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Abstract

In this manuscript, we study the nonparametric k-sample test problem with panel
count data. The asymptotic normality of a smooth functional of the nonparametric
maximum pseudo-likelihood estimator (Wellner and Zhang, 2000) is established under
some mild conditions. We construct a class of easy-to-implement nonparametric tests
for comparing mean functions of k populations based on this asymptotic normality. We
conduct various simulations to validate and compare the tests. The simulations show
that the tests perform quite well and generally have a good power to detect difference
of the mean functions. The method is illustrated with two real data examples.

Some key words: Counting Process; Empirical Process; Interval censored data; Monte-Carlo;

Isotonic Regression.

1. Introduction

Suppose that N = {N(t) : t ≥ 0} is a counting process with mean function EN(t) = Λ0(t). In

applications, recurrence of some undesirable repeated events such as tumor and stroke can

be modelled as realization of a counting process. Continuous observation over a counting

process up to a time point constitutes so called event history data. There is a large amount of

researches in literatures for event history data; for example, Prentice, Williams, and Peterson

(1981), Andersen and Gill (1982), Pepe and Cai (1993), Lawless and Nadeau (1995), Cook,

Lawless, and Nadeau (1996), and Lin, Wei, Yang, and Ying (2000).
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In this manuscript, we consider incomplete observation on the counting process, in which

the event process (counting process) is only observed at a sequence of random times 0 <

TK,1 < TK,2 < · · · < TK,K , where the total number of observations K is also assumed to

be an integer-valued random variable. The numbers of a recurrent event up to these times,

0 ≤ N(TK,1) ≤ N(TK,2) ≤ · · · ≤ N(TK,K), are observed accordingly. The observed data

for the counting process consist of X = (K, T ,N), where T = (TK,1, TK,2, · · · , TK,K) and

N = {N(TK,1),N(TK,2), · · · ,N(TK,K)}. This type of data is referred to as panel count data.

Panel count data occur frequently in fields such as demographic studies, reliability, clin-

ical trials, and health service researches. Statistical methodology researches on this type of

data can be found in Gaver and O’Muircheataigh (1987), Thall and Lachin (1988), Thall

(1988), and Kalbfleisch and Lawless (1985), in which some relatively simplified versions of

panel count data were studied. Sun and Kalbfleisch (1995) appeared to be the first studying

the nonparametric estimation of the mean function with panel count data aforementioned.

They used the isotonic regression technique to estimate the mean function of the count-

ing process. Wellner and Zhang (2000) studied likelihood-based nonparametric estimation

methods based on a “working model” of nonhomogeneous Poisson process. They showed

that the nonparametric maximum pseudo-likelihood estimator is exactly the one studied in

Sun and Kalbfleisch (1995) and they also studied the asymptotic properties of both non-

parametric maximum pseudo-likelihood and likelihood estimators. The basic picture is that

both estimators are consistent but pointwisely converge to the true mean function in a lower

rate (n−1/3). The maximum likelihood estimator, while more efficient than the maximum

pseudo-likelihood estimator, demands much more computationally and its property is hard

to study.

More recently, researchers have developed some semiparametric regression methods for

the proportional mean model with panel count data, namely, Λ(t|Z) = Λ0(t) exp(βT Z). Sun

and Wei (2000) and Hu, Sun, and Wei (2003) devised some simple estimation procedures

to estimate regression parameters using generalized estimating equation technique. Their

methods, however, rely on extra assumptions on the observation scheme and thus are re-

stricted in practice. Zhang (2002), Wellner, Zhang, and Liu (2004) studied semiparametric
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likelihood-based methods for estimating both the regression parameters and baseline mean

function. The properties of the estimators are comparable with those in nonparametric

estimation. The semiparametric maximum likelihood estimator is more efficient than the

semiparametric maximum pseudo-likelihood estimator but is much more involved in compu-

tation. Numerical evidence of above is given by Wellner and Zhang (2005) through several

simulation studies. Motivated by the asymptotic theorem developed by Huang (1996) in

studying interval censored data, they also derived the asymptotic normality for the estima-

tors of the regression parameters. Their methods, while having the advantage in indepen-

dence of the observation scheme, face a challenge in estimating the asymptotic variance.

Wellner and Zhang (2005) used the bootstrap procedure to make inference with a quite bit

effort in computing, especially for the likelihood case.

This manuscript concerns about comparison of the mean functions of k populations. We

assume that data consist of k independent samples of panel count data randomly drawn

from k populations correspondingly. Our goal is to construct a test statistic for testing the

null hypothesis:

H0 Λ1(t) = Λ2(t) = · · · = Λk(t) = Λ0(t),(1.1)

where Λi(t) is the mean function of the ith population for i = 1, 2, . . . , k. Although the

semiparametric methods as mentioned above can be used to make the inference, they all

have some shortcomings, either on computation complexity or requiring extra assumptions

on the observation scheme that may not be realistic in practice. Sun and Fang (2003)

developed a simple nonparametric procedure to test the equity of mean functions for all

counting processes in a random sample. Their method, though maybe applicable to k-

sample test, requires an extra assumption that each process has equal chance to be assigned

to any of the k samples, which again may not be realistic in practice.

The rest of paper is organized as follows: In Section 2, we derive the convergence rate

of the nonparametric maximum pseudo-likelihood estimator in a specified L2 normal and

establish the asymptotic normality of a smooth functional of the estimator. In Section 3, we

construct a class of easy-to-implement test statistics and describe the asymptotic property
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of the test statistics. In Section 4, we conduct various Monte-Carlo simulation studies to

validate the method and compare the power of these tests. We also illustrate our method

with two real life data sets, one from the famous bladder tumor study and other from a HIV

study. In Section 5, we summarize our results and discuss further development in this area.

Finally, we include all the technical proofs of the theorems in the Appendix.

