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SUMMARY

Using multiple methods to detect a virus in clinical samples, when no standard test exists,

introduces several potential problems. This paper describes how discrepancies from multiple tests

with missing data can be evaluated and reconciled statistically. Two novel aspects are addressed: 1)

tests can be quantitative or qualitative and 2) not all tests are done on all samples. Quantitative test

results are categorized into ordinal responses, with sensitivities and specificities defined by category.

Bayesian latent class analysis is used to model the responses from the different tests. The model is
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parameterized by the prevalence, sensitivity and specificity of each test, and probability of each test

being missing. Copyright c© 200000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Diagnostic testing plays a significant role in health care and medical research. It is therefore

important to evaluate the accuracies of each diagnostic test by sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). However, a gold standard, which

is one hundred percent sensitive and specific, does not necessarily exist for all situations.

Under this limitation, it is still important to have the best possible estimate of the sensitivity,

specificity, PPV, NPV of a specific diagnostic test, and of the prevalence of the disease or

condition in the population. In addition, classifying each individual based on the combination

of imperfect tests is necessary for the appropriate action to be taken.

A latent class approach models the unobservable condition as a categorical latent variable.

Under the assumption that the diagnostic tests are conditionally independent given the

latent variable, the model is parameterized by the conditional probability distribution of each

diagnostic test given the latent variable, and the probability of the condition itself (prevalence).

This model readily produces estimates for the properties of each diagnostic test.

Latent class analysis was introduced in 1950 by Lazarsfeld [1], who used the technique as

a tool for building typologies based on observed dichotomous variables. It was referred to as
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2 S. ZHANG ET AL.

“latent class analysis” by Kaldor and Clayton [2], and Walter and Irwig [3]. Espeland and

Handelman [4], Uebersax and Grove [5], and Garrett et al. [6], among others, apply latent

class model to various studies. Evans et al. [7], Gyorkos and Coupal [8], Dendukuri and Joseph

[9] implement Bayesian analyses of several latent class models with prior distributions on

unknown parameters.

Pepe [10] describes a discrepant resolution approach, which resolves the discrepant results

between the new diagnostic test and the imperfect reference test by a resolver test. Alonzo

and Pepe [11] propose a method defining a composite reference standard test on the basis of

multiple imperfect reference tests. See also Kawkins et al. [12].

In this paper we extend latent class analysis to incorporate not only qualitative, but also

quantitative diagnostic tests and, in addition, the absence of a test result (missingness) is taken

into consideration. It is not unusual that not all the tests planned in practice are performed

as the volume of available specimen may be limited. These two novel aspects are addressed in

a motivating example of RT-PCR test results for GB virus type C (GBV-C).

The remainder of this paper is organized as follows. Section 2 motivates the problem of

multiple tests for GBV-C. Section 3 describes the latent class model and how the Bayesian

approach is incorporated in the latent class model. Section 4 introduces the extended latent

class analysis that combines both qualitative and quantitative tests, with possibly missing

data. Section 5 presents the results for the GBV-C study. Section 6 concludes with discussion.

The complete model specification is given in Appendix A.
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2. MOTIVATING EXAMPLE

Persistent co-infection with GBV-C is associated with prolonged survival among individuals

also infected with HIV [13]. In different HIV-infected cohorts, GBV-C viremia has been

detected in 14% to 43% of individuals [14]. Discordant results on the same sample were

commonly found in the same laboratory when testing for GBV-C viremia using reverse

transcription polymerase chain reaction (RT-PCR) methods employing four different primers

(E2, NS3, NS5A, 5’NTR) [15], presumably related to the diversity in nucleotide sequence

common to RNA viruses. Studies in other laboratories demonstrate similar discrepancies and

also variability between laboratories [16, 17, 18]. There is no standard test for GBV-C RNA

detection [15], and similar variability was previously seen in RT-PCR tests for hepatitis C

virus [19].

RT-PCR works by first copying the RNA genome into its DNA complement (cDNA) by

a method called reverse transcription. The cDNA is then copied in a process called the

polymerase chain reaction (PCR)[20]. This process amplifies specific parts of a DNA molecule

through the temperature mediated enzyme DNA polymerase and DNA primers [20]. Real time

RT-PCR is a technique used to simultaneously amplify and quantify a specific part of a RNA

molecule. The initial reverse transcription process transcribing RNA to cDNA is identical to

that in RT-PCR, but the second stage of real time RT-PCR uses fluorescent probes to measure

PCR amplification in real time [21].

In our study, a total of 381 serum samples obtained from HIV positive subjects were studied.

