Development of Molecular Profiles to Predict Treatment Outcomes in Lymphoma Patients

JOE MOEN
ELIZABETH WOLF
SARA BURNS

MENTOR = “DR. BRIAN SMITH”
Outline

- Background information
- Introduce data set
- Univariate screening
- Clustering
- Dimension reduction (scoring)
- Multivariate Cox regression model
- Conclusion
What is Lymphoma?

- Lymphoma is a type of cancerous cell that develops in the immune system
- 5th most common cancer in North America
- Treatments:
 - chemotherapy
 - radiotherapy
 - bone marrow transplantation
What is Lymphoma?

Stage Distribution and 5-year Relative Survival by Stage at Diagnosis for 2002-2008, All Races, Both Sexes (NCI)

<table>
<thead>
<tr>
<th>Stage at Diagnosis</th>
<th>Stage Distribution (%)</th>
<th>5-year Relative Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized (confined to primary site)</td>
<td>27</td>
<td>82.0</td>
</tr>
<tr>
<td>Regional (spread to regional lymphnodes)</td>
<td>19</td>
<td>77.8</td>
</tr>
<tr>
<td>Distant (cancer has metastasized)</td>
<td>47</td>
<td>61.7</td>
</tr>
<tr>
<td>Unknown (unstaged)</td>
<td>8</td>
<td>66.5</td>
</tr>
</tbody>
</table>
Previous Study

- **G. LENZ STUDY ON DIFFUSE LARGE B CELL LYMPHOMA**

- **A PREVIOUS STUDY IN 2008 BY THE NCI WAS PUBLISHED IN THE NEW ENGLAND JOURNAL OF MEDICINE**

- **IT MEASURED THE SURVIVAL RATES OF LYMPHOMA PATIENTS**

- **THE TWO TREATMENT GROUPS WERE R-CHOP AND CHOP**
Previous Study

- **OBJECTIVE**: Predict survival as a function of gene expression variables
- **OUTCOME** = Time to death
- **PREDICTORS** = Gene expression level obtained by microarray testing
Microarray Testing

Most Affordable and Commonly Used Form of Testing Gene Expression

- Results are quantitative
- 54,000 numeric variables
Summary Statistics of R-CHOP Data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>60.13</td>
<td>61</td>
</tr>
<tr>
<td>Status</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Follow up time</td>
<td>2.14</td>
<td>2.41</td>
</tr>
</tbody>
</table>

This is a retrospective study, therefore our data is censored (time to death is not always measurable)
Our Study

Start:
- 54,000 genes
- 412 patients

Reduction:
- 232 R-CHOP

Screening:
- 178 genes
Our Study

- Clustering: 7 clusters
- Scoring: 7 clusters
- Cox Regression: 2 clusters
DISMISSED 180 CHOP PATIENTS

- Analysis is performed in R-Studio
- Parsed through full dataset
- Created new matrix that contains only patients treated with R-CHOP
- New matrix contained 232 patients and 54,000 genes
- We focused on the R-CHOP data because it is the newest and most effective form of chemotherapy treatment for lymphoma
Univariate Screening

ASSOCIATION BETWEEN GENE AND OVERALL SURVIVAL

For a given gene, and a randomly selected subject i and j:

\[H_0: \Pr(g_i > g_j \mid t_i < t_j) = 0.5 \]
\[H_A: \Pr(g_i > g_j \mid t_i < t_j) \neq 0.5 \]

Where \(g_i \) and \(g_j \) are the gene expressions for a randomly selected subject i and j; and \(t_i \) and \(t_j \) are their time to death.

```r
install.packages("Hmisc")
library(Hmisc)
genes = t(exprs(etrain))
rcorrcens1 <- function(e) {
  t = e$futime
d = e$fustatus
  p = rrow(e)
c = rep(NA, p)
pvalue = rep(NA, p)
  for(j in 1:p) {
    x = genes[,j]
r = rcorrcens(Surv(t, d) ~ x)
c[j] = r["x","C"]
pvalue[j] = r["x","P"]
  }
  list(cvalues = c, pvalues = pvalue)
  #list(pval = 1 - pchisq(x2, 1), hr = exp(beta), betas = sqrt(hr))
}
```

\[r = rcorrcens1(etrain) \]
\[pvals = r$pvalues \]
Univariate Screening

- Measure of association between time of death and level of gene expression.
 - 0.5 indicates no association