2. The Nonparametric Maximum Pseudo-Likelihood Es-

timator

Wellner and Zhang (2000) proposed a simple nonparametric estimation method for the mean

function of the counting process with panel count data. Assuming the underline counting

process being a nonhomogeneous Poisson process and ignoring completely correlations of

the cumulative counts N, they established the log pseudo-likelihood by omitting the parts

irrelevant to the mean function Λ as follows,

ln(Λ; X) =
n∑

i=1

Ki∑
j=1

{
N(i)(TKi,j) log Λ(TKi,j)− Λ(TKi,j)

}
,(2.1)

where data X are the collection of i.i.d copies of X, Xi = (Ki, T i,N(i)) for i = 1, 2, · · · , n
with T i = (TKi,1, TKi,2, · · · , TKi,Ki

) and N(i) = {N(i)(TKi,1),N(i)(TKi,2), · · · ,N(i)(TKi,Ki
)}.

The nonparametric maximum pseudo-likelihood estimator of Λ, Λ̂n is defined to be the

step function that has jumps only possibly at the collection of observed times and maximizes

(2.1). Wellner and Zhang (2000) have shown that this estimator is easy to calculate and, in

fact, it is exactly the isotonic regression estimator proposed by Sun and Kalbfleisch (1995).

Wellner and Zhang (2000) also studied asymptotic properties of this estimator. They con-

cluded that the estimator is strongly consistent in a L2-norm with the measure defined by

Sichck and Yu (2000) as

µ(t) =
∞∑

k=1

P (K = k)
K∑

j=1

P (TK,j ≤ t|K = k)(2.2)
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under some mild regularity conditions. That is

d2(Λ̂n, Λ0) =

[∫

S[T ]

{
Λ̂n(t)− Λ0(t)

}2

dµ(t)

]1/2

→a.s 0,(2.3)

where S[T ] = {t : 0 < t ≤ τ} for some τ > 0. The τ can be viewed as the termination

time in a clinical follow-up study. With more mild regularity conditions, they also derived

the pointwise asymptotic distribution of the estimator. That is,

n1/3
{

Λ̂n(t0)− Λ0(t0)
}
→d 2

{
σ2(t0)Λ

′
0(t0)

2µ′(t0)

}1/3

argmaxh

{
Z(h)− h2

}
,(2.4)

for any t0 ∈ S[T ], where σ2(t) ≡ V ar{N(t)} and Z is a two-sided Brownian motion process

started from zero.

The asymptotic properties (2.3) and (2.4) are, however, not directly applicable in con-

struction of test statistics for comparing the mean functions. We expand the study on

asymptotic properties of the estimator initiated by Wellner and Zhang (2000) for the pur-

pose of k-sample comparison. The following regularity conditions (in addition to those given

in Wellner and Zhang, 2000) are sufficient for the forthcoming theorems.

C1. For some interval O[T ] = [σ, τ ] with σ > 0 and Λ0(σ) > 0, P (∩K
j=1{TK,j ∈ [σ, τ ]}) = 1.

C2. There exists a positive integer k0 such that P (K ≤ k0) = 1, i.e. the number of

observations is finite.

C3. E
{
eCN(t)

}
is uniformly bounded above for t ∈ S[T ] and some constant C.

C4. The true baseline mean function Λ0 is differentiable and the derivative has a positive

lower bound in the observation interval, i.e. there exists a constant f0 > 0 such that

Λ′0(t) ≥ f0 for t ∈ O[T ].

C5. There are some functions η such that for every such η, η ◦Λ−1
0 is a bounded monotone

Lipschitz function.

Conditions C1 and C2 are easily justified in many applications. C3 is true if N(t) is

uniformly bounded, which usually holds in view of clinical studies, or if N(t) is a Poisson or
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mixed Poisson process. C4 and C5 are mainly used in technical development. C4 indicates

that our results are valid when the true mean function satisfies some smoothness conditions.

With C4, C5 automatically holds for η ≡ 1. These conditions, in general, are mild in view

of applications.

Theorem 2.1 (Rate of Convergence) Suppose that C1-C3 hold, then

n1/3d(Λ̂n, Λ0) = Op(1).

Next, we study a smooth functional of Λ̂n, ν(Λ̂n) =
∫

S[T ]
η(t)Λ̂n(t)dµ(t) with a weight

function η(t). In practice, one may choose to use η1(t) ≡ 1 (equal weight on the observations),

η2(t) = P (TK,K ≥ t) (heavy weight on the earlier observations), or η3(t) = P (TK,K < t)

(heavy weight on the later observations).

Theorem 2.2 (Asymptotic Normality) Suppose that C1-C5 hold, then

n1/2
{

ν(Λ̂n)− ν(Λ0)
}

= W + op(1),(2.5)

where W ∼ N(0, Ω) with

Ω = E

[
K∑

j=1

η(TK,j) {N(TK,j)− Λ0(TK,j)}
]2

.

This theorem can be viewed as a generalisation of the result given by Huang and Wellner

(1995), since Wellner and Zhang (2000) found out that the characteristics of the nonpara-

metric maximum pseudo-likelihood estimator of the mean function with panel count data

are structurally similar to those of the nonparametric maximum likelihood estimator of the

distribution function with current status data. The proofs of the theorems are given in the

Appendix.

3. A Class of Nonparametric K-Sample Test Statistics

In order to construct a test statistic for H0 with k ≥ 3, we first estimate the difference of the

functional ν for any two samples under the null hypothesis (1.1). Without loss of generality,
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we consider

νn(Λ̂n1 , Λ̂n2) =

√
n1n2

n

∫

S[T ]

η̂n(t)
{

Λ̂n1(t)− Λ̂n2(t)
}

dµ̂n(t)

=

√
n1n2

n

n∑
i=1

Ki∑
j=1

[
η̂n(TK,j)

{
Λ̂n1(TK,j)− Λ̂n2(TK,j)

}]
,(3.1)

where Λ̂n1 and Λ̂n2 are the nonparametric maximum pseudo-likelihood estimators of Λ0 using

the individual sample data, respectively; η̂n is the sample estimate of the weight function

η(t) (For example η̂2,n(t) = 1/n
∑n

i=1 1[TKi,Ki
≥t] for η2(t)) and µ̂n(t) is the empirical estimate

of the measure µ(t) given by µ̂n(t) = 1
n

∑n
i=1

∑Ki

j=1 1[TK,j≤t] using the pooled data.