Four different RT-PCR methods amplifying four separate regions (E2, NS3, NS5A and 5’NTR)

of the GBV-C RNA genome were used, although not all of the four tests were done on all
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samples. In addition, real time RT-PCR was performed on all samples, and thresholds are set

for the result to be classified into three ordinal categories. The qualitative and categorized

ordinal quantitative test results are then combined using Bayesian latent class analysis. A

missing test of any kind is considered as an additional response category.

3. CLASSICAL LATENT CLASS ANALYSIS AND THE BAYESIAN APPROACH

Let X represent the latent disease status, and C the number of the latent classes. Let Yt

represent the result of each of the T observed diagnostic tests, 1 ≤ t ≤ T . The variables

Yt, called manifest variables, are assumed to have Dt levels. Let Yi denote the vector

(Yi1, · · · , Yit)
T for the ith sample.

The contribution of the ith individual to the likelihood is:

P (Yi = yi) =

C
∑

c=1

P (Xi = c)P (Yi = yi|Xi = c), (1)

where the dependence of the probabilities above on unknown parameters has been omitted.

3.1. Classical Latent Class Analysis

In the classical latent class model, the assumption of conditional independence is made.

Specifically, within each latent class, the T manifest variables are assumed to be mutually

independent conditional on the latent variable:

P (Yi = yi|Xi = c) =
T

∏

t=1

P (Yit = yit|Xi = c) (2)

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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where yit = 1, 2, · · · , Dt. Combining equations (1) and (2) yields the following:

P (Yi = yi) =

C
∑

c=1

P (Xi = c)

T
∏

t=1

P (Yit = yit|Xi = c) (3)

This latent class model is well suited for estimating the disease prevalence, sensitivity and

specificity for each of the diagnostic tests, since the model is parameterized in terms of the

probabilities that define the sensitivities, specificities and the prevalence.

The prevalence, sensitivities and specificities, can be estimated by maximizing the likelihood

function L =
∏N

i=1 P (Yi = yi) for N samples with respect to model parameters to give the

maximum likelihood estimates (MLE). The variance-covariance matrix can be approximated

using the Hessian matrix evaluated at the MLE. A popular method for solving the MLE

in latent class model is the Expectation-Maximization (EM) algorithm [22]. It is well suited

for fitting latent class models by the method of maximum likelihood because the models are

naturally formulated in terms of latent (i.e. incomplete) data.

One of the problems in the estimation of latent class models using maximum likelihood is

that the parameters may be non-identifiable. Non-identifiability means that different sets of

parameter values yield the same maximum of the log-likelihood function, and so there is no

unique set of MLE. For example, with only two diagnostic tests, there is non-identifiability,

see Joseph et al. [8].

3.2. Bayesian Approach

The Bayesian approach constructs a joint prior distribution over the unknown quantities. The

data, through the likelihood function, are then combined with the prior distribution to produce

the posterior distribution. The posterior distribution updates the distribution of the model

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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parameters, taking into account the information provided by the data. Prior distributions are

useful to incorporate knowledge about unknown quantities. One advantage of the Bayesian

approach is that if there is non-identifiability in the likelihood, the posterior distribution is

proper and well-defined. Anderson [23], and Johnson et al. [24] discuss how the Bayesian

estimates are impacted in these situations.

Given the complexity of the model, it is not possible to obtain the marginal distributions

for the parameters analytically. The Gibbs sampler can be used to obtain samples from the

marginal posterior distribution of each parameter. The Gibbs sampler is also used by Joseph

et al. [8] for one or two diagnostic tests, and also by Branscum et al. [25] who use WinGUGS

[26] for up to three diagnostic tests.

4. ANALYSIS OF GBV-C TESTS

4.1. Model Setting

The approach is illustrated through the GBV-C data set. Let X represent the latent GBV-C

status: X = 1 if GBV-C present, X = 0 otherwise. Let Y1, · · · , Y4 denote the four qualitative

tests, and Y5 the quantitative test.

There are substantial missing data for each of the four qualitative tests, although each

subject has at least one qualitative test available. To take advantage of all available information,

all samples should be included in the model. A missing test result is considered to be an

additional response category for each qualitative test.

In contrast, the quantitative valued test Y5, real time RT-PCR, is available on all samples. Y5

could be dichotomized and combined with the other tests, with consequent loss of information.

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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The common assessment of continuous diagnostic tests is through the Receiver Operating

Characteristic (ROC) curve, where the true positive rate against the false positive rate for

the different possible thresholds of a diagnostic test are investigated. In this example, Y5 is

categorized into three levels: “high”, “medium” and “low or none” (see Figure 1b). Specifically,

let

Yt =







































1 tth test result positive

0 tth test result negative

NA tth test result missing

where t = 1, 2, 3, 4, and

Y5 =







































2 5th test result ≥ 106 copies/ml (high)

1 5th test result ∈ [103, 106) copies/ml (medium)

0 5th test result < 103 copies/ml (low or none).

