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Summary

A two-stage semiparametric estimator is proposed to estimate the association measure for

bivariate survival data that are subject to hybrid censoring: one event time is right censored

and the other is observed as current status data, or subject to interval censoring case 1. The

bivariate data are assumed to follow a copula model, in which the association parameter is

of primary interest. The consistency and asymptotic normality of the proposed estimator

are established based on empirical process theories. Simulation studies indicate that the

estimator performs quite well with a moderate sample size. The method is applied to a

motivating HIV example, which studies the effect of GB virus type C (GBV-C) co-infection

on the survival of HIV infected individuals.
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1. INTRODUCTION

Event times are often subject to various types of censoring. The most common censoring case

is right censoring, which happens when the event has not occurred at the end of the study

or the subject withdraws from the study. Interval censoring occurs when the event, such as

the clearance of an infection, is only known to occur within an interval. A special case of

interval censored data is current status data, or interval censoring case 1 data (Groeneboom

& Wellner, 1992), which happens when it is only feasible to know whether the event has

occurred or not by a random monitoring time C. Specifically, let T denote the event time,

then one observes (C,∆), where ∆ = I(T ≤ C) and I(·) is the indicator function.

In this manuscript, we consider a pair of positive random event times (T 0
1 , T

0
2 ), where T 0

1

is right censored by a random time C1, and the only observation on T 0
2 is its status: whether

or not T 0
2 exceeds a random monitoring time C2. For each individual, one observes

X = {(T1, T2,∆1,∆2) : T1 = min(T 0
1 , C1), T2 = C2,∆1 = I(T 0

1 ≤ C1),∆2 = I(T 0
2 ≤ C2)}.

(1)

This hybrid censoring data structure is observed in a motivating example, which studies

the association between the HIV survival, time from HIV seroconversion to death, and the

infection of a harmless virus called GB virus type C (GBV-C).

Some prior studies suggest that GBV-C delays the progression of HIV disease (Xiang
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et al., 2001; Tillmann et al., 2001; Williams et al., 2004), while a few other studies fail to

find a beneficial effect (Birk et al., 2002; Björkman et al., 2004; Van der Bij et al., 2005).

These studies compared the survival curves for HIV-infected subjects with or without GBV-

C infection. However, the two sample comparison method used in these studies does not

adjust for the duration of GBV-C infection, which may vary from subject to subject due to

its self-clearance nature, and may be the potential source of contradictive results. Williams

et al. (2004) conducted the most comprehensive GBV-C study to date, and found that

GBV-C is associated with prolonged survival when a selected cohort from the Multicenter

AIDS Cohort Study (MACS) is examined at 5-6 years after HIV seroconversion, but no

association has been found when examined at 12-18 months. Longitudinal GBV-C testing

on more than two time points in HIV infected individuals are not readily available from any

other studies. Besides the evaluation at baseline (early measurement to select co-infected

individuals), GBV-C status is only monitored once during the follow up for each individual

in the MACS sub-cohort. Therefore, the GBV-C status is well fitted to the current status

data structure. It is well understood that HIV survival is subject to right censoring. The

lack of a proper analytical tool for this type of data motivates us to re-analyze the MACS

sub-cohort data from Williams et al. (2004), by developing a new bivariate analysis method

through modeling the association of HIV survival and the duration of GBV-C infection.

Bivariate and multivariate survival data have been studied extensively in statistical liter-

atures. Liang et al. (1995) and Oakes (2000) reviewed some recent developments for analysis

of multivariate failure time data. Copula based survival models are considered, for exam-

ple, by Hougaard (1989), Oakes (1989), Shih & Louis (1995) and Wang & Ding (2000), to
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study the association between two event times. Shih & Louis (1995) examined the asso-

ciation of the bivariate data that are both subject to right censoring, through a two-stage

semiparametric estimation procedure. At the first stage, the marginal survival functions are

estimated consistently by nonparametric maximum likelihood estimator (NPMLE). At the

second stage, a dependency structure is imposed by using a copula model, and the NPMLEs

of two marginal survival functions are plugged into the likelihood to form a pseudolikelihood,

then the association parameter is estimated through a pseudolikelihood approach. Wang &

Ding (2000) proposed a parallel two-stage semiparametric method for the bivariate current

status data. Both papers show that the proposed estimators of the dependence measure

converge in distribution to normal distributions with the n1/2 rate, without showing the con-

sistencies in the first place. In this manuscript, we model the association of bivariate event

times using copula models and estimate the association parameter through the two-stage

procedure as well, but we focus specifically on the data structure where one of the paired

event time data is right-censored and the other is observed as current status data, as stated

in (1).

The classical method for estimating the NPMLE of marginal survival function for right

censored data is widely cited as the Kaplan-Meier estimator (1958). For current status data,

Turnbull (1976) derived a self-consistency equation and used the EM algorithm to compute

the NPMLE of distribution function. Groeneboom & Wellner (1992) introduced the Convex

Minorant Algorithm (CMA) to solve for the NPMLE of distribution function as well. Huang

& Wellner (1997) reviewed recent progress in interval censored survival data, which includes

current status data as a special case.
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Our main goal in this manuscript is to develop an inference procedure to study the

association of bivariate survival data with hybrid censoring structure aforementioned. A

direct application of this development is to investigate the association between HIV survival

and the duration of GBV-C infection to see if they are positively correlated or not. The

knowledge of this association may lead to a potential HIV treatment.

2. SOME PRELIMINARIES

2.1 Copula models

A copula is often referred to as the multivariate distribution function whose marginal

distributions are uniform over [0, 1]. Consider a bivariate uniform random variable (U1, U2),

a copula C is defined as

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2).

