ELECTRONIC DATA PATTERNS IN VEHICLES INVOLVED IN UNSAFE OUTCOMES

David-Erick Lafontant, Kean University, NJ & Yao A. Tapoayi, Black Hawk College, IL Mentor: Dr. Jeffrey Dawson ISIB-University of Iowa

- Importance of Driving Simulation & Research
- ➤ 100-car- study
- Data availability + Definitions of Variables
- Statistical methods
- Results
- ➢ Comments

DRIVING SIMULATION VS. On-Road Instrumented Vehicles

Simulation Is used:

- Entertainment
- Training
- Research
 - Driver behavior
 - Performance
 - Attention
- On-Road Instrumented
 - Training
 - Research

Importance of Driving Research

- Public Health Issue
- National Highway Traffic Safety Administration (NHTSA)
 - >43,000 deaths/year (117/day) in US
 - Driver inattention

Previous and Ongoing Research

University of Iowa
 Public Policy Center
 Teen Drivers
 Departments of Neurology & Biostatistics
 Elderly Drivers
 Virginia Tech Transportation Institute(VTTI)
 100-Car Naturalistic Study

100-CAR NATURALISTIC STUDY

- ➤12 13 months of data collection
- ≥2,000,000 vehicle miles of driving
- ≻42,300 hrs of driving
- ≥241 total drivers
- >15 police-reported & 67 non-police reported crashes
- ≻761 near-crashes
- Contains many extreme driving cases

>severe drowsiness, impairment, judgment error, risk taking
 >secondary task engagement, aggressive driving, traffic violations
 >Crash – any physical contact between the subject vehicle and another vehicle, fixed object, pedestrian, pedal cyclist or animal
 >Near-Crash – situations requiring a rapid, severe evasive maneuver to avoid a crash

AGE DISTRIBUTION PIE CHART OF DRIVERS (VTTI/100CarMain/pg94)

100-CAR NATURALISTIC STUDY (cont'd)

Data Collection Instrumentation

- Five channels of digital, compressed video
- Front and rear radar sensors
- Accelerometers
- Machine vision-based lane tracker
- GPS
- Vehicle speed sensor

Nearly 80 % crashes & 65 % of all near-crashes (due to distraction, fatigue, or just looking away)