We assume the following:

(1) The probability that each of Y1, · · · , Y4 is missing is potentially different for each test,

and does not depend on latent variable X , the true GBV-C status.

(2) Conditional on the latent variable X , the variables Y1, · · · , Y5 are independent.

Suppose N samples are collected and yit is the tth test result for the ith subject. From equation

(3), the likelihood can be written as:

N
∏

i=1

[

1
∑

ci=0

P (Xi = ci)

5
∏

t=1

P (Yit = yit|Xi = ci)
]

(4)
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where yit = 0, 1, NA for t = 1, · · · , 4 and yi5 = 0, 1, 2.

Components in equation (4) are parameterized through: the prevalence of latent GBV-C

status X , denoted by θ; the probabilities of each qualitative test being missing, denoted by

Mt for t = 1, · · · , 4; and the sensitivities and specificities of each test. For t = 1, · · · , 4, denote

the sensitivities and specificities by St and Ct respectively. For t = 5, the sensitivity of a high

result (Y5 = 2) and a medium result (Y5 = 1) are denoted by SH5 and SI5. Correspondingly,

the specificity of a low result (Y5 = 0) and a medium result (Y5 = 1) are denoted by CI5

and CL5. All sensitivities and specificities are conditional on the test being performed (not

missing).

θ = P (X = 1)

Mt = P (Yt = NA) t = 1, · · · , 4

St = P (Yt = 1|X = 1, Yt 6= NA) t = 1, · · · , 4

Ct = P (Yt = 0|X = 0, Yt 6= NA) t = 1, · · · , 4

SH5 = P (Y5 = 2|X = 1)

SI5 = P (Y5 = 1|X = 1) (5)

CI5 = P (Y5 = 1|X = 0)

CL5 = P (Y5 = 0|X = 0)

To incorporate the constraint that the sum of SH5 and SI5 is less than 1, the conditional

sensitivity SI∗5 is defined as below, conditional on the results not being “high”. CL
†
5 is defined

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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for a similar reason.

SI∗5 = P (Y5 = 1|X = 1, Y5 6= 2)

CL
†
5 = P (Y5 = 0|X = 0, Y5 6= 1)

Under the parameterization in terms of SI∗5 and CL
†
5 instead of SI5 and CL5, no constraints

are required: they can each take any value in [0, 1].

We denote the set of parameters

{(Mt, St, Ct, SH5, SI∗5 , CL
†
5, CL5), t = 1, · · · , 4}

by Θ. The likelihood expressed in equation (4) can be parametrized by Θ. Appendix A gives

details. One of the benefits of this parameterization strategy is that the model is directly

expressed by the sensitivity and specificity of each test, the quantities of primary interest.

In addition, we define the test based on the high cutoff of 106 copies/ml as RT(H), where

the test is considered positive if Y5 = 2 and negative otherwise. Similarly define RT(M) as

positive if Y5 ≥ 1, and negative if Y5 = 0, then the sensitivity and specificity of using the two

cutoffs are easily expressed as functions of the parameters above. The sensitivities, S5H , S5M

and specificities, C5H , C5M , of these two thresholds are:

S5H = P (Y5 = 2|X = 1) = SH5

C5H = P (Y5 = 0 or 1|X = 0) = CL
†
5(1 − CI5) + CI5

S5M = P (Y5 = 1 or 2|X = 1) = SI∗5 (1 − SH5) + SH5

C5M = P (Y5 = 0|X = 0) = CL
†
5(1 − CI5)

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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The expression of PPV and NPV of each test, function of the prevalence, sensitivity and

specificity of the same kind, can be found in Appendix A.

4.2. Bayesian approach

A prior distribution for the unknown parameters defined in (5) is proposed. All are assumed

independent of each other and each has a Beta distribution, with possibly different parameters:

θ ∼ Beta(αθ , βθ)

Mt ∼ Beta(αMt
, βMt

) t = 1, · · · , 4

St ∼ Beta(αSt
, βSt

) t = 1, · · · , 4

Ct ∼ Beta(αCt
, βCt

) t = 1, · · · , 4

SH5 ∼ Beta(αSH5
, βSH5

)

SI∗5 ∼ Beta(αSI∗
5
, βSI∗

5
)

CI5 ∼ Beta(αCI5
, βCI5

)

CL
†
5

∼ Beta(α
CL

†
5

, β
CL

†
5

)

Two different prior distributions are used. One specifies independent Beta distributions

centered at the estimates from a previous study in the same laboratory [15], with the

variance adjusted such that the prior belief is equivalent to 10 samples. For example, the

estimated prevalence of GBV-C in [15] is 27.9%. In our model, the prior distribution for θ is

therefore Beta(2.79, 7.21), which has a mean of 0.279 and 2.79 + 7.21 = 10 [27]. The detailed

specifications of the prior distributions are given in Appendices B and C. Although these

prior distributions are informative, considerable uncertainty is present. The alternative prior

distribution specifies independent uniform prior distributions in the range [0, 1], which are

Beta(1, 1) distributions and have more uncertainty.