Any continuous random variable can be transformed from the uniform random variable on

[0, 1], therefore, copula can be used to construct a multivariate distribution with any marginal

distributions.

For Bivariate distribution function H with univariate marginal distribution functions F

and G, the associated copula function C is

Cα : [0, 1]2 → [0, 1] that satisfies

Hα(x, y) = Cα(F (x), G(y)),

where α is called the association parameter, see Nelsen (2006). A bivariate survival function

can be defined in a similar way.
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Copula model provides a convenient way to express the joint distribution of two or more

random variables. A copula facilitates the joint distribution into two contributions: the

marginal distributions of the individual variables, and the interdependency between margins.

It’s sometime useful to do so if we mainly focus on either the marginal distributions only or

the interdependency only.

The association parameter α defines the strength of dependency between two margins.

The Kendall’s tau, denoted by τ , is related to α as below:

τ = 4

∫ 1

0

∫ 1

0

Cα(u, v)dudv− 1.

A collection of copulas called Archimedean copulas have been studied extensively in

literature. Suppose that ψα : [0,∞] → [0, 1] is a strictly decreasing function such that

ψ(0)α = 1, then an Archimedean copula can be generated as

Cα(u, v) = ψα(ψ
−1
α (u) + ψ−1

α (v)), u, v ∈ [0, 1].

Examples of Archimedean copulas include the following three popular sub-families:

1. Gumbel (Gumbel-Hougaard) copula:

Cα(u, v) = exp
{

− [(− log u)α + (− log v)α]1/α
}

,

α ≥ 1, 0 ≤ u, v ≤ 1

2. Clayton copula:

Cα(u, v) = [max(u−α + v−α − 1, 0)]−1/α,

α > −1 and α 6= 0, 0 ≤ u, v ≤ 1
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3. Frank copula:

Cα(u, v) = − 1

α
log

{

1 +
(e−αu − 1)(e−αv − 1)

e−α − 1

}

,

α 6= 0, 0 ≤ u, v ≤ 1

Archimedean copulas are widely used in applications due to their simplicity, flexibility of

dependence structures, and the ability to extend to a higher dimensional problem via the

associativity property. A collection of twenty-two one-parameter families of Archimedean

copulas can be found in Table 4.1 of Nelsen (2006).

2.2 Univariate survival function estimation

Let Sj and Fj, j = 1, 2, denote the survival function and distribution function of T 0
j , respec-

tively.

2.2.1 Right censored data Kaplan & Meier (1958) introduced the product limit esti-

mator of survival function, which is a basic tool to estimate the probability of survival at

time t for right censored data. S1 can therefore be estimated by

Ŝ1(t) =
∏

i:ti<t

ni − di
ni

,

where ni is the number at risk just prior to observation time ti, and di is the number of

deaths at time ti.
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2.2.2 Current status data For i.i.d. current status data (C2i,∆2i), i = 1, 2, · · · , n, the

NPMLE F̂2 of the distribution function F2 maximizes the following likelihood:

l(F2) =
n

∑

i=1

{∆2i logF2(C2i) + (1 − ∆2i) log(1 − F2(C2i))},

under the assumption that T 0
2 and C2 are independent. Turnbull (1974) derived a self-

consistency equation for F̂2:

F̂2(c) = EF̂2
{F̃2n(c)|C21, · · · , C2n,∆21, · · · ,∆2n},

where F̃2n is the (unobservable) empirical distribution function of the random variables

T 0
21, · · · , T 0

2n. This equation immediately yields the iteration steps of the Expectation Maxi-

mization (EM) algorithm (Dempster et al., 1977), which can be used to solve for F̂2.

Groeneboom & Wellner (1992) introduced an algorithm called Convex Minorant Algo-

rithm (CMA) to maximize the above likelihood from a different characterization of NPMLE.

Let C2(i) be the ith order statistics of C2 and let ∆2(i) be the corresponding indicator, then

F̂2 can be obtained explicitly through the “max-min” formula:

F̂2(c2(i)) = max
m≤i

min
k≥i

∑

m≤j≤k ∆2(j)

k −m+ 1
.

As suggested by Groeneboom & Wellner (1992), the CMA is considerably faster than the

commonly used EM method, especially when the sample size is large. The NPMLE of

survival function Ŝ2 can be obtained by 1 − F̂2.

2.3 Bivariate survival models

First, we write the joint survival function into a copula structure

Sα(t1, t2) = Cα(S1(t1), S2(t2)) α ∈ R1,
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where α is the association parameter. Let Fα(t1, t2) denote the joint distribution function

corresponding to Sα(t1, t2).

We consider a special case when T 0
1 is right censored by a random time C1 and T 0

2 is

subject to interval censoring case 1 by a monitoring time C2. The observed data, X, is de-

scribed in (1). Throughout the manuscript, we assume the independent and noninformative

censoring.

3. Copula based pseudolikelihood estimation of association parameter

Let (T1i, T2i,∆1i,∆2i), i = 1, · · · , n, be an i.i.d. sample, each with density h(t1, t2, δ1, δ2)

given by

lim
h1→0+
h2→0+

P [t1 ≤ T1 < t1 + h1, t2 ≤ T2 < t2 + h2,∆1 = δ1,∆2 = δ2]

h1h2

=
[ ∂

∂t1
Fα(t1, t2)

]δ1δ2[ − ∂

∂t1
Sα(t1, t2)

]δ1(1−δ2)

×
[

S1(t1) − Sα(t1, t2)
](1−δ1)δ2[Sα(t1, t2)

](1−δ1)(1−δ2)
.

