + e_{ij(k)} + e_{ijklm}$ I=1,...,3; i=1,...,16; j=1,...,4; k=1,...,5; m=1,...,20
- cf effect: $y_{ijklm} = \mu + \theta cf_i + \delta_l + e_i + e_{i(j)} + e_{ij(k)} + e_{ijklm}$ where cf_i is 1 for pigs with CF and 0 for non-CF
- Plot all the data (19,199 measurements)
- Plot means and medians of y_{ijklm} (the 20 measurements by each observer on each slide)

Analysis

- Analyze mean of y_{ijklm} over 20 measurements
- Analyze medians, similarly
- Alternative analysis uses all 19,199 measurements
- Some measurements missing, the data is unbalanced.
- We used Imer method of R, with REML
- We import the data into R, from the Excel files

R code

library(lme4)

means <read.table("H:\\Observers_means_
Long_pigs.txt",header=T)</pre>

attach(means)
Seg <- factor(means\$segment)
Slide <- factor(means\$slide)
Pig <- factor(means\$pig)
Obs <- factor(means\$v)

•cf <- rep(1:length(measurement))</pre> ■cf[Pig==1] <- 0 ■cf[Pig==4] <- 0 ■cf[Pig==5] <- 0 ■cf[Pig==6] <- 0 ■cf[Pig==11] <- 0 ■cf[Pig==12] <- 0 ■cf[Pig==14] <- 0 ■cf[Pig==16] <- 0 ■cf meanspigs <-</p> Imer(measurement ~ Obs + (1|Pig/Seg/Slide)) summary(meanspigs)

Results

Example of data on one CF pig

Pig = M13

Example of data for Non-CF pig

Pig = D4

CF pig: means (left) and medians (right)

Pig = D4

Pig = D4

Non-CF pig: means (left) and medians (right)

Analysis results using library Ime4

Source of Random variability	σ estimate with means	σ estimate with medians	σ estimate with all the data			
Between pigs $(\sigma_A)^2$	0.5383	0.5523	0.7138			
Between Segments (σ _B) ²	0.4181	0.4152	0.4554			
Between Slides (σ _c)²	0.5852	0.6229	0.5940			
Residual between Observers on the same slide (σ^2) Between and within observers on the same slide	0.3843	0.4209	1.2503			

Analysis results using library Ime4 for CF and Non-CF comparison with means

Source of Random variability	σ estimate with means	σ estimate with medians	σ estimate with all the data
Between pigs $(\sigma_A)^2$	0.5673	0.5820	0.5673
Between Segments (σ _B) ²	0.4182	0.4153	0.4182
Between Slides $(\sigma_c)^2$	0.5851	0.6229	0.6033
Residual between Observers on the same slide (σ^2) Between and within observers on the same slide	0.3843	0.4209	1.2891

Discussion of random effects confidence intervals

Means

Medians

All the data

Discussion

Confidence Interval	All data	Data medians	Data means
	(-0.6909, 0.7240)	(-0.7282, 0.7222)	(-0.6912, 0.7244)

Same answer!

Conclusion

- There is not enough evidence to reject the null hypothesis of no difference p-value is 0.96.
- There is no statistically significant difference in the reduction of the PCL depth through the sodium ion transport channel in the epithelial cells at the airway surface.
- If there is a difference it is less than 0.7 $\mu m.$

What the study suggests

This study suggests that the PCL depth is no different in pigs with CF than non-CF newborn pigs, or, if there is a difference it is less than 0.7 mm with 95% confidence.

Future work

- To measure sodium concentrations of the epithelial cells at the airway surface to determine if there is significant difference between the CF and Non-CF pigs.
- To find a better way, to measure PCL
- Possibly image processing

Acknowledgements

- Dr. David Stoltz, Assistant Professor, Carver College of Medicine, University of Iowa
- Michael V. Rector, Research Assistant, Carver College of Medicine, University of Iowa
- Dr. Michael J. Welsh, Professor, Howard Hughes Medical Institute, Carver College of Medicine, University of Iowa
- Dr. Kathryn Chaloner, Professor, Head of the Department of Biostatistics, University of Iowa
- Jingyang Zhang, Graduate Student Mentor, Department of Biostatistics, University of Iowa
- Ming Yang, Graduate Student, Department of Biostatistics, University of Iowa

Reference

- Bates, D, Maechler, M. (2009). Lmer: Linear mixed-effects models using S4 classes. R package version 0.999375-32.
- Boucher, R. C. (2007). Airway Surface Dehydration in Cystic Fibrosis: Pathogenesis and Therapy. *The Annual Review of Medicine*, 157-170.
- Griesenbach, U. e. (2010). Quantification of Periciliary Fluid (PCL) Height in Human Airway Biopsies is Feasible, but not Suitable as a Biomarker. *American Thoracic Society*, 1-24.
- R Development Cire Team. 2009. R: A languange and environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0.

More references

- Rogers, C. S. (2008). Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs. Science, 1837-1841.
- Stoltz, D. A. (2010). Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth. *Science Translational Medicine*, 1-8.
- Welsh, M. J., Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., & Prather, R. S. (2009). Development of a Porcine Model of Cystic Fibrosis. *Transactions of the American Clinical and Climatological Association*, 149-162.

THANKS!

Questions...?

Pigs litter (Pictures taken from Dr. Welsh laboratory)

Boucher, R. C. (2007). Airway Surface Dehydration in Cystic Fibrosis: Pathogenesis and Therapy. *The Annual Review of Medicine*, 157-170.

 \mathcal{D}

Lung disease

(Pictures taken from Dr. Welsh laboratory)

Airway

(Pictures taken from Dr. Welsh laboratory)

Airway obstruction (Pictures taken from Dr. Welsh laboratory)

