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Background Information

O

- What is salmonella?
- Rod shaped bacteria

- Causes 2 diseases called salmonellosis
enteric fever
acute gastric enteritis

- Most common causes are raw meat, raw eggs, raw
shellfish or unpasteurized animal products such as milk
and cheese

- Not harmful until it is ingested
- Most harmful to compromised immune systems




Background Information

O

- Symptoms:
- Nausea
- Vomiting
- Abdominal pain
- Diarrhea
- Fever
- Blood in the stool
- 12-72 hours after ingestion

Severe cases of salmonella end up in dehydration,
leading to a possible death.




Public Health Concern

O

- Actual number of infections

could be thirty or more times Changes in incidence of laboratory-confirmed
greater (CDC) bacterial infections, U.S., 2010*
- 1.2 million U.S. illnesses Pathogen Decrease | Increase

annually Yersinia~—52%)
- Most common cause of STEC® 0157 44%
hospitalization and death Shigella— 57%

tracked by FoodNet

- Incidence of Salmonella was
nearly three times the 2010
national health objective target.

- Lab results since 1998 shows a
positive trend

http://www.cdc.gov/foodborneburden/trends-in-foodborne-illness.litml




Manufacturer linked to
Salmonella Infantis
outbreak in humans

Location: Gaston, SC
Detected through random
sampling —by MDARD
Recall occurred April 2nd

Infections identified from
October 2011 — June 2012

Illnesses caused by
improper handling of pet
food or feces

PET FOODS



Infantis Outbreak(biamond Pet Food)

O

Case counts and product shipments

O no direct shipments
O direct shipments

source
Cases:
- Number: 22
- Death: o
Original S code by Richard A. Becker and Allan R. Wilks. R version by - Hospitalizations: 6

!ttn: ! !CRAN.R-DI‘O]GC’[.OI‘J Dac!agezmaos



http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
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Research Approach

Method: Bayesian Statistics

1. Analysis using Models:

= Poisson Changepoint Model
o Fitted using Markov Chain Monte Carlo

= Poisson-Gamma Model
e  Fitted Using Analytic Computation

1. Simulation Study:

= Simulate data comparable to our data set.

= Run 1000 data sets for each set of parameters.




Research Approach

e Overall Goal: @

Understand outbreak trends of Salmonella Infantis

» Analysis Goals:
= Model comparison.

= Data set comparison.

o Simulation Goals:

= Determine most influential parameters.
= Characteristics of the Data
= How the analysis is conducted

= Determine if we are correctly identifying the number of outbreaks in
a time span.




Research Approach

» Analysis Hypotheses:

= Our two models will produce similar results.

e Simulation Hypotheses:

= The frequency and magnitude of outbreaks will be the most
influential factors in detecting the correct number of
outbreaks.

= A smaller upper bound probability will produce more
accurate count of outbreaks.




* Purpose: Provides a mathematically rigorous way of
combining data from different sources to estimate
model parameters and predict future data

 Model Quantities:
A = parameter. (Poisson mean)
Y = preceding data point. (Poisson variable)
Y,ew= data point that we are analyzing. (current month)



Bayesian Statistics

O

* Calculation Technique: Bayes Rule

p(A) = prior distribution

p(Y|A) = likelihood

l

p(A|Y) = posterior distribution
o prior * likelihood

p(Y,ow|Y) = posterior predictive density




Posterior Predictive Distribution:
Formula:
P(Ynew|Y)= [p(Ynew|A) -p(A|Y) dA,

Conditional Probabilities Defined:
P(Ynew|Y): posterior predictive probability dist.
P(Y|A): likelihood distribution
P(A|Y): posterior density



* Allows the parameters of the Poisson distribution to change over time

* MCMCpoissonChange generates a sample from the posterior
distribution of a Poisson regression model with multiple
changepoints.

* MCMCpoissonChange function defaults settings:

MCMCpoissonChange(

formula, data = parent.frame(), m = 1, bo = 0, Bo = 1, a= NULL,

b = NULL, co = NA, do = NA, burnin = 1000, mcmc = 1000, thin = 1,
verbose = 0, seed = NA, beta.start = NA , P.start = NA,
marginal.likelihood = ¢("none", "Chibgsg"), ...)