The WinBUGS program [26] is used for performing the Gibbs Sampler. The parameters

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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of primary interest include the prevalence θ, the sensitivities of each test conditional on the

test being performed: S1, · · · , S4 and also SH5, SI5, as well as the corresponding specificities

C1, · · · , C4 and also CI5, CL5. The WinBUGS code is in Appendix B of an online technical

report.

4.3. Classification

The Bayesian decision rule with underling symmetric loss function is used for the classification.

Let d(Y ) denote the decision made on the true GBV-C status after observing Y . The decision

set D is therefore {0, 1}. Let L(X, d(Y )) define the loss function. The symmetric loss function

is:

L(X, d(Y )) =



















0 d(Y ) = X

k d(Y ) 6= X

where k is any positive real number. The expected loss function, i.e, the risk function for

classifying the ith individual is:

EL(Xi, d(Y )) = E

1
∑

c=0

L(Xi = c, d(Y ))P (Xi = c|Y ),

with the expectation taken over the posterior distribution of the parameters.

The best decision d∗(Y ) minimizes the risk function. For the symmetric loss function L,

d∗(y) =



















1 P (Xi = 1|Y) > P (Xi = 0|Y)

0 otherwise

i.e., if P (Xi = 1|Y) > P (Xi = 0|Y) [27], the individual sample is classified as positive;
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Figure 1. 1a (Left): The relative frequency of GBV-C being negative, positive, and missing by each of
the qualitative test 5’NTR, E2, NS3, NS5A. 1b (Right): The relative frequency of log transformation

of real time RT-PCR. The zeros represent undetectable GBV-C.

otherwise negative.

The predictive distribution of the latent variable Xi = 1 given the observed variables Y ,

P (Xi = 1|Y), is the predictive distribution P (Xi = 1|Y,Θ) averaged over the posterior

distribution of Θ|Y. Note that P (Xi = 0|Y) = 1 − P (Xi = 1|Y).

The estimate of the predictive posterior distribution can be easily achieved during the

Markov Chain Monte Carlo (MCMC) sampling procedure. Suppose M Markov Chain Monte

Carlo iterations are saved and Θ(m) is the sample from the mth iteration. The predictive

posterior distribution can be approximated by the mean of Pr(Xi = 1|Y,Θ(m)), over M

iterations:

P (Xi = 1|Y) ≈
1

M

M
∑

m=1

P (Xi = 1|Y,Θ(m)).

5. RESULTS FROM GBV-C EXAMPLE

5.1. Summary of Original Data

The proportion of positive results by individual E2, NS3, NS5A and 5’NTR tests, given that the

test is done, is 48.5%, 78.6%, 78.6% and 76.7%, respectively. These prevalence estimates from
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Figure 2. The distribution of GBV-C prevalence: the dashed line is the prior distribution and the solid
line is the posterior distribution.

the last three primer tests are higher than the highest prevalence reported in the literature.

Figure 1a shows that the corresponding proportion of missing results are approximately 21%,

63%, 58% and 11%, respectively. The primer test 5’NTR shows 77% positive results and is

missing for only 11% of the samples. For real time RT-PCR, the proportion of positive results

using a threshold of 103 copies/ml or 106 copies/ml is 44.4% and 37.8%, respectively. Figure

1b shows the real time RT-PCR result is approximately normally shaped in the log scale, but

with an inflated frequency for low values.

5.2. Model Based Estimates

To fit the Bayesian extension of the latent class model to the GBV-C data set, the first 900

iterations of the MCMC sample are discarded and the approximation of posterior distribution

is based on the subsequent 10,000 iterations. The prior distributions introduced in section 4

are used and the results from the first are given below. Similar results are found when uniform

prior distributions are employed.

Copyright c© 200000 John Wiley & Sons, Ltd. Statist. Med. 200000; 00:0–0
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Figure 3. Posterior mean and 95% credible region for sensitivity and specificity of each diagnostic test.

5.2.1. Prevalence Figure 2 shows the prior and posterior distributions of GBV-C prevalence.

The posterior mean of GBV-C prevalence is 45.4% and the 95% credible region is

[38.7%, 51.4%].