VTTI/100CarMain/pg73,75,76

12 out of 213 data for ID 8302 Up to 28963 pieces of data

		n	0	D			0					А	В	С	D	E	F	G	Н	- I
	A	В	L L	U	t	t t	6	H		J	28478	9119	9366	985.528	0	39.14639	39.2	-0.16297	178	0.03101
4			L.							la anti-du	28479	9119	9367	985.628	0	39.14639	39.2	-0.32573	178	0.004021
1	webtile_i	sync	time	gas_peda	composit	egps_speed	yaw_rate	gps_nead	lateral_ac	Iongituair	28480	9119	9368	985.728	0	39.14639	39.2	-0.32573	178	0.037205
	0000		40.400				4 00000			0.000047	28481	9119	9369	985.828	0	39.76776	39.2	-0.48849	178	0.047888
2	8302		. 42.486	0	0	0	-1,30229	0	0.058063	0.039847	28482	9119	9370	985.928	0	39.76776	39.2	-0.16297	178	0.054713
		,	40.507				4 00000				28483	9119	9371	986.028	0	39.76776	39.2	-0.97677	178	0.028934
3	8302		42.537	0	-1	0	-1,30229	0	0.06/664	0.041357	28484	9119	9372	986.128	0	39.76776	41	-0.32573	178.1	0.036491
											28485	9119	9373	986.228	0	40.38913	41	-0.00021	178.1	0.022137
4	8302		42.598	0	-1	0	-1.30229	0	0.059437	0.037433	28486	9119	9374	986.328	0	40.38913	41	-0.16297	178.1	0.062905
											28487	9119	9375	986.428	0	40.38913	41	0.325307	178.1	0.063496
5	8302	4	42.635	0	-1	0	-1.13953	0	0.056912	0.033135	28488	9119	9376	986.528	0	41.0105	41	-0.65125	178.1	0.030752
									0.060079	0.024917	28489	9119	9377	986.628	0	41.0105	41	-0.16297	178.1	0.039122
6	8302		42.661	. 0	-1	0	-1,30229	0			28490	9123	2965	344.118	28.616	16.15565	17.6	-1.13953	66.5	0.036918
											28491	9123	2966	344.218	28.616	16.15565	17.6	-1.46505	66.5	0.023842
7	8302	(42.689	0	-1	0	-1.13953	0	0.054122	0.018462	28492	9123	2967	344.318	28.616	16.15565	17.6	-1.13953	66.5	0.042308
											28493	9123	2968	344.417	28.616	16.15565	17.6	-1.30229	66.5	0.025906
8	8302	1	42.715	0	-1	0	-1.13953	0	0.052102	0.014417	28494	9123	2969	344.518	28.616	18.64114	17.6	-1.62781	66.5	0.02098
											28495	9123	2970	344.618	28.616	18.64114	17.6	-1.46505	66.5	0.043797
9	8302	8	42.738	0.392	-1	0	-1.30229	0	0.056416	0.005566	28496	9123	29/1	344./18	28.616	18.64114	17.6	-1.46505	66.5	0.015131
											28497	9123	2972	344.818	28.616	18.64114	17.6	-1.13953	66.5	0.028556
1) 8302	9	42.764	0.392	-1	0	-1,13953	0	0.064504	-0.00354	28498	9123	2973	344.918	28.010	18.64114	17.0	-1.62/81	66.5	0.05148
-										-0.01252	28499	9123	2974	345.018	28.010	18.04114	1/.0	-1.02/81	00.5	0.040809
11	. 8302	10	42.792	0.392	-1	0	-1.30229	0	0.071205		28500	9123	2975	345.118	28.010	10.00000	22.5	-1.30229	00	0.042429
											28501	9123	23/0	343.218	28.010	19.00300	22.5	-1./903/	00	0.04/345
17	8302	11	42,818	0.392	-1	0	-1.30229	0	0.079185	-0.0215	28502	9123	23//	345.318	28.010	19.88388	22.5	-1.13933	05	0.021552
				1177	· · · ·	<u> </u>		' *			28503	9123	2978	345.418	43.512	19.88388	22.5	-1.30229	65	0.023846

➤ 342000 pieces of data for Near-Crash

J -0.03675 -0.03595 0.004823 -0.03272 -0.03681 -0.02273 -0.03511 -0.02787 -0.0466 0.001952 -0.02432 -0.06138 0.233203 0.237047 0.212916 0.22398 0.218394 0.216923 0.210683 0.217552 0.219795 0.220783 0.225446 0.228241 0.230655 0.231814

Better Understanding of crashes and near-crashes
 Analyze Electronic data
 Compare the Crashes and Near-Crashes with respect to data patterns prior to these events
 (drivers could be warned of high risk situations)

➢ 68 crashes & 761 near crashes www.vtti.vt.edu Several measures captured \geq 30 seconds before the event \geq 10 seconds after the event (\approx 10 Hz) ➢ Narrative descriptions

Definitions of Variables of Interest

➢SDs of Lateral Acceleration(in g)

- Positive indicates lateral acceleration
 as generated by the vehicle turning to left.
- ➢SDs of Longitudinal Acceleration(in g)
 - Positive indicates longitudinal acceleration as generated by the vehicle accelerating from a stop.
- SDs of Yaw Rate(in deg/s)
 - Positive in vehicle turns to left.
- >SDs of Composite Speed(in mph)
 - Forward and reverse motion is positive

Definitions of Variables of

INTEREST (CONT'D)

Acceleration: rate of change of velocity as a function of time

Statistical Methods

Time Series Plots

- Look for data quality, outliers
- Compare with narrative descriptions

Data reduction of 4 variables

- 5-15 second before event
- Mean of SD of each variables
- Mean of Means of Speed