» BayesFactor(): best model is the model with
highest log marginal likelihood (Method of Chib)

Andrew D. Martin, Kevin M. Quinn, Jong Hee Park (2011). MCMCpack:
Markov Chain Monte Carlo in R. Journal of Statistical Software. 42(9): 1-21.
URL http://www.jstatsoft.org/v42/i09/.

Sylvia Fruhwirth-Schnatter and Helga Wagner 2006. “Auxiliary Mixture
Sampling for Parameter-driven Models of Time Series of Counts with
Applications to State Space Modelling.” Biometrika. 93:827—841.

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-

point models.” Journal of Econometrics. 86: 221-241.
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Changepoint Graph

Total Salmonella

— Infected
+  Outbreak
| N‘NMW’H
Unable to detect changepoints ° -
[TTTTTTTTTIT T I I I T I T I I T I I I T I I T ITITIT I ITITTITT
1998 1999 2001 2003 2005 2006 2008 2010

time




- Poisson likelihood; gamma prior; Negative Binomial
posterior predictive

- Fits a poisson-gamma model to data to determine
which timepoints are improbably large compared to
previous data values

- Bayes Algorithm for surveillance
- algo.bayes(disProgObj, control = list(range = range,
b =0, w = 6, actY = TRUE, alpha=0.05))

surveillance: An R package for the surveillance of infectious diseases (2007), M. Hoehle,
Computational Statistics, 22(4), pp.571--582.

Riebler A (2004) Empirischer Vergleich von statistischen Methoden zur
Ausbruchserkennung bei Surveillance
Daten. Bachelor’s thesis, Department of Statistics, University of Munich



» Based on posterior predictive distribution, Bayes
algorithm creates a maximum typical value

» Depends on probability level set by user (a)

» Based on preceding data, there is a (1-a) probability
that the current month case count will be at or below
the upper bound

o If value is above upper bound, flagged as alarm



Total Salmonella Epi Curve

Monthly Salmonella infections in U.S.
Jan 2001-Dec 2009

= —— Infected |
O R ---- Upperbound
E Lo Alarm
= ] +  Qutbreak
S B -
JE—
time
Monthly Salmonella infections in U.S.
K June1998 -Dec 2009
1
1
b= : — Infected
= w : ---— Upperbound
=] 1 S Alarm
= 7] 1 + Outbreak
= inl |
S 27 o b gl gl bl e [l i
o 4 {Th
T T I T T T T T T
1
0 20 : 40 B0 80 100 120 140

time

Window width: 6 versus 36 months
I




Infantis Epi Curve

Monthly Salmonella infantis infections in U.S.
Jan 2001-Dec 2009
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Epi1 Curves

Monthly Salmonella infantis infections in U.S.
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Simulation Study

O

- Test performance of the Poisson-Gamma method

- Using surveillance package
- Sim.pointSource — simulates
- Algo.bayes — analyzes

e Use to determine which factors are most influential in
detecting an outbreak

- Sim.pointSource

- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha =1,
beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)

surveillance: An R iackaie for the surveillance of infectious diseases i 200i iI M. HoehleI Comiutational




Simulation Study

O

e Parameters that describe the data

o P= probability of not being in an outbreak, given that there is
no current outbreak (frequency of outbreaks)

o R= probability of staying in an outbreak, given that there is an
outbreak (duration of outbreaks)

o K= factor by which the background incidence rate is multiplied
to obtain the outbreak incidence rate (magnitude of outbreaks)

» Parameters that describe the analysis
o W=window of data (estimating background rate of incidence)
o a= upper bound probability for detecting outbreaks

» Hypothesis: P and K will be most influential
R




Example of Simulated Data

No. infected

O

Epi Curve of Simulated Data
p=.95, r=.10, K=2.4
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Simulation Study: Code

O

survsim=function(p,r,k,nsets, alpha,w){

trueCount<-rep(NA, nsets)

estCount<-rep(NA,nsets)

for (iin 1:nsets){

#Simulate the disProg object using specified parameters
object<-sim.pointSource(p=p, r=r, length=144, A=0, alpha=.001,
beta=0, phi=0, frequency=12, state=NULL, K=k)