Theorem 3.1 In addition to C1-C5, we also assume that

i. The distribution of panel observations (K, T ) is the same across the samples.

ii. For a bounded monotone function η, there is a consistent estimate η̂n such that

n1/6d(η̂n, η) = op(1).

iii. n1/n → p1 and n2/n → p2 as n →∞.

Then, νn(Λ̂n1 , Λ̂n2) =
√

p2W1−√p1W2+op(1), where W1,W2 ∼ N(0, Ω) and are independent.

The proof of this theorem is also given in the Appendix. Based on this theorem, we can

now easily construct a class of test statistics for H0. In a sequel, we suppress S[T ] in the

integral for clarity. Let

ν1,2
n (Λ̂n1 , Λ̂n2) =

√
n1n2

n

∫
η̂n(t)

{
Λ̂n1(t)− Λ̂n2(t)

}
dµ̂n(t)

ν1,3
n (Λ̂n1 , Λ̂n3) =

√
n1n3

n

∫
η̂n(t)

{
Λ̂n1(t)− Λ̂n3(t)

}
dµ̂n(t)

...

ν1,k
n (Λ̂n1 , Λ̂nk

) =
√

n1nk

n

∫
η̂n(t)

{
Λ̂n1(t)− Λ̂nk

(t)
}

dµ̂n(t).

Suppose that n1/n → p1, n2/n → p2, · · ·, and nk/n → pk, as n → ∞. Then based on the
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result of Theorem 3.1, under the null hypothesis (1.1) we have

ν1,2
n (Λ̂n1 , Λ̂n2) =

√
p2W1 −√p1W2 + op(1)

ν1,3
n (Λ̂n1 , Λ̂n3) =

√
p3W1 −√p1W3 + op(1)

...

ν1,k
n (Λ̂n1 , Λ̂nk

) =
√

pkW1 −√p1Wk + op(1),

where W1,W2, · · · ,Wk ∼ N(0, Ω) and they are all mutually independent.

Denote νn =
{

ν1,2
n (Λ̂n1 , Λ̂n2), ν

1,3
n (Λ̂n1 , Λ̂n3), · · · , ν1,k

n (Λ̂n1 , Λ̂nk
)
}T

, we have that νn = W +

op(1), where W ∼ N(0, B) with

B = Ω




p1 + p2
√

p2p3 · · · √
p2pk√

p2p3 p1 + p3
√

p3p4 · · ·
...

...
...

...√
p2pk

√
p3pk · · · p1 + pk


 .

B can be consistently estimated by

B̂n = Ω̂n




n1+n2

n

√
n2n3

n2 · · · √
n2nk

n2√
n2n3

n2
n1+n3

n

√
n3n4

n2 · · ·
...

...
...

...√
n2nk

n2

√
n3nk

n2 · · · n1+nk

n




with

Ω̂n =
1

n

n∑
i=1

[
Ki∑
j=1

η̂n(TK,j)
{
N(i)(TKi,j)− Λ̂n(TKi,j)

}]2

,

in which η̂n and Λ̂n are obtained using the pooled data. Therefore a reasonable test statistic

for H0 can be easily constructed by the quadratic form Tn = νT
n B̂−1

n νn, which has the

sampling distribution χ2
k−1 asymptotically. Owing to ease in computing the nonparametric

maximum pseudo-likelihood estimator of the mean function with panel count data, it is also

very easy to calculate Ω̂n, a consistent estimate of Ω. Hence the implementation of the test is

very little demanding in computation as compared to the Wald test based on the hypothesis

of proportional mean model studied in Wellner and Zhang (2005).
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4. Numerical Results

4.1. Simulation Studies

We evaluate the performance of the tests for case k = 3 (three-sample comparison) in terms

of size and power using the simulation settings described in Wellner and Zhang (2000).

Scenario 1 (Data from Poisson processes). {(Ki, T i) : i = 1, 2, · · · , n} (n = n1+n2+n3) is a

random sample, where Ki is drawn uniformly in {1, 2, 3, 4, 5, 6} for i = 1, 2, . . . , n. Given Ki,

the panel observation times T i = (TKi,1, TKi,2, . . . , TKi,Ki
) are made from the order statistics

of Ki random observations, generated from the distribution, Unif(0,10). The panel counts

are made from the following counting processes: N(i)(t) ∼ Poisson(λt) for i = 1, 2, . . . , n1;

N(i)(t) ∼ Poisson{(1+θ1)λt} for i = n1+1, n1+2, . . . , n1+n2; N(i)(t) ∼ Poisson{(1+θ2)λt}
for i = n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3. We compare the test statistics with the

weight functions ηn(t) ≡ 1, 1/n
∑n

i=1 1[TKi,Ki
≥t], and 1/n

∑n
i=1 1[TKi,Ki

<t], respectively, and

we call them T
(1)
n , T

(2)
n , and T

(3)
n accordingly.

We choose λ = 1 and consider all possible (θ1, θ2) resulted from the combination of 0,

0 ·1, 0 ·25, and 0 ·5. We conduct Monte-Carlo simulation studies with n1 = n2 = n3 = 50 and

n1 = n2 = n3 = 100, respectively. For each study, 1000 repeated samples are generated and

the corresponding test statistics are calculated. The proportion of the test statistics beyond

χ2
2,0·95 (rejection region with significance level 0 · 05) is computed for each case and reported

in Table 1.