Let C1α(u, v) = ∂
∂u
Cα(u, v). Note that Fα(t1, t2) = 1−S1(t1)−S2(t2)+Sα(t1, t2). Given two

marginal survival functions S1, S2, the likelihood of the association parameter α based on

all observations is

n
∏

i=1

[

1 − C1α

(

S1(t1i), S2(t2i)
)]δ1iδ2i

[

C1α

(

S1(t1i), S2(t2i)
)]δ1i(1−δ2i) (2)

×
[

S1(t1i) − Cα
(

S1(t1i), S2(t2i)
)](1−δ1i)δ2i

[

Cα
(

S1(t1i), S2(t2i)
)](1−δ1i)(1−δ2i),

by omitting the parts that irrelevant in estimating α. Our main interest is to estimate the

association parameter α. We propose to apply a two-stage pseudolikelihood approach. At

8



the first stage, the marginal survival function S1, which corresponds to the right censored

data, is estimated by Kaplan-Meier estimator Ŝ1, and S2, which corresponds to current

status data, is estimated by Ŝ2 using Convex Minorant Algorithm. At the second stage, the

estimates Ŝ1 and Ŝ2 are plugged into the likelihood (2), and the resulted log pseudolikelihood

is then maximized to get the estimator of α, α̂n, which is the solution to the pseudo score

equation:

Uα(α, Ŝ1, Ŝ2, δ1, δ2) =

n
∑

i=1

∂

∂α
l(α, Ŝ1(t1i), Ŝ2(t2i), δ1i, δ2i) = 0, (3)

where

l(α, Ŝ1(t1), Ŝ2(t2), δ1, δ2) (4)

= δ1δ2 log
(

1 − C1α(Ŝ1(t1), Ŝ2(t2))
)

+ δ1(1 − δ2) logC1α(Ŝ1(t1), Ŝ2(t2))

+(1 − δ1)δ2 log
(

Ŝ1(t1) − Cα(Ŝ1(t1), Ŝ2(t2))
)

+(1 − δ1)(1 − δ2) logCα(Ŝ1(t1), Ŝ2(t2)).

The pseudolikelihood estimation approach allows the functional form of the marginal

survival functions to be flexible, and is determined by data. It’s also computationally easy

since only the association parameter is left as unknown in the pseudolikelihood.

4. Asymptotic properties of the pseudo estimator α̂n

We now define some notations to be used in the sequel. Let l(α, S1(t1), S2(t2), δ1, δ2) be

defined as in (4) on [0, t01] × [0, t02], t01 = sup{t : P (T1 > t, C1 > t) > 0} and t02 = sup{t :

P (C2 > t) > 0}. Suppose α is in an open set A in the real line. We let D be a constant,

which may represent different values at different places.
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Before we formally state the asymptotic results, we need to define the following notations:

Vα(α, S1(t1), S2(t2), δ1, δ2) =
∂

∂α
l(α, S1(t1), S2(t2), δ1, δ2)

Vα2(α, S1(t1), S2(t2), δ1, δ2) =
∂2

∂α2
l(α, S1(t1), S2(t2), δ1, δ2)

Vα,1(α, S1(t1), S2(t2), δ1, δ2) =
∂2

∂α∂u
l(α, u, S2(t2), δ1, δ2)|u=S1(t1)

Vα,2(α, S1(t1), S2(t2), δ1, δ2) =
∂2

∂α∂v
l(α, S1(t1), v, δ1, δ2)|v=S2(t2)

Vα2,1(α, S1(t1), S2(t2), δ1, δ2) =
∂3

∂α2∂u
l(α, u, S2(t2), δ1, δ2)|u=S1(t1)

Vα2,2(α, S1(t1), S2(t2), δ1, δ2) =
∂3

∂α2∂v
l(α, S1(t1), v, δ1, δ2)|v=S2(t2)

Vα,12(α, S1(t1), S2(t2), δ1, δ2) =
∂3

∂α∂u2
l(α, u, S2(t2), δ1, δ2)|u=S1(t1)

Vα,1,2(α, S1(t1), S2(t2), δ1, δ2) =
∂3

∂α∂u∂v
l(α, u, v, δ1, δ2)|u=S1(t1),v=S2(t2)

Vα,22(α, S1(t1), S2(t2), δ1, δ2) =
∂3

∂α∂v2
l(α, S1(t1), v, δ1, δ2)|v=S2(t2)

Suppose the following regularity conditions hold:

(A1) l(α, S1(t1), S2(t2), δ1, δ2) is three-times differentiable with respect to α on [0, t01] ×

[0, t02], for each α ∈ A, and all derivatives are continuous and uniformly bounded

by some constant D.

(A2) Vα,1(α, S1(t1), S2(t2), δ1, δ2), Vα,2(α, S1(t1), S2(t2), δ1, δ2), Vα2,1(α, S1(t1), S2(t2), δ1, δ2),

Vα2,2(α, S1(t1), S2(t2), δ1, δ2), Vα,12(α, S1(t1), S2(t2), δ1, δ2), Vα,1,2(α, S1(t1), S2(t2), δ1, δ2),

and Vα,22(α, S1(t1), S2(t2), δ1, δ2) are continuous and uniformly bounded by some con-

stant D on [0, t01] × [0, t02] , for all α ∈ A.

(A3) For each α ∈ A, 0 < Eα[Vα(α, S1(t1), S2(t2), δ1, δ2)]
2 <∞.

(A4) Let F2, G2 be distribution functions of T 0
2 and C2, respectively. G2 � F2, F2 � G2,
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and G2 has density g2 with respect to the Lebesgue measure.

(A5) (ψ2/g2) ◦ S−1
2 is bounded and Lipchitz on [0, 1], where ψ2 is the derivative of the

influence curve IC2(t2), which is defined in the appendix.

(A6) S2, g2 and ψ2 satisfy

∫ t02

0

S2(t2)(1 − S2(t2))

g2(t2)
ψ2(t2)dt2 <∞.