- Calculated p-values to test the hypothesis based on the C-index of Harrell

- P-values were converted to Q-values

- Genes selected to maintain 10% FDR
False Discovery Rate

- False discovery rate: among those selected, the average number of genes thought to be significant that proved NOT to be significant.
- FDR =10%: manageable number and benchmark for FDR.
- Lenz study used p values instead of using a false discovery rate to identify significant genes in the screening process.
K-Means Clustering

- The partitioning of genes into groups with similar expression levels
- K- indicates the number of clusters into which the genes are partitioned
- Squared Euclidean distance
- $C(i)$- represents the cluster assignment for cluster i estimated by the algorithm
- x_i- represents the set of expression values for expression i
- μ_k- mean of cluster k

$$WSS = \sum_{k=1}^{K} \sum_{C(i)=k} ||x_i - \mu_k||.$$
<table>
<thead>
<tr>
<th>Cluster 1: 8 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1552531_a_at" "1553499_s_at" "203434_s_at" "203435_s_at" "206310_at" "219874_at"</td>
</tr>
<tr>
<td>"231887_s_at" "244467_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 2: 34 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1555275_a_at" "1560397_s_at" "201866_s_at" "202022_at" "202172_at" "202740_at" "203285_s_at"</td>
</tr>
<tr>
<td>"203524_s_at" "203633_at" "203723_at" "204012_s_at" "204866_at" "206003_at" "206181_at"</td>
</tr>
<tr>
<td>"208456_s_at" "209621_s_at" "209825_s_at" "210461_s_at" "212133_at" "213534_s_at" "218324_s_at"</td>
</tr>
<tr>
<td>"221036_s_at" "221912_s_at" "222482_at"</td>
</tr>
<tr>
<td>"223159_s_at" "225207_at" "226930_at" "227220_at" "227684_at" "227904_at" "230509_at"</td>
</tr>
<tr>
<td>"235213_at" "235692_at" "235743_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 3: 35 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1554306_at" "1559867_at" "1568600_at" "1570156_s_at" "202751_at" "203516_at" "203634_s_at"</td>
</tr>
<tr>
<td>"204530_s_at" "204584_at" "206653_at" "206698_at" "206756_at" "207949_s_at" "207954_at"</td>
</tr>
<tr>
<td>"209938_at" "213116_at" "215011_at" "218296_x_at" "219101_x_at" "219232_s_at" "219241_x_at"</td>
</tr>
<tr>
<td>"219420_at" "219815_s_at" "224357_s_at"</td>
</tr>
<tr>
<td>"227055_at" "228000_at" "228977_at" "229849_at" "230640_at" "230888_at" "239427_at"</td>
</tr>
<tr>
<td>"239973_at" "240616_at" "241599_at" "242240_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 4: 26 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1553979_at" "200644_at" "200788_s_at" "201160_s_at" "201865_x_at" "203140_at" "204249_s_at"</td>
</tr>
<tr>
<td>"205668_at" "209306_s_at" "209337_at" "209397_at" "209924_at" "211275_s_at" "211671_s_at"</td>
</tr>
<tr>
<td>"212129_at" "212589_at" "212646_at" "213168_at" "213708_s_at" "216321_s_at" "218331_at"</td>
</tr>
<tr>
<td>"225331_at" "226496_at" "228167_at" "228812_at" "32128_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 5: 27 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1555209_at" "1555729_a_at" "1563621_at" "205450_at" "205960_at" "209840_s_at" "210192_at"</td>
</tr>
<tr>
<td>"210330_at" "210688_s_at" "214071_at" "214597_at" "215056_at" "215784_at" "215828_at"</td>
</tr>
<tr>
<td>"217455_s_at" "219491_at" "224417_at" "231049_at" "232664_at" "233310_at" "233458_at"</td>
</tr>
<tr>
<td>"234284_at" "236231_at" "240921_at"</td>
</tr>
<tr>
<td>"241453_at" "242934_at" "244367_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 6: 17 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"204428_s_at" "211870_s_at" "213544_at" "216617_s_at" "220983_s_at" "229276_at" "229361_at"</td>
</tr>
<tr>
<td>"231367_s_at" "231391_at" "232534_at" "234871_at" "237241_at" "238232_at" "243392_at"</td>
</tr>
<tr>
<td>"243733_at" "243762_at" "243905_at"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster 7: 31 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1555728_a_at" "201161_s_at" "201512_s_at" "201554_x_at" "202020_s_at" "202171_at"</td>
</tr>
<tr>
<td>"203645_s_at" "205255_x_at" "209100_at" "212685_s_at" "213106_at" "213189_at" "213327_s_at"</td>
</tr>
<tr>
<td>"215049_x_at" "216945_x_at" "218134_s_at" "218862_at" "219061_s_at" "219607_s_at" "221675_s_at"</td>
</tr>
<tr>
<td>"222592_s_at" "222593_s_at" "223158_s_at" "223414_s_at" "224523_s_at" "225537_at" "226001_at"</td>
</tr>
</tbody>
</table>
| "226426_at" "226452_at" "226874_at" "229594_at"
Dimension Reduction (Scoring)