5.2.2. Sensitivity, Specificity, PPV and NPV In Figure 3 and Tables II and III of Appendix

C in the online technical report, prior and posterior means and 95% credible regions of the

sensitivity and specificity of each of the five tests are shown. Specifically, the sensitivity of

RT(M) is the sensitivity of real time RT-PCR if the lower cutpoint (103 copies/ml) is set, and

the sensitivity of RT(H) is the analog when the higher cutpoint (106 copies/ml) is set. The

specificity, PPV and NPV of RT(M) and RT(H) are defined similarly. See Appendix A.

The analysis indicates that NS3, NS5A and 5’NTR produce too many false positives, and

have low specificities. E2 has high specificity and reasonably high sensitivity. RT(M) has

slightly higher sensitivity compared to RT(H), and slightly lower specificity. Similar patterns
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Figure 4. Posterior mean and 95% credible region for positive predictive value and negative predictive
value of each diagnostic test.

are observed for positive predictive values and negative predictive values in Figure 4.

5.3. Classification

Using the Bayesian decision rule and symmetric loss function, 175 out of 381 samples are

classified as positive. The value of Cohen’s Kappa between this new classification and each

primer test is given in Table I. E2 has the greatest agreement with the new classification.

Table I also gives the relative sensitivity and specificity of each primer test, compared to

the new classification. For the real time RT-PCR, the lower cutpoint (103 copies/ml) has

higher sensitivity (0.909) than the higher cutpoint (106 copies/ml), and has reasonably good

specificity (0.952).
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Table I. Cohen’s Kappa between the new classification and each primer test

E2 NS3 NS5A 5’NTR RT(M) RT(H)
Cohen’s Kappa 0.927 0.145 0.205 0.089 0.862 0.780

Ŝ∗ 0.930 0.949 1.000 0.815 0.909 0.794

Ĉ∗ 1.000 0.277 0.304 0.277 0.952 0.976

Ŝ∗: sensitivities compared to the new classification.
Ĉ∗: specificities compared to the new classification.

6. DISCUSSION

In the analysis of the GBV-C data set, the estimated posterior prevalence is about 45%, which

is not very different from other studies in the literature. E2 is shown to be best single primer

test. The specificities of 5’NTR, NS5A and NS3 are low, leading to PPVs close to the value 0.5

which corresponds to random guessing. The NPVs are more informative. For the real time RT-

PCR, the trade off between sensitivity and specificity in using a cutoff of 103 or 106 copies/ml

can be seen by comparing the estimates for RT(M) and RT(H).

The reason for the low specificity of three of the RT-PCR tests is unclear. The final

classification is close to that ignoring these three tests (Table I). In other studies the prevalence

based on these three tests is lower [15]. A conjecture is that these primers may amplify non-

viral DNA from these samples. GBV-C virus has only been of interest relatively recently, and

so tests for the presence of the virus are not standardized. Our method provides a mechanism

for reconciling different test results in a systematic way.

Although the model has been developed here with four quantitative tests and one qualitative

test, the methods easily generalize to arbitrary numbers of tests.

A limitation of the methods here are two critical assumptions. First the conditional

independence assumption and second the assumption that missingness is independent of the
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latent variable. Relaxing these assumptions should be further investigated. The conditional

independence assumption has been criticized, see for example [10, 12]. Recent work has

extended models for multiple diagnostic tests to correlated binary tests [28, 29, 30, 31, 32].

Advantages of the Bayesian approach include: appropriate incorporation of non-

identifiability in the likelihood; readily accessible posterior estimates of uncertainty rather

than asymptotic standard errors; the ability to make decisions on classification using Bayesian

decision theory with different loss functions; the ability to incorporate the results of other

studies through the prior distribution; easy implementation through WinBUGS or other

programs.

This case study needs further development to investigate other methods to incorporate

real time RT-PCR and combine with qualitative RT-PCR. It would be preferable to develop

a method to incorporate the quantitative result directly rather than reduce to ordered

categories. However, categorizing the quantitative test into ordinal categories makes combining

all tests straightforward. In addition, missing quantitative test results are straightforward to

incorporate. The relationship between the quantitative result and the results of the qualitative

RT-PCR tests should also be examined.

In summary the method described here is a very feasible and practical way of combining

the results of imperfect quantitative and qualitative diagnostic tests, especially when not all

tests are performed on all samples.
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Appendix

A: Components of the Likelihood

Specification of (4) requires conditional probabilities of each test taking any possible value, including

missing results, given X. The connection between these conditional probabilities and the parameters

defined in (4) are as below:

For t = 1, · · · , 4,

P (Yt = NA|X = 1) = P (Yt = NA|X = 0) = Mt

P (Yt = 1|X = 1) = P (Yt = 1|X = 1, Yt 6= NA)P (Yt 6= NA|X = 1) = St(1 − Mt)

P (Yt = 0|X = 1) = P (Yt = 0|X = 1, Yt 6= NA)P (Yt 6= NA|X = 1) = (1 − St)(1 − Mt)

P (Yt = 1|X = 0) = P (Yt = 1|X = 0, Yt 6= NA)P (Yt 6= NA|X = 0) = (1 − Ct)(1 − Mt)

P (Yt = 0|X = 0) = P (Yt = 0|X = 0, Yt 6= NA)P (Yt 6= NA|X = 0) = Ct(1 − Mt).