The above regularity conditions hold for the bivariate copula models mentioned earlier

given that the marginal distribution functions are smooth.

Some technical lemmas are needed for proving the asymptotic results and they are stated

as follows:

Lemma 1. Let Fj = {f : f is a survival function on [0, t0j ]}, j = 1, 2, and the class GF =

{Vα,1(α, f1(t1), f2(t2), δ1, δ2); fj ∈ Fj, j = 1, 2}. Let P denote the probability measure of

(T1, T2,∆1,∆2), then under condition (A1)-(A2), GF is a P-Glivenko-Cantelli class, for all

α ∈ A.

Lemma 2. Let Fj = {f : f is a survival function on [0, t0j]}, j = 1, 2 and the class HF =

{Vα(α, f1(t1), f2(t2), δ1, δ2)−Vα(α, S1(t1), S2(t2), δ1, δ2) : fj ∈ Fj, j = 1, 2}. Let P denote the

probability measure of (T1, T2,∆1,∆2), then under condition (A1)-(A2), HF is a P-Donsker

Class, for all α ∈ A.

Under the regularity conditions stated previously, the estimator α̂n, the solution to equa-

tion (3), is consistent and has the asymptotic normal distribution as stated in the following

two theorems:
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Theorem 1. Assume that the joint distribution of (T 0
1 , T

0
2 ) follows an Archimedean copula

model with the true association parameter α = α0. Let Ŝ1(·) be K-M estimator of S1(·) and

Ŝ2(·) be the NPMLE estimator of S2(·) by CMA. Under the regularity conditions (A1)-(A2),

α̂n
p→ α0 as n→ ∞.

Theorem 2. Under the regularity conditions (A1)-(A6),
√
n(α̂n − α0)

d→ N(0, σ2), where

σ2 =
Var(Q(α0, S1, S2, t1, t2, δ1, δ2))

W 2(α0, S1, S2, δ1, δ2)

with

W (α0, S1, S2, δ1, δ2) = −
∫

[

Vα(α0, S1(t1), S2(t2), δ1, δ2)
]2
dP (t1, t2, δ1, δ2)

Q(α0, S1, S2, t1, t2, δ1, δ2) = Vα(α0, S1(t1), S2(t2), δ1, δ2)

+I1(T1,∆1, α0) − l̃(t2, δ2, S2, G2, ψ2),

in which

I1(T1,∆1, α0) =

∫ t01

0

∫ t02

0

Mα,u(α0, S1(t1), S2(t2))f(t1, t2)I
0
1 (T1,∆1)(t1)dt1dt2

l̃(t2, δ2, S2, G2, ψ2) = −[δ2 − (1 − S2(t2))]
ψ2(t2)

g2(t2)
I[g2(t2 > 0)],

where

Mα,u(α0, S1(t1), S2(t2)) = −Eδ1δ2|t1t2Vα,u(α0, S1(t1), S2(t2), δ1, δ2)

and

I0
1 (T1,∆1)(t1) = −S1(t1)

{

∫ t1

0

1

P (T1 ≥ u)
dN1(u) −

∫ t1

0

I[T1 ≥ u]

P (T1 ≥ u)
dΛ1(u)

}

.

N1(u) is defined as I[T1 ≤ u,∆1 = 1] and Λ1 is the cumulative hazard function of T 0
1 .

The proof of the two lemmas and the two theorems are given in the Appendix.
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5. Simulation studies

The preceding sections provide a two-stage pseudo-likelihood estimation procedure for

the association parameter between the two survival times. Although the estimator is shown

to be asymptotically consistent and normally distributed, it is crucial to ascertain its finite

sample performance before applying it to real problems. Simulation studies are preformed

to evaluate the proposed estimator.

We consider the Gumbel copula function

Cα(u, v) = exp
{

− [(− log u)α + (− log v)α]1/α
}

,

where α ≥ 1, and two margins are both assumed to be exponentially distributed with unit

rate 1.

A sample of bivariate copula random variables is generated based on conditional dis-

tribution function. Suppose that the joint distribution of the bivariate data (T 0
1 , T

0
2 ) is

Cα(F1(t1), F2(t2)). We generate (T 0
1 , T

0
2 ) through the following steps:

• Generate two independent uniform (0, 1) random variables u, w.

• Set w = P (V ≤ v|U = u) = ∂Cα(u, v)/∂u, solve for v.

• Set T 0
1 = F−1

1 (u), T 0
2 = F−1

2 (v).

Meanwhile, a sample of bivariate censoring times (C1 and C2) are each independently drawn

from a uniform distribution on [0, 2.3]. In this setting, about 50% of T 0
1 is right censored by

C1, and about 50% of T 0
2 is subject to interval censoring case 1 by C2 as well.
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Kendall’s τ is chosen as a global association measure. For Gumbel copula, τ = 1 − 1/α.

Three different values of α are set such that the corresponding Kendall’s τ is 0.25, 0.5, and

0.75. For each value of α, we conduct Monte-Carlo simulations with 1, 000 replications for

sample size n = 50, 100, 200 and 400, respectively.

We compute the two-stage pseudolikelihood estimator α̂n as proposed previously. We

also compute α̃n, the maximum likelihood estimator when the two margins are completely

specified. The latter estimator serves as a benchmark to evaluate the performance of the

pseudolikelihood estimator.

For each of the 1, 000 simulations, Wald confidence interval is constructed based on

the asymptotic normality, in which the asymptotic variance of α̂n is computed using 200

bootstrap resamples. The empirical estimate of the coverage probability is obtained based

on the Wald confidence interval over 1, 000 replications.

Table 1 summarizes the simulation results for the two-stage pseudolikelihood estimator.