➢ Welch Test

- Independent samples
- Unequal variances

$$- t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})}}$$

– 4 SDs & 1 Mean

Crash Vs. Near-Crash

2 Sample T-test (suite)

Welch Test \succ Hypothesis : $H_0: \mu_{sdcrash} = \mu_{sdnearcrash}$ $H_A: \mu_{sdcrash} \neq \mu_{sdnearcrash}$ $H_0: \mu_{meanspdcrash} = \mu_{meanspdnearcrash}$ $H_A: \mu_{meanspdcrash} \neq \mu_{meanspdnearcrash}$ $\geq \alpha = .05$ $t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})}}$


```
Z <- dat[dat$webfile_id == 0, ]
window <- rep(NA, length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25]))
laacc <- rep(NA, length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25]))
loacc <- rep(NA, length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25]))
yawrate <- rep(NA, length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25]))
speed <- rep(NA, length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25]))</pre>
```

```
getwindow <- function(id, whichdata, whatdoyouwant) {
  Z <- whichdata[whichdata$webfile_id == id, ]
  Z[, 2] <- Z[, 2] - Z[1, 2]</pre>
```

```
for(i in 1:length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25])){
  window[i] <- Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25][i]
  laacc[i] <- Z[, 4][Z[, 2] == window[i]]</pre>
```

```
loacc[i] <- 2[, 5][2[, 2] == window[i]]
yawrate[i] <- 2[, 6][2[, 2] == window[i]]

speed[i] <- 2[, 3][2[, 2] == window[i]]

if (whatdoyouwant == "sdlaacc") {
  return(sd(laacc))

if (whatdoyouwant == "sdloacc") {
  return(sd(loacc))

if (whatdoyouwant == "sdyawrate") {
  return(sd(yawrate))

if (whatdoyouwant == "sdspeed") {
  return(sd(speed))

if (whatdoyouwant == "meanspeed") {
  return(mean(speed))
}
</pre>
```



```
saveplotforwhich <- function(whichids, whichdata){</pre>
 png(filename = "F:\\ISIB DRVING SIMILATION\\vtech\\crashfullplot.png",
                                                            png(filename = "F:\\ISIB DRVING SIMILATION\\vtech\\graphs3.png",
    height = 1000, width = 1500)
                                                                   height = 1000, width = 1500)
   A <- NULL
 par(mfrow=c(8,9))
                                                              par(col = "blue")
 for(i in 1: length(ids)){
                                                              par(mfrow=c(8,9))
  A <- c(A,getwindow(ids[i], dat, "sdspeed"))</pre>
                                                              for(i in 1: length(whichids)){
                                                                   graphspeedvs1525(whichids[i],whichdata)
                                                                if(i == 72)
 dev.off()
                                                                  break
png(filename = "F:\\ISIB DRVING SIMILATION\\vtech\\nearcrashfullplot.png",
                                                                 }
    height = 1000, width = 1500)
  B <- NULL
                                                            dev.off()
 for(i in 1: length(idsn)){
                                                            Ł
        B <- c(B,getwindow(idsn[i], datn))</p>
                                                            ####
                                                            saveplotforwhich(ids, dat)
dev.off()
                                                            saveplotforwhich(idsn, datn)
A \leftarrow na.omit(A)
                                                             ************************************
B \leftarrow na.omit(B)
t.test(A, B, var.equal=TRUE)
###
raphsvs1525 <- function(id, whichdata) {</pre>
                                                            t.test(A, B, var.equal=FALSE)
                                                            t.test(A, B, paired=FALSE)
  M <- whichdata[whichdata$webfile id == id, ]</p>
                                                            ###
  M[, 2] <- M[, 2] - M[1, 2]
                                                            summary (A)
 for(i in 1:length(M[, 2][M[, 2]>= 15 & M[, 2]< 25])){</pre>
                                                            summary (B)
  window[i] <- M[, 2][M[, 2]>= 15 & M[, 2]< 25][i]</pre>
                                                            t.test(A, B, var.equal=TRUE, paired=FALSE)
  laacc[i] <- M[, 4][M[, 2] == window[i]]</pre>
                                                            loacc[i] <- M[, 5][M[, 2] == window[i]]</pre>
                                                            t.test(msc, mscn, var.equal=FALSE)
  yawrate[i] <- M[, 6][M[, 2] == window[i]]</pre>
                                                                                                                           19
                                                            summary (msc)
  speed[i] <- M[, 3][M[, 2] == window[i]]</pre>
                                                            summary (mscn)
```