This study shows that all three test statistics T
(1)
n , T

(2)
n , and T

(3)
n perform well with

moderate sample size based on the large sample property. The empirical sizes of the tests

are all close to their nominal value 0 · 05. These tests, in general, have a satisfactory power

to detect a departure from the null hypothesis. When the three mean functions differ by

at most 50%, (Cases 4, 7, 9, and 10) the test power is virtually 100% for the small study

(n=150). For the larger study (n=300), the test power is at least 90%, if not 100%, for the

mean functions differing by at most 25%.
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For all the alternative hypotheses, the test statistics T
(1)
n and T

(3)
n tend to have a better

power than T
(2)
n . This is due to the fact that T

(2)
n weights earlier observations more than

later observations, in which the mean functions differ the greatest if they are different. While

the gain in power for test T
(3)
n over T

(2)
n is ascribed to the aforementioned reason, we notice

that the equally weighted test T
(1)
n performs just as good as T

(3)
n and even slightly better

in many occasions. T
(3)
n puts a zero weight on the early but crowded observations, so the

difference of the estimators in the early times does not contribute to the difference in the

functionals. Replacing zero weight by the smallest non-zero weight for the early observations

may potentially improve the power.

Scenario 2 (Data from one-jump processes). {(Ki, T i) : i = 1, 2, · · · , n} (n = n1 +n2 +n3)

are generated exactly the same as described in Scenario 1. Denote Vi the event time generated

from Exponential distributions: Vi ∼ exp(λ) for i = 1, 2, . . . , n1; Vi ∼ exp{λ(1 + θ1)} for

i = n1+1, n1+2, . . . , n1+n2; and Vi ∼ exp{λ(1+θ2)} for i = n1+n2+1, n1+n2+2, . . . , n1+

n2 + n3. The panel counts Ni =
(
N(i)

Ki,1
,N(i)

Ki,2
, . . . ,N(i)

Ki,Ki

)
are made by N(i)

Ki,j
= 1[Vi≤TKi,j ]

for j = 1, 2, · · · , Ki. This type of data, as a special case of panel count data, was referred

to as mixed case interval censored data by Schick and Yu (2000). The mean function of the

process is just the distribution function of the event time.

In this study, we select λ = 0 · 2 and consider all possible (θ1, θ2) resulted from the

combination of 0, 0·25, 0 ·50, and 1 ·00. Monte-Carlo simulation studies with 1000 repetitions

are conducted for n1 = n2 = n3 = 50 and n1 = n2 = n3 = 100, respectively. Results are

given in Table 2. The results show again that all these tests have the empirical size close

to the nominal level 0·05 with moderate sample size. In this case, T
(3)
n , however, performs

noticeably inferior to the first two tests. This is due to the fact that the maximum difference

of the three mean functions appears in an early time of the interval [0,10]. For example, the

biggest difference of the mean functions occurs at t = 3 · 466 in Case 4. Clearly, putting

small weight around this area as T
(3)
n does diminishes the difference in the functionals.

The behavior of the test statistics are expected to be similar to that of the weighted

log rank test statistics. In general, they have a good power to detect the difference when
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the mean functions do not cross over. The power may reduce dramatically otherwise. For

illustration, we design the third set of simulations which incorporates the scenario that the

mean functions cross over.

Scenario 3 We consider the mixed case interval censored data as described in Scenario 2.

But the event time is generated from the following: Vi ∼ Wei(1, 1) for i = 1, 2, . . . , n1 + n2

and Vi ∼ Wei(a, a) for i = n1 + n2 + 1, 2, . . . , n1 + n2 + n3. In this scenario, the distribution

function of the event time is 1 − exp(−t) for the first two groups and 1 − exp
{− (

t
a

)a}
for

the third group. Figure 1 plots these functions with various a. Table 3 shows the simulation

results based on 1000 repetitions with n1 = n2 = n3 = 50 and n1 = n2 = n3 = 100,

respectively. It is quite apparent that all three tests will yield small power in detecting the

difference for a = 0 · 75 or 0 · 50 since the powers do not increase as sample size doubles.

That the positive difference of the mean functions in the test statistics between group 1 and

group 3 offsets the negative difference as shown in Figure 1 is the legitimate explanation for

the lower power. When a = 0 · 25, the three tests have a reasonable power mainly because

the positive part of the difference appears dominating the negative part. Test statistics T
(3)
n

has the largest power as it weights the positive difference more than other two test statistics.

Selection of the weight function is a subjective matter. In practice, having a prior knowl-

edge about the shapes of the mean functions will help select the weight function to improve

the power. Our simulations indicate that when the mean functions do not cross over, the

equally weighted test tends to have a good power. However, when they cross over, the test

with a right weight function may have a significantly improved power but the degree of

improvement depends on how the mean functions cross over.

4.2. Two Real-Life Examples

Example 1 (Bladder Tumor Trial) We apply our method to the well-known data set ex-

tracted from a bladder tumor study conducted by the Veterans Administration Cooperative

Urological Research Group (VACURG). (Andrews and Herzberg, 1985) Previous studies of

this data set can be found in Byar, Blackard, and the VACURG (1977), Byar (1980), Wei,
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Lin and Weissfeld (1989), Wellner and Zhang (2000), Sun and Wei (2000), and Zhang (2002).

The data set consists of 116 patients in a randomized clinical trial in which patients

experienced superficial bladder tumor when entering the trial and were assigned randomly

into one the three arms: placebo (47 patients), pyridocine pills (31 patients), and periodic

instillation of a chemotherapeutic agent (38 patients), thiotepa. The follow-up number and

time vary greatly from patient to patient. At each follow-up visit, any tumors noticed were

counted, measured and then removed transurethrally, and the treatments continued. This

data set fits our panel count data framework perfectly. In this manuscript, we compare

the tumor recurrence under the three arms based on the nonparametric maximum pseudo-

likelihood estimator of the mean function of tumor counts. The estimators are plotted in

Figure 2. We select placebo as the reference group in our analysis that results T
(1)
n =

4 · 928141, T
(2)
n = 3 · 868270 and T

(3)
n = 4 · 952747 with p-value=0·0851, 0·1445 and 0·0840,

respectively. The tests based on T
(1)
n and T

(3)
n reject the null hypothesis at level 0·1 but fail

to reject at level 0·05. The rational that both T
(1)
n and T

(3)
n outperform T

(2)
n in terms of

test power can be easily understood. From Figure 2, we can see clearly that the greatest

difference of the three samples appears in later times of the trial, so having close to zero

weights for the observations near the end discourages the difference between the functionals

of the estimators. We also conduct the multiple pairwise comparisons using Bonferroni

technique and we only detect the difference between the pyridocine and thiotepa treatments

at overall level 0·1 in the tests T
(1)
n and T

(3)
n with p-value=0·0326 and 0·0267, respectively.