It provides results for estimation bias, standard deviation from 1, 000 replicates (sd), mean

of bootstrap standard deviation (bsd∗), and 95% empirical coverage probability.

As the sample size increases, for a wide range of α, the bias of both α̂n and τ̂n decreases

considerably; the standard deviation and the bootstrapped standard error are dropping down

as well and they are getting closer and closer. In addition, the empirical coverage probability

converges to the nominal level when the sample size increases.

Given the same sample size, the stronger the dependency, the bigger the bias and the
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Table 1

Simulation results of the two-stage pseudolikelihood estimator based on 1000 Monte-Carlo

samples with sample size chosen as 50,100,200,400 for α = 4/3, 2, 4.

n=50 n=100 n=200 n=400

α̂n τ̂n α̂n τ̂n α̂n τ̂n α̂n τ̂n

τ = 0.25 Bias 0.219 0.043 0.059 0.013 0.023 0.005 -0.005 -0.002

α = 1.333 sd 0.845 0.172 0.233 0.113 0.142 0.076 0.098 0.055

bse∗ 8.799 0.161 0.334 0.109 0.154 0.077 0.099 0.054

95% Cover.P 0.968 0.966 0.963 0.954

τ = 0.50 Bias 1.120 0.051 0.194 0.021 0.102 0.014 0.032 0.003

α = 2.0 sd 8.090 0.158 0.563 0.098 0.320 0.070 0.208 0.050

bse∗ 26.276 0.156 2.523 0.101 0.359 0.069 0.213 0.048

95% Cover.P 0.985 0.976 0.966 0.957

τ = 0.75 Bias 9.460 0.176 0.695 0.037 0.189 0.017 0.058 0.004

α = 4.0 sd 51.64 0.117 4.305 0.081 1.002 0.054 0.646 0.038

bse∗ 60.48 0.124 15.726 0.079 1.597 0.054 0.696 0.038

95% Cover.P 0.991 0.980 0.974 0.959

bse∗ : Bootstrap standard error.
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standard error for the estimator α̂n, as greater variations are usually expected for larger

values. Therefore, to preserve high efficiency, large sample size is desired to achieve the

reasonable performance of α̂n when a strong dependence exists. Interestingly, we observe

that the standard deviation of τ̂n decreases when the dependence becomes stronger. By delta

method, στ̂n ≈ σα̂n
/α2, where στ̂n and σα̂n

are standard deviation of τ̂n and α̂n, respectively.

Therefore, as τ increases, the bias of τ̂ increases but the variance of τ̂n may still decrease.

Additionally, we can also observe that the estimated standard error of both τ̂n and α̂n closely

fit the association suggested by delta method when the sample size is over 200.

Table 2 gives the results of α̃, the maximum likelihood estimator α, when the two marginal

survival functions are known. α̃n performs better than α̂n, as expected, while their difference

is substantially reduced when the number of observations increases, for example, n ≥ 200.

The small difference between the two estimators assures us the use of two-stage pseudo

estimation procedure, in which we gain advantage of having flexibility for not modeling the

marginal distributions without loss of too much estimation efficiency, given a reasonable

sample size (n ≥ 200 for a wide range of α).

6. Application to the Motivating Example

This study is designed to determine the effect of GBV-C virus on the survival benefit

among HIV patients. The sub-cohort of MACS from Williams et al. (2004) is re-analylized.

MACS consists of gay men who were enrolled between 1984 and 1990 and whose blood

samples were obtained every 6 months. The sub-cohort includes 271 subjects from MACS

who were initially HIV negative when they entered the study but HIV positive during the
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Table 2

Simulation results of MLE when S1 and S2 are fixed at known. 1000 monto carlo datasets

are generated and sample sizes are chosen as 50,100,200,400 for α = 4/3, 2, 4.

n=50 n=100 n=200 n=400

α̃n τ̃n α̃n τ̃n α̃n τ̃n α̃n τ̃n

τ = 0.25 Bias 0.065 0.031 0.019 0.011 0.016 0.004 -0.004 -0.001

α = 1.333 sd 0.334 0.145 0.192 0.102 0.136 0.076 0.097 0.053

bse∗ 1.253 0.136 0.218 0.101 0.136 0.073 0.094 0.053

95% Cover.P 0.940 0.942 0.954 0.949

τ = 0.50 Bias 0.302 0.036 0.069 0.018 0.022 0.005 -0.009 -0.002

α = 2.0 sd 1.360 0.141 0.455 0.096 0.288 0.068 0.190 0.047

bse∗ 8.808 0.132 0.811 0.093 0.288 0.068 0.196 0.047

95% Cover.P 0.965 0.951 0.939 0.952

τ = 0.75 Bias 7.136 0.160 0.539 0.030 0.164 0.010 0.014 0.001

α = 4.0 sd 41.24 0.104 3.830 0.073 0.975 0.050 0.635 0.038

bse∗ 44.55 0.089 12.353 0.067 1.590 0.049 0.659 0.036

95% Cover.P 0.971 0.963 0.960 0.940

bse∗ : Bootstrap standard error.
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follow ups. Since the visits were scheduled every 6 months, the seroconversion time is

known to be within a six-month window. Seroconversion time is imputed as the midpoint

between the last seronegative visit and the first seropositive visit. All the 271 subjects were

evaluated at 12-18 months after HIV seroconversion for the evidence of GBV-C infection

and a subgroup of 138 patients were re-examined 5-6 years after HIV seroconversion. The

study only included data collected before Jan 1, 1996 to avoid the confounding due to the

use of highly active antiretroviral therapy.

We consider the association between the duration of GBV-C infection and the HIV

survival among people who were co-infected with both HIV and GBV-C at HIV onset.

Therefore, the HIV survival is defined as the time from seroconversion to death, and the

GBV-C infection time is defined as the time from seroconversion to GBV-C clearance.