The R Code Summary

tscrash <- read.table("F:\\ISIB DRVING SIMILATION\\vtech\\ts_</pre>

```
dat <- tscrash[, c(1, 3, 5, 9, 10, 7)]</pre>
```

for(i in 1:length(Z[, 2][Z[, 2]>= 15 & Z[, 2]< 25])){</pre> window[i] $\langle - Z[, 2] [Z[, 2] \rangle = 15 \& Z[, 2] \langle 25] [i]$ laacc[i] < - Z[, 4][Z[, 2] == window[i]]loacc[i] < - Z[, 5][Z[, 2] == window[i]]yawrate[i] <- Z[, 6][Z[, 2] == window[i]]</pre> speed[i] <- Z[, 3][Z[, 2] == window[i]]</pre> } \triangleright Read the data if (whatdoyouwant == "sdyawrate") { \blacktriangleright Take wanted variables return (sd (yawrate)) ➢ Find window in } if (whatdoyouwant == "sdspeed") { wanted variables return(sd(speed)) \blacktriangleright Return them } ≻ Graph

t.test(A, B, var.equal=FALSE)

≻ T-test

Sec

Sec

Sec

Sec

SEC

Time series Plots for 25/761 for Near-

CRASH EVENTS

SEC

Sec

Sec

DETAILS ON ID 8396

"Subject vehicle runs over a dead animal on the interstate. Subject is drowsy."

Sec

Sec

DETAILS ON ID 8348

"Subject is distracted by eating in the car when lead vehicle stops suddenly because an oncoming vehicle is turning to its left, across the path of the lead and subject vehicles, to enter a parking lot. Subject must brake hard to avoid hitting the lead vehicle in the rear, and car following subject must also brake to avoid hitting subject vehicle in the rear."

Results for Welch test

$\begin{array}{l} MEANS \longrightarrow \\ \downarrow RESULTS \end{array}$	SD of Lat-Acc	SD of Lon-Acc	SD of Yaw-rate	SD of Speed	Mean of Speed
t	1.893	0.944	2.297	-1.392	-2.881
p-value	0.062	0.348	0.024	0.167	0.005
Mean of crash	0.050	0.064	2.718	2.861	21.511
Mean of near-crash	0.039	0.057	1.653	3.395	28.754

DISCUSSION

- Incomplete data observed
 - Difficult to implement reliable warning device
- Crashes lower speed than Near-Crashes
- Many Crashes were mild in nature
 - Hitting stationary object in parking lot lightly
- Higher Variability in Yaw-rate & Lat-Acc for Crashes
 - Indicates loss of vehicle control

LIMITATION

Non-Event Data needed
 Had to treat all events as independent
 Drivers ID's
 Drivers were repeated
 Results may be over-studying significance

FUTURE RESEARCH

- Obtain data on non-event segments
- Electronic data
 - Prediction
 - Crash & Near-Crash
 - Real time

References

 Virginia Tech Transportation Institute (VTTI)
 National Highway Traffic Safety Administration (NHTSA)

Jeremy Sudweeks, VTTI

- Provided data
- Dictionary
- Ming Yang & Mitch Thomann & Yu-Hui Huang
 - Help with R Codes

► ISIB

- Food
- Dorm
- Activities
- Course & Info (Dr. Zamba, Dr. Kate, Dr. Oleson, Dr. Chaloner, Dr. Brian, everyone else)