Sun and Wei (2000) and Zhang (2002) have detected the difference between thiotepa

treatment and placebo at significance level 0·05 using semiparametric regression analysis.

Their conclusions, however, are made based on the proportional mean model, which may

not be realistic in this application. This assumption was questioned by Wellenr and Zhang

(2005) as the three estimators shown in Figure 2 cross over in earlier times of the trial. In

addition, the crossing of these estimators may contribute to a lower power in detecting the

difference as indicated through simulation scenario 3.

Example 2 (HIV Clinical Trial) This a an ongoing randomized AIDS clinical trial for
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comparing three antiretroviral regimens. A total of 513 HIV-1-infected patients were ran-

domized to this study in US. Arm A (166 patients) of the study is a standard 3-drug regimen

serving as a control group, while Arms B (171 patients) and C (176 patients) are new 4-drug

regimens. Although several primary endpoints are used to compare the long-term effective-

ness of the three regimens in this study, we focus on comparing time-to-detection-limit of

HIV-1 RNA assays (50 copies per ml plasma) which is a measurement of time-to-response

of antiviral therapies. A shorter time-to-response of a regimen indicates that the regimen is

more potent. HIV-1 RNA levels were scheduled to be monitored at weeks 4, 8 and every 8

weeks thereafter during treatment. However, individual patients may not exactly follow this

schedule. So it is reasonable to assume probability distributions for the follow-up monitoring

times. Drop-out from the monitoring is very common in the study. The number of monitoring

varies greatly from subject to subject, ranging from 1 to 28. The time-to-detection-limit is

only known in an interval of two consecutive monitoring times, so the data fit the framework

of the mixed case interval censored data. Zhang, Liu and Hu (2003) constructed a simple

nonparametric two-sample test for comparing the difference of the distribution function of

time-to-response between the two regimens under Arms A and B.

Applying the proposed method to this example, the three tests result in T
(1)
n = 12 ·04938,

T
(2)
n = 12 ·47060 and T

(3)
n = 9 ·311337 with p-value=0·0024, 0·0020, and 0·0095, respectively.

We reject the null hypothesis using any of these tests at level 0·05. We, however, notice that

the test T
(2)
n appears to be the most powerful and T

(3)
n is the least powerful for this example

among the three tests. This can be easily understood since the biggest difference of the three

estimators occurs at an earlier time of the study as shown in Figure 3 and these estimators

tend to converge to one in the end of study.

Using Bonferroni approach, at overall significance level 0·05, we only found pairwise

difference between Arms B and C with p-value=0·0006, 0·0005 and 0·0034, respectively.

Pairwise difference between Arms A and B can be detected only at overall significance

level 0·1 with p-value=0·0259, 0·0278 and 0·0272, respectively, though the difference is quite

transparent in Figure 3.

13



5. Summary

This manuscript introduces a class of nonparametric tests for comparing the mean functions

of k samples with panel count data. The test statistics are constructed based on a smooth

functional of the nonparametric maximum pseudo-likelihood estimator of the mean function.

Large sample properties of the test statistics are thoroughly studied using empirical process

theory. Various simulation studies with moderate sample size are conducted to evaluate the

performance of the test statistics. The simulation results show that the tests, in general,

have a good power to detect difference in mean functions of multiple samples, especially

when the mean functions do not cross over.

In this study, we select the first sample as the reference sample for the comparison.

Actually, the selection of the reference sample does not affect the value of the test statistic,

since any pair difference of the functionals is a linear combination of those used in the

construction of the test statistics.

The tests we conducted in this manuscript, however, rely on the assumption that the

observation scheme with respect to the total number of observation K and panel observation

times T are the same across different samples. Obviously, this assumption may not be easily

verified in practice in view of many applications in clinical trials. To avoid this assumption,

one can modify the two-sample test statistic using

νn(Λ̂n1 , Λ̂n2) =

√
n1n2

n

{∫
Λ̂n1(t)η̂n1(t)dµ̂n1(t)−

∫
Λ̂n2(t)η̂n2(t)dµ̂n2(t)

}
,

where η̂ni
(t) (i = 1, 2) can be chosen as the inverse of the kernel smoothing estimate of µ′i(t).

Here µi is the measure µ for sample i, and µ̂ni
is the empirical estimate of µi defined earlier.

It is still relatively easy to compute this test statistic with some extra effort for getting a

consistent estimate η̂ni
(i = 1, 2). The quantity νn(Λ̂n1 , Λ̂n2) can be easily shown to have the

asymptotic normality with mean zero and asymptotic variance given by

p2E

[
K∑

j=1

η1(TK,j) {N(TK,j)− Λ0(TK,j)}
]2

+ p1E

[
K∑

j=1

η2(TK,j) {N(TK,j)− Λ0(TK,j)}
]2

,

which is again easily estimable.

14



Wellner and Zhang (2000) have shown that the nonparametric maximum likelihood es-

timator has a better asymptotic property in terms of estimation efficiency compared to the

nonparametric maximum pseudo-likelihood estimator. It is not clear whether this advantage

is transformable into the performance of the test statistics. It is of interest to develop similar

test statistics using the nonparametric maximum likelihood estimators and compare them

with the tests proposed in this manuscript. The task remains for the future research.
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6. Appendix

In this section, we sketch the proofs for the three theorems. We mainly use the modern

empirical process theory justifying our arguments. Throughout this section, we adopt the

empirical process notations used in van der Vaart and Wellner (1996). We denote Pf =
∫

fdP and Pnf = 1
n

∑n
i=1 f(Xi). We let C be a constant, which may represent different

values at various places.