In our analysis, we treat the GBV-C status evaluated at 12-18 months as the baseline

GBV-C information to select a subsample of HIV patients who are assumed to be co-infected

with GBV-C at baseline. The GBV-C status evaluated at 5-6 years after HIV seroconversion

gives us the current status data for GBV-C infection time.

Gumbel copula is used for the bivariate distribution of HIV survival and GBV-C infection

time. Table 3 gives the result for the pseudolikelihood estimator of association between HIV

survival time and GBV-C infection time. Only 61 patients who were GBV-C positive at the

first visit and GBV-C status at the late visit were known are included.

Boostrap standard deviation based on 1000 resamples with replacement was used to

estimate the standard error and to construct the Wald confidence interval. The estimator
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Table 3

Association between HIV survival time and GBV-C infection time; Only include patients

who are GBV-C positive at early visit and GBV-C known at late visit (N=61).

Estimate Bootstrap standard error 95% Wald CI

α̂n 2.0143 0.4558 [1.1208, 2.9077]

τ̂n 0.5035 0.1450 [0.2193, 0.7877]

α̂n is about 2, with 95% Wald confidence interval ruled out 1. The corresponding Kendall’s

τ is 0.5, and its 95% Wald confidence interval did not include zero. Therefore, the GBV-C

persistence appears to be associated with increased survival among HIV and GBV-C co-

infected individuals. These results support recent articles suggesting increased survival in

individuals co-infected with GBV-C.

7. Discussion

This paper proposes a way of assessing the association between two random variables which

are subject to different censoring schemes, one is right censored and the other is current

status data. The asymptotic properties of the estimator are established under mild tech-

nical assumptions. Although the asymptotic variance of the estimator is difficult to obtain

analytically, the ordinal bootstrap method provides a practical and efficient way to estimate

the variance.

Our simulation results suggest that the proposed estimator works well for moderate

sample sizes and has the advantage of allowing for flexibility in the marginals. Moreover,
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our numerical work shows that the proposed method is approximately as efficient as full

maximum likelihood approach when the marginal distributions are known, with a moderate

sample size. It suggests that the efficiency loss from the pseudolikelihood approach by

estimating the marginals separately, if any, is minimal.

We assume Gumbel copula in the numerical examples (simulation and real data analysis).

The selection of copula should not be an important issue here. Our main interest is whether

there is or is not positive dependence, not the strength of the dependence. According to

Wang & Wells (2000), when τ is small all the copula models behave similarly. In fact

when τ → 0 all the copula models approach the independent copula; when there is positive

dependence, any copula model can capture it, although the strength of dependency can be

different.

Rather than considering an association model, another natural way of formulating the

same problem is maybe through modeling the right censored data with a time-dependent

covariate, the current status data. However, this approach is impossible for the data structure

specified in (1), since current status data only provides information at one monitoring time

and can not be specified at any failure time, the feature that is required for cox model with

a time-dependent covariate (Kalbfleisch & Prentice (2002), page 200).

Throughout we did not provide the hypothesis testing on the independence, due to a

potential boundary problem. If a copula function, such as the Gumbel copula, is equivalent to

the independent copula only when the association parameter takes its value on the boundary

of the parameter space, some regularity conditions fail and the likelihood theory is broken
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down. Donald (2001) investigated the testing problems which covers this sort. He specifies a

set of high level conditions under which the asymptotic null distributions of quasi-likelihood

ratio (QLR), rescaled quasi-likelihood ratio (RQLR), Wald and score tests are determined.

A further exploration may be considered by following his approach. Another difficulty this

boundary problem brings is the constructing of confidence interval. The lower bound of the

Wald confidence interval could fall outside of the parameter space if the association is too

weak. In this case a Likelihood Ratio type of confidence interval is preferable to the Wald

confidence interval.

In this work, we did not account for the covariate effect when modeling the association

between two event times. A further consideration would be given to using either the Cox

Proportional hazard model or the accelerated hazard model to perform a regression analysis

on each event time marginally. A more thorough investigation in this direction is needed.

Note that the dataset used for illustration in this paper is not an ideal example since we

only had an available sample size of 61. The simulation studies suggest that the sample size of

bigger than 200 is desired to obtain a well behaved estimator for a wide range of dependence.

If the sample size is small, the validity of the inference is questionable. Including the HIV

patients who were never infected with GBV-C at baseline, and performing a complete analysis

based on a mixture distribution of GBV-C clearance time, is currently under development.
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Appendix

This section provides a sketch of proofs for the lemmas and theorems stated in section 4.

We use the modern empirical process theory justifying our proof. We denote
∫

fdP by Pf

and 1
n

∑n
i=1 f(Xi) by Pnf .

Proof of Lemma 1:

Since Fj consists of uniformly bounded monotone functions on the real line, by the

Theorem 2.7.5 of van der Vaart & Wellner (1996), for any ε > 0, for j = 1, 2, there exists a

set of brackets:

[fLj1, f
U
j1], [f

L
j2, f

U
j2], · · · , [fLjNj

, fUjNj
],

with Nj ≤ exp(D/ε) and
∫

|fUji − fLji|dP ≤ ε for any 1 ≤ i ≤ Nj , such that for any fj ∈ Fj

and any tj ∈ [0, t0j ], f
L
jqj

(tj) ≤ fj(tj) ≤ fUjqj(tj) for some 1 ≤ qj ≤ Nj .