- **PRINCIPLE COMPONENTS OR “EIGENGENES”**

- **DIMENSION REDUCTION AIMS TO CREATE ONE SCORE FOR EACH CLUSTER**

- **FORMS A LINEAR COMBINATION OF CLUSTER GENES**
Multivariate Cox Regression

\[\lambda(t,x) = \lambda_0(t) \exp \{\beta_1 X_1 + ... + \beta_p X_p\} \]

- \(\lambda \)- represents death rate (over time)
- \(\lambda_0(t) \) -represents base line of death rate
- \(\beta \)-represent estimated variable effect
- Rule of thumb: no more than one variable for every ten events (n/10)
- Outcome: time to event
- Backward variable selection
 - Variables are taken out one by one starting with the least significant
Final Model Estimates

<table>
<thead>
<tr>
<th>Eigengene</th>
<th>β</th>
<th>SE (β)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 2</td>
<td>0.116</td>
<td>0.040</td>
<td>0.0041</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>-0.209</td>
<td>0.061</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Goodness of Fit:

$R^2=0.24$ (modest)

C-Index=0.79 (good)
Fitted Model Profile

\[\lambda(t,x) = \lambda_0(t) \exp\{0.116Y_2 - 0.209Y_4\} \]

Gene Profile = 0.116Y_2 - 0.209Y_4
ROC Analysis

- Assess performance of gene profile in predicting survival
- Illustrates sensitivity vs specificity over the range of possible cut off values for the gene profiling score
- AUC - Area Under the ROC Curve
 - 1 = Perfect prediction
 - .5 = No predictive ability
- All of the possible cut off values for having a positive or negative test
ROC Curves

6-Month Survival

AUC = 0.844
ROC Curves

One Year Survival

Specificity

1 - Sensitivity

AUC = 0.806
ROC Curves

Five Year Survival

AUC = 0.778
AUC Curve By Year
Conclusion

Future Studies: apply our model to independent data sets (typically, these models work best with the population on which they are built)

Questions?
References

1. FRANK E. HARRELL R-STUDIO PACKAGES: ‘SURVAUC’ AND ‘RCORR.CENS {HMISC}’
2. NATIONAL CANCER INSTITUTE