Proof of Theorem 2.1:

Let mΛ(X) =
∑K

j=1 {N(TK,j) log Λ(TK,j)− Λ(TK,j)} and define M(Λ) = PmΛ(X). Then

the log pseudo-likelihood function (2.1) can be represented by ln(Λ; X) = nPnmΛ(X). We

also restrict the mean function Λ to be inside the class

F = {Λ : (0, τ ] → [0,M ]| Λ is monotone nondecreasing and Λ(0) = 0},

for some M < ∞. Hence M defines a smooth functional for the class F .

We derive the rate of convergence based on Theorem 3.2.5 of van der Vaart and Wellner

(1996). First, let h(x) = x log(x)− x + 1. It can be easily shown by Taylor expansion that

15



h(x) ≥ 1
4
(x − 1)2 for x in a neighborhood of x = 1 and thus for any Λ in a neighborhood

of Λ0, a simple algebraic calculation yields M(Λ0)−M(Λ) ≥ Cd2(Λ0, Λ). So the separation

condition of Theorem 3.2.5 of van der Vaart and Wellner (1996) satisfies. Second, we consider

the classes Fδ = {Λ ∈ F : d(Λ, Λ0) ≤ δ} for δ > 0 and Mδ = {mΛ(X) − mΛ0(X) :

Λ ∈ Fδ}. Since Fδ is a class of monotone nondecreasing functions, by Theorem 2.7.5 of van

der Vaart and Wellner (1996), for any ε > 0, there exists a set of brackets: {[Λl
i, Λ

r
i ] : i =

1, 2, · · · , q} with q ≤ exp(C/ε), such that for any Λ ∈ Fδ, Λl
i(t) ≤ Λ(t) ≤ Λr

i (t) for all t ∈
O[T ] and some 1 ≤ i ≤ q, and d2(Λr

i , Λ
l
i) =

∫ {
Λr

i (t)− Λl
i(t)

}2
dµ(t) ≤ ε2. (Here we use the

fact that µ is a finite measure with our hypotheses and therefore can be normalized to be a

probability measure) Hence, we can construct a set of brackets for Mδ: {[ml
i(X),mr

i (X)] :

i = 1, 2, · · · , q} by letting

ml
i(X) =

K∑
j=1

{
N(TK,j) log Λl

i(TK,j)− Λr
i (TK,j)

}−mΛ0(X)

and

mr
i (X) =

K∑
j=1

{
N(TK,j) log Λr

i (TK,j)− Λl
i(TK,j)

}−mΛ0(X).

Using C2, C3 and C4, it can be easily shown that ‖mr
i (X) −ml

i(X)‖2
P,B ≤ Cε2, where

‖ · ‖P,B is the “Bernstein norm” defined to be ‖f‖P,B =
{
2P

(
e|f | − 1− |f |)}1/2

. (see var der

Vaart and Wellner, 1996, p324)

Moreover, for any mΛ(X)−mΛ0(X) ∈Mδ, the same techniques as used for arguing the

preceding statement yield that ‖mΛ(X)−mΛ0(X)‖2
P,B ≤ Cδ2. Hence, by Lemma 3.4.3 of van

der Vaart and Wellner (1996), we have

EP‖
√

n(Pn − P )‖Mδ
≤ CJ̃[ ](δ,Mδ, ‖ ‖P,B)

{
1 +

J̃[ ](δ,Mδ, ‖ ‖P,B)

δ2
√

n

}
,(6.1)

where

J̃[ ](δ,Mδ, ‖ ‖P,B) =

∫ δ

0

√
1 + log N[ ](ε,Mδ, ‖ ‖P,B)dε ≤ Cδ1/2.

This yields the right hand side of (6.1), φn(δ) ≤ C
(
δ1/2 + δ−1/

√
n
)
. It is easy to see that

φn(δ)/δ is a decreasing function of δ and n2/3φn(n−1/3) = n2/3
(
n−1/6 + n1/3n−1/2

)
= 2

√
n.
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This suffices to conclude n1/3d(Λ̂n, Λ0) = Op(1) by Theorem 3.2.5 of van der Vaart and

Wellner (1996).

Proof of Theorem 2.2: The proof of this theorem is closely related to the arguments used

in Huang and Wellner (1995). First, we rewrite Equation (2.5) in Wellner and Zhang (2000)

as
∑n

i=1

∑Ki

j=1

[
N(i)(TKi,j)− Λ̂n(TKi,j)

]
= 0. Using the same block argument as originally

described in Groeneboom and Wellner (1992), p43, we have

Pn

[
K∑

j=1

{
N(TK,j)− Λ̂n(TK,j)

}
η ◦ Λ−1

0

{
Λ̂n(TK,j)

}]
= 0.(6.2)

for any function η.

Second, we can express

n1/2
{

ν(Λ̂n)− ν(Λ0)
}

= −n1/2P

[
K∑

j=1

{
N(TK,j)− Λ̂n(TK,j)

}
η(TK,j)

]
(6.3)

= ∆1n + ∆2n + ∆3n + ∆4n,

where

∆1n = n1/2 (Pn − P )
[∑K

j=1 {N(TK,j)− Λ0(TK,j)} η(TK,j)
]

∆2n = −n1/2 (Pn − P )
[∑K

j=1

{
Λ̂n(TK,j)− Λ0(TK,j)

}
η(TK,j)

]

∆3n = n1/2 (Pn − P )
(∑K

j=1

{
N(TK,j)− Λ̂n(TK,j)

}[
η ◦ Λ−1

0

{
Λ̂n(TK,j)

}
− η ◦ Λ−1

0 {Λ0(TK,j)}
])

.