By condition (A2), Vα,1(α, f1(t1), f2(t2), δ1, δ2) is continuous. We can then construct a set

of bracket as following: For any i = 1, 2, · · · , N1, s = 1, 2, · · · , N2 and for any tj ∈ [0, t0j ], we

can find the unique maximum and minimum of Vα,1(α, f1(t1), f2(t2), δ1, δ2) on the product
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set [fL1i, f
U
1i ] × [fL2s, f

U
2s]. Let

(f
L,(i,s)
1 (t1), f

L,(i,s)
2 (t2)) = argmin

f1∈[fL
1i,f

U
1i]

f2∈[fL
2s

,fU
2s

]

Vα,1(α, f1(t1), f2(t2), δ1, δ2)

(f
U,(i,s)
2 (t1), f

U,(i,s)
2 (t2)) = argmax

f1∈[fL
1i,f

U
1i]

f2∈[fL
2s

,fU
2s

]

Vα,1(α, f1(t1), f2(t2), δ1, δ2)

and let

V
L,(i,s)
α,1 (t1, t2, δ1, δ2) = Vα,1(α, f

L,(i,s)
1 (t1), f

L,(i,s)
2 (t2), δ1, δ2)

V
U,(i,s)
α,1 (t1, t2, δ1, δ2) = Vα,1(α, f

U,(i,s)
1 (t1), f

U,(i,s)
2 (t2), δ1, δ2).

The class GF is then covered by a set of N1 ×N2 brackets:

{[V L,(i,s)
α,1 (t1, t2, δ1, δ2), V

U,(i,s)
α,1 (t1, t2, δ1, δ2)] : i = 1, 2, · · · , N1, s = 1, 2, · · · , N2}.

By condition (A2), Vα,12(α, u, v, δ1, δ2) and Vα,1,2(α, u, v, δ1, δ2) are bounded by some constant

D on [0, t01]× [0, t02], then Vα,1(α, u, v, δ1, δ2) satisfies the Lipchitz condition with respect to

u and v. It follows that:

∫

|V U,(i,s)
α,1 (t1, t2, δ1, δ2) − V

L,(i,s)
α,1 (t1, t2, δ1, δ2)|dP

=

∫

|Vα,1(α, fU,(i,s)1 (t1), f
U,(i,s)
2 (t2), δ1, δ2) − Vα,1(α, f

L,(i,s)
1 (t1), f

L,(i,s)
2 (t2), δ1, δ2)|dP

≤
∫

[

D|fU,(i,s)1 (t1) − f
L,(i,s)
1 (t1)| +D|fU,(i,s)2 (t2) − f

L,(i,s)
2 (t2)|

]

dP

≤ Dε.

This indicates that the preceding N1 ×N2 brackets are Dε−brackets. It follows that, for

any ε > 0, the bracketing number of class GF associated with L1(P ) norm is bounded. By

the Theorem 2.4.1 of van der Vaart & Wellner (1996), GF is a P-Glivenko-Cantelli class.
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Proof of Lemma 2:

Based on the similar technique used in the proof of Lemma 1, we can construct a set of

N1 ×N2 brackets:

{[V L,(i,s)
α (t1, t2, δ1, δ2) − Vα(α, S1(t1), S2(t2), δ1, δ2), V

U,(i,s)
α (t1, t2, δ1, δ2) −

Vα(α, S1(t1), S2(t2), δ1, δ2)] : i = 1, 2, · · · , N1, s = 1, 2, · · · , N2},

which covers HF .

By condition (A2), Vα,1(α, u, v, δ1, δ2) and Vα,2(α, u, v, δ1, δ2) are bounded by some con-

stant D on [0, t01]× [0, t02], then Vα(α, u, v, δ1, δ2) satisfies the Lipchitz condition with respect

to u and v. Also note that (x+ y)2 = x2 + y2 + 2xy ≤ 2x2 + 2y2, it follows that

∫

(

V U,(i,s)
α (t1, t2, δ1, δ2) − V L,(i,s)

α (t1, t2, δ1, δ2)
)2
dP

=

∫

|Vα(α, fU,(i,s)1 (t1), f
U,(i,s)
2 (t2), δ1, δ2) − Vα(α, f

L,(i,s)
1 (t1), f

L,(i,s)
2 (t2), δ1, δ2)|2dP

≤
∫

[

D|fU,(i,s)1 (t1) − f
L,(i,s)
1 (t1)| +D|fU,(i,s)2 (t2) − f

L,(i,s)
2 (t2)|

]2
dP

≤ 2D2

∫

|fU,(i,s)1 (t1) − f
L,(i,s)
1 (t1)|2dP + 2D2

∫

|fU,(i,s)2 (t2) − f
L,(i,s)
2 (t2)|2dP

≤ Dε2.

This indicates that the bracketing number of HF associated with L2(P ) norm, denoted

by N[ ](ε,HF , L2(P )), is bounded by N1 × N2. It follows that log
(

N[ ](ε,HF , L2(P ))
)

≤

log(N1 ×N2) ≤ D/ε for some constant D. Hence,

∫ 1

0

√

logN[ ](ε,HF , L2(P ))dε ≤
∫ 1

0

Dε−1/2dε <∞.

By the Theorem 19.5 of van der Vaart (1998) on page 270, HF is a P-Donsker Class.
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Proof of Theorem 1:

Let L̄n(α, Ŝ1, Ŝ2, δ1, δ2) = 1
n
Uα(α, Ŝ1, Ŝ2, δ1, δ2), and define L̄n(α, S1, S2, δ1, δ2) in a similar

way. First we show that L̄n(α, Ŝ1, Ŝ2, δ1, δ2)
p→ Eα0 l(α, S1, S2, δ1, δ2) for any α ∈ A.