For t = 5, there is no missing test result and

P (Y5 = 2|X = 1) = SH5

P (Y5 = 1|X = 1) = P (Y5 = 1|X = 1, Y5 6= 2)P (Y5 6= 2|X = 1)

= SI∗5 (1 − SH5)

P (Y5 = 0|X = 1) = 1 − P (Y5 = 2|X = 1) − P (Y5 = 1|X = 1)

= (1 − SI∗5 )(1 − SH5)

P (Y5 = 2|X = 0) = 1 − P (Y5 = 1|X = 0) − P (Y5 = 0|X = 0)

= (1 − CI5)(1 − CL
†
5
)

P (Y5 = 1|X = 0) = CI5

P (Y5 = 0|X = 0) = P (Y5 = 0|X = 0, Y5 6= 1)P (Y5 6= 1|X = 0)

= CL
†
5
(1 − CI5).
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The PPV and NPV for RT(M) are denoted PPV5M and NPV5M , where

PPV5M = P (X = 1|Y5 = 1 or 2)

=
[SH5 + SI∗

5 (1 − SH5)]θ

[SH5 + SI∗
5
(1 − SH5)]θ + [1 − CL

†
5
(1 − CI5)](1 − θ)

NPV5M = P (X = 0|Y5 = 0)

=
CL

†
5
(1 − CI5)(1 − θ)

CL
†
5
(1 − CI5)(1 − θ) + (1 − SI∗

5
)(1 − SH5)θ

.

The PPV and NPV for RT(H) are denoted PPV5H and NPV5H , where

PPV5H = P (X = 1|Y5 = 2)

=
SH5θ

SH5θ + (1 − CI5)(1 − CL
†
5
)(1 − θ)

NPV5H = P (X = 0|Y5 = 0 or 1)

=
[CL

†
5
(1 − CI5) + CI5](1 − θ)

[CL
†
5
(1 − CI5) + CI5](1 − θ) + (1 − SH5)θ

.

B: WinBUGS Code.

C: Tables of posterior and prior estimates for the different tests.
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B: WinBUGS Code

The model cannot be specified directly in WinBUGS, but the following code specifies the likelihood

(4) and prior distributions:

###########################################################################

# Bayesian Latent Class Analysis

#

# This program specifies the prior distribution and likelihood. The WinBUGS

# program is used to implement the Bayesian approach in the latent class model.

#

###########################################################

# The observed or latent variables are defined as follows:#

###########################################################

# X: latent class variable. X=1,0

# Y[1:5]: 5 tests taken for each person.

# Y[t]=0,1 or NA for t=1:4; Y[5]=0,1,2

#

###########################################################

# The parameters modeled are defined as follows: #

###########################################################

# prev : prevalence of the medical condition, i.e. P(X=1)

# pNA[1:4]=P(Y[t]=NA): Probabilities that tests are missing

# S[t]=P(Y[t]=1|X=1,Y[t]!=NA) : Sensitivities of tests 1,2,3,4

# C[t]=P(y[t]=0|X=0,Y[t]!=NA): Specificities of tests 1,2,3,4

# S5y2=P(Y[5]=2|X=1): Sensitivity of Y5=2

# S5y1=P(Y[5]=1|X=1): Sensitivity of Y5=1

# S5Y1not2=P(Y[5]=1|X=1,Y[5]!=2): Sensitivity of y5=1 given than Y5!=2

# C5y1=P(Y[5]=1|X=0): Specificity of Y5=1

# C5y0=P(Y[5]=0|X=0): Specificity of Y5=0

# C5Y0not1=P(Y[5]=0|X=0,Y[5]!=1):Specificity of y5=0 given than Y5!=1

# S5H=P(Y[5]=2|X=1): Sensitivity of Y5 if a cutoff of 10^6 is used.

# S5M=P(Y[5]=1 or 2|X=1): Sensitivity of Y5 if a cutoff of 10^3 is used.

# C5H=P(Y[5]=0 or 1|X=0): Specificity of Y5 if a cutoff of 10^6 is used.

# C5M=P(Y[5]=0|X=0): Specificity of Y5 if a cutoff of 10^3 is used.

#

###########################################################################

model

{

###### priors ######

prev ~ dbeta(alpha.prev, beta.prev)

for (t in 1:4){

pNA[t] ~ dbeta(alpha.NA[t],beta.NA[t])