∆4n = −n1/2P
(∑K

j=1

{
N(TK,j)− Λ̂n(TK,j)

}[
η ◦ Λ−1

0 {Λ0(TK,j)} − η ◦ Λ−1
0

{
Λ̂n(TK,j)

}])

By the Central Limit Theorem, we have that ∆1n →d N(0, Ω). By Theorem 2.1 and C5, we

have that

|∆4n| = n1/2

∣∣∣∣
∫ {

Λ0(t)− Λ̂n(t)
}[

η ◦ Λ−1
0 {Λ0(t)} − η ◦ Λ−1

0

{
Λ̂n(t)

}]
dµ(t)

∣∣∣∣

≤ Cn1/2

∫ {
Λ0(t)− Λ̂n(t)

}2

dµ(t) →p 0

Hence, to prove the theorem, it suffices to show that both ∆2n and ∆3n are op(1).

Third, to show ∆2n = op(1), we denote φ1(Λ) =
∑K

j=1 {Λ(TK,j)− Λ0(TK,j)} η(TK,j) and

define a class, Φ1(δ) = {φ1(Λ) : Λ ∈ Fδ}. Using the set of brackets for Fδ constructed in the
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proof of Theorem 2.1, we can form a set of brackets for Φ1(δ),
{
[φl

1i, φ
r
1i] : i = 1, 2, · · · , q}

by letting
φl

1i(X) =
∑K

j=1

{
Λl

i(TK,j)− Λ0(TK,j)
}

η(TK,j)

φr
1i(X) =

∑K
j=1 {Λr

i (TK,j)− Λ0(TK,j)} η(TK,j).

A simple algebraic calculation yields that P
{
φr

1i(X)− φl
1i(X)

}2 ≤ Cε2 by the boundedness

of η. This indicates that the total number of ε-brackets associated with L2(P ) norm for

Φ1(δ) will be in the order of exp (C/ε) and hence Φ1(δ) is a P -Donsker class for any δ > 0.

Similarly, for any φ1 ∈ Φ1(δ), it is easy to see that

Pφ2
1(X) ≤ C

∫
{Λ(t)− Λ0(t)}2 dµ(t) ≤ Cδ2 → 0 as δ → 0.

Therefore, by the uniformly asymptotic equicontinuity of the empirical process resulting from

a Donsker property (Corollary 2.3.12 of van der Vaart and Wellner, 1996), we can conclude

that ∆2n = op(1).

Finally, to show ∆3n = op(1), we denote

φ2(Λ) =
K∑

j=1

{N(Tk,j)− Λ(TK,j)}
[
η ◦ Λ−1

0 {Λ(TK,j)} − η ◦ Λ−1
0 {Λ0(TK,j)}

]

and define a class Φ2(δ) = {φ2(Λ) : Λ ∈ Fδ}.

With the same bracket set for Fδ, we can easily form a bracket set for Φ2(δ), {[φl
2i, φ

r
2i] :

i = 1, 2, · · · , q} by letting

φl
2i(X) =

∑K
j=1

[
N(TK,j)η ◦ Λ−1

0 {Λl
i(TK,j)}+ Λl

i(TK,j)η ◦ Λ−1
0 {Λ0(TK,j)}

− Λr
i (TK,j)η ◦ Λ−1

0 {Λr
i (TK,j)} − N(TK,j)η ◦ Λ−1

0 {Λ0(TK,j)}
]

φr
2i(X) =

∑K
j=1

[
N(TK,j)η ◦ Λ−1

0 {Λr
i (TK,j)}+ Λr

i (TK,j)η ◦ Λ−1
0 {Λ0(TK,j)}

− Λl
i(TK,j)η ◦ Λ−1

0 {Λl
i(TK,j)} − N(TK,j)η ◦ Λ−1

0 {Λ0(TK,j)}
]
.

By C3 and C5, we can show through a simple algebraic calculation that P
{
φr

2i(X)− φl
2i(X)

}2 ≤
Cε2. So Φ2(δ) is a P -Donsker class. We can also similarly show that for for any φ2(Λ) ∈
Φ2(δ), Pφ2

2(Λ) ≤ ∫ {Λ(t)− Λ0(t)}2 dµ(t) = Cδ2 by C3 and C5. Hence ∆3n = op(1) by

Corollary 2.3.12 of van der Vaart and Wellner (1996) again and the proof is complete.

Proof of Theorem 3.1: First, we express

νn

(
Λ̂n1 , Λ̂n2

)
=

√
n2

n
n

1/2
1

{
ν(Λ̂n1)− ν(Λ0)

}
−

√
n1

n
n

1/2
2

(
ν(Λ̂n2)− ν(Λ0)

)

18



+

√
n1n2

n2
A(1)

n +

√
n1n2

n2
A(2)

n +

√
n1n2

n2
A(3)

n ,(6.4)

where

A
(1)
n = n1/2

∫ {
Λ̂n1(t)− Λ̂n2(t)

}
{η̂n(t)− η(t)} dµ(t)

A
(2)
n = n1/2 (Pn − P )

[∑K
j=1

{
Λ̂n1(TK,j)− Λ̂n2(Tk,j)

}
η(TK,j)

]

A
(3)
n = n1/2 (Pn − P )

[∑K
j=1

{
Λ̂n1(TK,j)− Λ̂n2(Tk,j)

}
{η̂n(TK,j)− η(TK,j)}

]
.

Since Λ̂n1 and Λ̂n2 are obtained from two independent samples, the difference of the first

two terms in (6.4) is asymptotically equivalent to
√

p2W1 −√p1W2 with W1 and W2 drawn

independently from N(0, Ω) by Theorem 2.1 and Assumptions (i) and (iii).

Next, we show that A
(1)
n , A

(2)
n , and A

(3)
n are all op(1). Note that, using the Cauchy-Schwarz

inequality along with the result of Theorem 2.1 and Assumption (ii), we have

∣∣A(1)
n

∣∣2 ≤ n

∫ {
Λ̂n1(t)− Λ̂n2(t)

}2

dµ(t)

∫
{η̂n(t)− η(t)}2 dµ(t) = nOp(n

−2/3)op(n
−1/3) = op(1)

To verify other two terms, we let

ψ1(Λ1, Λ2) =
∑K

j=1 {Λ1(TK,j)− Λ2(TK,j)} η0(TK,j)

ψ2(Λ1, Λ2, η) =
∑K

j=1 {Λ1(TK,j)− Λ2(TK,j)} {η(TK,j)− η0(TK,j)}

and define two classes

Ψ1(δ) = {ψ1(Λ1, Λ2) : Λ1, Λ2 ∈ Fδ}
Ψ2(δ) = {ψ1(Λ1, Λ2, η) : Λ1, Λ2 ∈ Fδ and d(η, η0) ≤ δ}.