#Counts number of actual outbreaks in simulated object
#If more than one outbreak month in a row, only counts it once
trueCountli]<-sum(diff(c(object$state[(w+1):144],0))==-1)
#Performs algo bayes analysis on simulated object
res <- algo.bayes(object, control=list( w=w, range=(w+1):144, alpha=alpha))
#Counts number of detected outbreaks in simulated object
#If more than one outbreak month in a row, only counts it once
estCount[i]<-sum(diff(c(res$alarm,0))==-1) }

#Returns list of true counts, estimated counts, as well as

#specified parameters to identify simulation

return(list(trueCount=trueCount, estCount=estCount, p=p, r=r, k=Kk))




Simulation Study: Code

survinterval<- function(a){

exact<- sum(a$estCount==a$trueCount)/length(a$trueCount)
int1<- sum((.9*a$trueCount<=a$estCount)&(a$estCount<=1.1*a$trueCount))/length(a$trueCount)
int2<- sum((.8*a$trueCount<=a$estCount)&(a$estCount<=1.2*a$trueCount))/length(a$trueCount)
int3<- sum((.75*a$trueCount<=a$estCount)&(a$estCount<=1.25*a$trueCount))/length(a$trueCount)
int4<- sum((.5*a$trueCount<=a$estCount)&(a$estCount<=1.5*a$trueCount))/length(a$trueCount)
phat<- c(exact, int1, int2, int3, intg)
#compute a 95% confidence interval for the population proportion using pHat as a point estimator
res<-matrix(rep(NA, 2*length(phat)), ncol=2)
dimnames(res)<- list(c("exact", "+/- .1", "+/- .2", "+/- .25", "+ /- .5"),
¢("Lower Bound", "Upper Bound"))
for(i in 1: length(phat)){
res[i,]<-phat[i]+c(-1,1)*1.96*sqrt(phat[i]*(1-phat[i])/length(a$trueCount))

¥

#Compute bias
bias<- mean(a$estCount)-mean(a$trueCount)

return(list(p=a$p, r=a$r, K=a$k,MinTrueCount= min(a$trueCount),MedTrueCount=
median(a$trueCount), MaxTrueCount= max(a $trueCount),pHat= phat, bias= bias, CI=res))

¥
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Simulation Study: Results

a=upper bound probability level for Bayes algorithm
(larger a = more sensitive)
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Simulation Study: Results

K: Difference between outbreak infections and background infections
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Simulation Study: Results

P: probability of not being in an outbreak given that there is no outbreak

(frequency of outbreaks)
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Conclusions

- Data Analysis:
. Poisson-Gamma method can handle different types of data
better than the Changepoint analysis

- Tendency to overestimate number of outbreaks in data like
Infantis (ie. long stretches of zeros and then high counts)

- Simulation:
. Frequency of outbreaks (p)
- Upper bound probability (alpha)
- Bias




Questions?

O




Appendix: Poisson-Gamma Distribution

Q)

Here, one assumes independently and identically (iid) Poisson distributed reference
values with parameter A. A gamma distribution is used as prior distribution for A. The
reference values are defined to be Rpayes = R(w, wo, B) = {y1, ..., ¥a} and ypy 1s
the value to predict. Thus, 4 ~ Galw, §) and v;|h ~ Po(x). i = 1, ..., n. Standard
derivations show that the posterior distribution is

A
Alyr,--.s¥n NGa(n’+Z:ﬂnﬁ+ﬂ)-

i=l

|Computing the predictive posterior distribution for the next observation

FOnatlpi - ) =ff{.v,,+.|u FOIYLs - ya) i,
0

one gets the Poisson-gamma distribution, which is a generalisation of the negative
|binomual distribution. Altogether,

i
. E+n
Ynst|¥1seees Ya NNﬂgBm(ﬂwZ}'n—)-
= f+n+1

Using Jeffrey’s prior Ga[% 0} as non-informative prior distribution for A, the param-
|eters of the negative binomial distribution are

n

1 B+n | RBayes|
o+ Z Vi=—=+ Z vi:j and = .
1 2 Vi€ Riages f+n+1 | RBayes| + 1

l!ompu!a!mna' !!a!ls!lcs, 22'4 l, pp.571——5!2.