}

for (t in 1:4){

S[t] ~ dbeta(alpha.S[t], beta.S[t])

C[t] ~ dbeta(alpha.C[t], beta.C[t])

}

S5y2 ~ dbeta(alpha.S5y2, beta.S5y2)

S5y1not2 ~ dbeta(alpha.S5y1not2, beta.S5y1not2)

C5y1 ~ dbeta(alpha.C5y1, beta.C5y1)

C5y0not1 ~ dbeta(alpha.C5y0not1, beta.C5y0not1)
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S5y1 <- S5y1not2*(1-S5y2)

C5y0 <- C5y0not1*(1-C5y1)

S5H <- S5y2

S5M <- S5y1 + S5y2

C5H <- C5y0 + C5y1

C5M <- C5y0

###### likelihood ######

## Conditional probabilities of Y1 through Y4, given X.

for (t in 1:4){

CPy1.X1[t] <- (1-pNA[t])*S[t]

CPy0.X1[t] <- (1-pNA[t])*(1-S[t])

CPyNA.X1[t] <- pNA[t]

CPy1.X0[t] <- (1-pNA[t])*(1-C[t])

CPy0.X0[t] <- (1-pNA[t])*C[t]

CPyNA.X0[t] <- pNA[t]

}

## Conditional probabilities of Y5, given X.

CPy52.X1 <- S5y2

CPy51.X1 <- (1-S5y2)*S5y1not2

CPy50.X1 <- (1-S5y2)*(1-S5y1not2)

CPy52.X0 <- (1-C5y1)*(1-C5y0not1)

CPy51.X0 <- C5y1

CPy50.X0 <- (1-C5y1)*C5y0not1

## Specify the specific likelihood through a trick of using Bernoulli probability.

## The idea is that we observed a sample of 1’s with the target individual likelihood

## from model. L(i) is the target individual likelihood.

for (i in 1:N) {

for (t in 1:4){

CPyX1[i,t] <- CPy1.X1[t] *equals(Y[i,t],1)+CPy0.X1[t]*equals(Y[i,t],0)+

CPyNA.X1[t]*equals(Y[i,t],99)

}

for (t in 1:4){

CPyX0[i,t] <- CPy1.X0[t]*equals(Y[i,t],1)+CPy0.X0[t]*equals(Y[i,t],0)+

CPyNA.X0[t]*equals(Y[i,t],99)

}

CPyX1[i,5] <- CPy52.X1*equals(Y[i,5],2)+ CPy51.X1*equals(Y[i,5],1)+

CPy50.X1*equals(Y[i,5],0)

CPyX0[i,5] <- CPy52.X0*equals(Y[i,5],2)+ CPy51.X0*equals(Y[i,5],1)+

CPy50.X0*equals(Y[i,5],0)

L[i] <- prev*CPyX1[i,1]*CPyX1[i,2]*CPyX1[i,3]*CPyX1[i,4]*CPyX1[i,5]+

(1-prev)*CPyX0[i,1]*CPyX0[i,2]*CPyX0[i,3]*CPyX0[i,4]*CPyX0[i,5]

# Trick to specify a new sampling distribution with individual likelihood L(i).

ones[i] <- 1

p[i] <- L[i]

ones[i] ~ dbern(p[i])

}
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###### PPVs and NPVs each of 5 tests ######

for (t in 1:4)

{

CPX1.y1[t] <- prev*CPy1.X1[t] / (prev*CPy1.X1[t] + (1-prev)*CPy1.X0[t])

CPX0.y0[t] <- (1-prev)*CPy0.X0[t]/ (prev*CPy0.X1[t] +(1-prev)*CPy0.X0[t])

}

CPX0.yNA <- 1-prev

CPX1.yNA <- prev

CPX0.y52 <- CPy52.X0*(1-prev)/(CPy52.X0*(1-prev) + CPy52.X1*prev)

CPX0.y51 <- CPy51.X0*(1-prev)/(CPy51.X0*(1-prev) + CPy51.X1*prev)

CPX0.y50 <- CPy50.X0*(1-prev)/(CPy50.X0*(1-prev) + CPy50.X1*prev)

CPX1.y52 <- CPy52.X1*prev/(CPy52.X1*prev + CPy52.X0*(1-prev))

CPX1.y51 <- CPy51.X1*prev/(CPy51.X1*prev + CPy51.X0*(1-prev))

CPX1.y50 <- CPy50.X1*prev/(CPy50.X1*prev + CPy50.X0*(1-prev))

PPV5H <- CPy52.X1*prev/(CPy52.X1*prev + CPy52.X0*(1-prev))