Because we consider η to be a bounded monotone function, we can similarly argue that

both Ψ1(δ) and Ψ2(δ) are P -Donsker for any δ > 0 based on the same bracketing number

arguments as used in the proof of Theorem 2.2. Moreover, as δ → 0, we can also similarly

show that
Pψ2

1(Λ1, Λ2) → 0 for any ψ1 ∈ Ψ1(δ)
Pψ2

2(Λ1, Λ2, η) → 0 for any ψ2 ∈ Ψ2(δ).

Hence, A
(2)
n = op(1) and A

(3)
n = op(1) are established according to Corollary 2.3.12 of van

der Vaart and Wellner (1996).
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Table 1: Monte-Carlo simulation results on the percentage of rejection at 5% significance
level based on 1000 replications for Scenario 1 with λ = 1.

n1 = n2 = n3=50 n1 = n2 = n3=100

Case T
(1)
n T

(2)
n T

(3)
n T

(1)
n T

(2)
n T

(3)
n

Under H0

1 θ1 = 0 θ2 = 0 0 · 061 0 · 067 0 · 064 0 · 063 0 · 062 0 · 060

Under Ha

2 θ1 = 0 θ2 = 0 · 10 0 · 229 0 · 205 0 · 229 0 · 397 0 · 323 0 · 370
3 θ1 = 0 θ2 = 0 · 25 0 · 852 0 · 772 0 · 835 0 · 986 0 · 964 0 · 984
4 θ1 = 0 θ2 = 0 · 50 1 · 000 1 · 000 1 · 000 1 · 000 1 · 000 1 · 000
5 θ1 = 0 · 10 θ2 = 0 · 10 0 · 219 0 · 184 0 · 227 0 · 380 0 · 330 0 · 366
6 θ1 = 0 · 10 θ2 = 0 · 25 0 · 721 0 · 647 0 · 696 0 · 961 0 · 918 0 · 945
7 θ1 = 0 · 10 θ2 = 0 · 50 0 · 998 0 · 995 1 · 000 1 · 000 1 · 000 1 · 000
8 θ1 = 0 · 25 θ2 = 0 · 25 0 · 843 0 · 781 0 · 825 0 · 984 0 · 963 0 · 982
9 θ1 = 0 · 25 θ2 = 0 · 50 1 · 000 0 · 994 1 · 000 1 · 000 1 · 000 1 · 000
10 θ1 = 0 · 50 θ2 = 0 · 50 1 · 000 0 · 997 0 · 999 1 · 000 1 · 000 1 · 000
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Table 2: Monte-Carlo simulation results on the percentage of rejection at 5% significance
level based on 1000 replications for Scenario 2 with λ = 0 · 2.

n1 = n2 = n3=50 n1 = n2 = n3=100

Case T
(1)
n T

(2)
n T

(3)
n T

(1)
n T

(2)
n T

(3)
n

Under H0

1 θ1 = 0 θ2 = 0 0 · 066 0 · 063 0 · 047 0 · 063 0 · 060 0 · 042

Under Ha

2 θ1 = 0 θ2 = 0 · 25 0 · 161 0 · 165 0 · 094 0 · 256 0 · 251 0 · 169
3 θ1 = 0 θ2 = 0 · 50 0 · 352 0 · 345 0 · 240 0 · 630 0 · 600 0 · 515
4 θ1 = 0 θ2 = 1 · 00 0 · 804 0 · 791 0 · 594 0 · 988 0 · 983 0 · 945
5 θ1 = 0 · 25 θ2 = 0 · 25 0 · 144 0 · 139 0 · 105 0 · 237 0 · 214 0 · 187
6 θ1 = 0 · 25 θ2 = 0 · 50 0 · 276 0 · 256 0 · 194 0 · 503 0 · 460 0 · 386
7 θ1 = 0 · 25 θ2 = 1 · 00 0 · 720 0 · 695 0 · 506 0 · 941 0 · 919 0 · 855
8 θ1 = 0 · 50 θ2 = 0 · 50 0 · 363 0 · 332 0 · 269 0 · 648 0 · 606 0 · 543
9 θ1 = 0 · 50 θ2 = 1 · 00 0 · 689 0 · 659 0 · 537 0 · 946 0 · 921 0 · 893
10 θ1 = 1 · 00 θ2 = 1 · 00 0 · 844 0 · 810 0 · 715 0 · 985 0 · 978 0 · 964

Table 3: Monte-Carlo simulation results on the percentage of rejection at 5% significance
level based on 1000 replications for Scenario 3.

n1 = n2 = n3=50 n1 = n2 = n3=100

Case T
(1)
n T

(2)
n T

(3)
n T

(1)
n T

(2)
n T

(3)
n

1 a = 0 · 75 0 · 095 0 · 101 0 · 025 0 · 099 0 · 104 0 · 023
2 a = 0 · 50 0 · 090 0 · 104 0 · 012 0 · 086 0 · 103 0 · 044
3 a = 0 · 25 0 · 160 0 · 124 0 · 256 0 · 279 0 · 152 0 · 835
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Figure 1: The distribution functions of several Weibull random variables

25



0 10 20 30 40 50 60 70

0
5

10
15

20

Time (months)

M
ea

n 
F

un
ct

io
n

Placebo
Pyridoxine
Thiotepa

Figure 2: The nonparametric maximum pseudo-likelihood estimators of the mean function
of bladder tumor counts under the three treatments
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Figure 3: The nonparametric maximum pseudo-likelihood estimators of the cumulative dis-
tribution function of time-to-response of antiviral therapies under the three study arms
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