PPV5M <- (1-CPy50.X1)*prev/((1-CPy50.X1)*prev+ (1-CPy50.X0)*(1-prev))

NPV5H <- (1-CPy52.X0)*(1-prev)/((1-CPy52.X0)*(1-prev)+ (1-CPy52.X1)*prev )

NPV5M <- CPy50.X0*(1-prev)/(CPy50.X0*(1-prev) + CPy50.X1*prev)

}

######################################################

# Hyper-parameters for the Beta prior distributions

#######################################################

alpha.prev <- 2.79

beta.prev <- 7.21

alpha.S <- c(7.66,8.83,9.55,9.90)

beta.S <- c(2.34,1.17,0.45,0.10)

alpha.C <- c(9.90,8.61,8.99,9.09)

beta.C <- c(0.10,1.39,1.01,0.91)

alpha.S5y2 <- 9.0

beta.S5y2 <- 1.0

alpha.S5y1not2 <- 7.0

beta.S5y1not2 <- 3.0

alpha.C5y1 <- 7.0

beta.C5y1 <- 3.0

alpha.C5y0not1 <- 9.0

beta.C5y0not1 <- 1.0

alpha.NA <- c(2,5,5,2)

beta.NA <- c(8,5,5,8)

C: Tables of posterior and prior estimates for the different tests.
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Table II. Posterior estimates of sensitivities, specificities, PPVs, NPVs of primer tests of GBV-C.

Sensitivity Specificity PPV NPV
Parameter Mean(SE) 95% HDR Mean(SE) 95% HDR Mean(SE) 95% HDR Mean(SE) 95% HDR
E2 0.918(0.030) [0.918, 0.970] 0.980(0.025) [0.897, 1.000] 0.982(0.033) [0.878, 1.000] 0.935(0.025) [0.881, 0.978]
NS3 0.925(0.039) [0.925, 0.983] 0.323(0.045) [0.240, 0.415] 0.535(0.037) [0.462, 0.608] 0.840(0.072) [0.696, 0.960]
NS5A 0.987(0.020) [0.987, 1.000] 0.349(0.046) [0.268, 0.438] 0.560(0.036) [0.489, 0.630] 0.970(0.042) [0.852, 1.000]
5’NTR 0.824(0.031) [0.824, 0.883] 0.307(0.036) [0.242, 0.379] 0.499(0.034) [0.432, 0.565] 0.675(0.055) [0.563, 0.783]
RT(M)∗ 0.900(0.032) [0.900, 0.967] 0.902(0.025) [0.848, 0.950] 0.885(0.031) [0.818, 0.941] 0.915(0.029) [0.858, 0.976]
RT(H)∗∗ 0.782(0.039) [0.782, 0.863] 0.958(0.019) [0.916, 0.990] 0.940(0.028) [0.879, 0.986] 0.839(0.033) [0.779, 0.906]

∗: A cutoff of 103 copies/ml is used for Real time RT-PCR measurement.
∗∗: A cutoff of 106 copies/ml is used for Real time RT-PCR measurement.

Table III. Prior distribution of sensitivities, specificities, PPVs, NPVs of primer tests of GBV-C.

Sensitivity Specificity PPV NPV
Parameter Mean(SE) 95% HDR Mean(SE) 95% HDR Mean(SE) 95% HDR Mean(SE) 95% HDR
E2 0.766(0.128) [0.475, 0.958] 0.990(0.030) [0.902 ,1.000] 0.967(0.091) [0.669, 1.000] 0.911(0.074) [0.714, 0.992]
NS3 0.883(0.097) [0.636, 0.995] 0.883(0.097) [0.636 ,0.995] 0.704(0.200) [0.252, 0.979] 0.946(0.060) [0.778, 0.999]
NS5A 0.955(0.063) [0.775, 0.999] 0.861(0.104) [0.601 ,0.990] 0.778(0.185) [0.321, 0.993] 0.912(0.035) [0.788, 1.000]
5’NTR 0.990(0.030) [0.902, 1.000] 0.909(0.087) [0.680 ,0.998] 0.780(0.178) [0.344, 0.996] 0.890(0.017) [0.711, 1.000]
RT(M)∗ 0.970(0.033) [0.878, 0.999] 0.570(0.128) [0.366, 0.854] 0.529(0.057) [0.429, 0.657] 0.904(0.104) [0.614, 0.998]
RT(H)∗∗ 0.899(0.091) [0.661, 0.997] 0.970(0.033) [0.879, 0.999] 0.962(0.039) [0.856, 0.999] 0.924(0.062) [0.770, 0.997]

∗: A cutoff of 103 copies/ml is used for Real time RT-PCR measurement.
∗∗: A cutoff of 106 copies/ml is used for Real time RT-PCR measurement.
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