Consider the Taylor series expansion:

L̄n(α, Ŝ1, Ŝ2, δ1, δ2) = L̄n(α, S1, S2, δ1, δ2) + (Ŝ1 − S1)
∂

∂u
L̄n(α, u, Ŝ2, δ1, δ2) |u=S̃1

+(Ŝ2 − S2)
∂

∂v
L̄n(α, Ŝ1, v, δ1, δ2) |v=S̃2

where S̃1 is between S1 and Ŝ1, and S̃2 is between S2 and Ŝ2. By the Weak Law of Large

Number Theorem,

L̄n(α, S1, S2, δ1, δ2)
p→ Eα0l(α, S1, S2, δ1, δ2).

Since Ŝ1(·) converges in probability to S1(·) uniformly in [0, t01] (Fleming & Harrington

(1991), p.115) and Ŝ2(·) converges in probability to S2(·) uniformly in [0, t02] (Groeneboom &

Wellner (1992), 4.1), it suffices to show ∂
∂u
L̄n(α, u, Ŝ2, δ1, δ2) |u=S̃1

and ∂
∂v
L̄n(α, Ŝ1, v, δ1, δ2) |v=S̃2

converge in probability. Note that:

∂

∂u
L̄n(α, u, Ŝ2, δ1, δ2) |u=S̃1

= PnVα,1(α, S̃1(t1), Ŝ2(t2), δ1, δ2)

Ŝ1(t1)
p→ S1(t1), S̃1(t1) is between S1 and Ŝ1, then S̃1(t1)

p→ S1(t1). Ŝ2(t2) converges to S2(t2)

as well. In addition, Vα,1 is continuous by condition (A2). Thus, Vα,1(α, S̃1(t1), Ŝ2(t2), δ1, δ2)

converges to Vα,1(α, S1(t1), S2(t2), δ1, δ2), followed by the Continuous Mapping Theorem.

Then by the Dominated Convergence Theorem,

PVα,1(α, S̃1(t1), Ŝ2(t2), δ1, δ2)
p→ PVα,1(α, S1(t1), S2(t2), δ1, δ2).
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Let GF be defined as in Lemma 1. Lemma 1 shows that under condition (A2), GF

is a P-Glivenko-Cantelli class. by Van Der Vaart, Page 279, |PnVα,1(α, S̃1, Ŝ2, δ1, δ2) −

PVα,1(α, S̃1, Ŝ2, δ1, δ2)| a.s→ 0.

It follows that

∂

∂u
L̄n(α, u, Ŝ2, δ1, δ2) |u=S̃1

p→ PVα,1(α, S1(t1), S2(t2), δ1, δ2).

Similarly, we can show that

∂

∂v
L̄n(α, Ŝ1, v, δ1, δ2) |v=S̃2

p→ PVα,2(α, S1(t1), S2(t2), δ1, δ2).

This concludes L̄n(α, Ŝ1, Ŝ2, δ1, δ2)
p→ Eα0l(α, S1, S2, δ1, δ2).

Now, ∀α ∈ A, using Jensen’s inequality, it follows that

L̄n(α, Ŝ1, Ŝ2, δ1, δ2) − L̄n(α0, Ŝ1, Ŝ2, δ1, δ2)

p→ Eα0l(α, S1, S2, δ1, δ2) − Eα0l(α0, S1, S2, δ1, δ2)

= Eα0 log
h(α, t1, t2, δ1, δ2)

h(α0, t1, t2, δ1, δ2)
< log Eα0

h(α, t1, t2, δ1, δ2)

h(α0, t1, t2, δ1, δ2)
= 0.

Due to the convergence demonstrated above, ∀ε, δ > 0, for which (α0 − ε, α0 + ε) ∈ A,

we may find an integer N = N(ε, δ), such that, if n > N , for α = α0 ± ε,

P (L̄n(α, Ŝ1, Ŝ2, δ1, δ2) < L̄n(α0, Ŝ1, Ŝ2, δ1, δ2)) > 1 − δ.

Thus for n > N ,

P
(

L̄n(α, Ŝ1, Ŝ2, δ1, δ2) has a local maximum α̂n ∈ (α0 − ε, α0 + ε)
)

> 1 − 2δ,

because of condition (A1). This immediately shows that the sequence of random variables

α̂n converge in probability to α0 as n→ ∞.
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Proof of Theorem 2:

Under condition (A1), the Taylor expansion of the pseudo score function gives

0 = PnVα(α̂n, Ŝ1, Ŝ2, δ1, δ2) = PnVα(α0, Ŝ1, Ŝ2, δ1, δ2)

+(α̂n − α0)PnVα2(α0, Ŝ1, Ŝ2, δ1, δ2) +Op(|α̂n − α0|2),

then we get

√
n(α̂n − α0) =

√
nPnVα(α0, Ŝ1, Ŝ2, δ1, δ2)

−PnVα2(α0, Ŝ1, Ŝ2, δ1, δ2) − Op(|α̂n − α0|)
.

First, we show that

PnVα2(α0, Ŝ1, Ŝ2, δ1, δ2)
p→W (α0, S1, S2, δ1, δ2),

where

W (α0, S1, S2, δ1, δ2) = PVα2(α0, S1, S2, δ1, δ2)

= −P
[

Vα(α0, S1(t1), S2(t2), δ1, δ2)
]2
.

We can rewrite PnVα2(α0, Ŝ1, Ŝ2, δ1, δ2) = PnVα2(α0, S1(t1), S2(t2), δ1, δ2) +Rn. Under condi-

tion (A2), Vα2(α0, S1(t1), S2(t2), δ1, δ2) satisfies the Lipchitz condition. Since supt∈[0,t01] |Ŝ1(t1)−

S1(t1)| a.s→ 0 by Fleming & Harrington (1991), page 115 and supt∈[0,t02] |Ŝ2(t2) − S2(t2)| a.s→ 0
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by Groeneboom & Wellner (1992), page 79, it follows that

|Rn| ≤ Pn|Vα2(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2) − Vα2(α0, S1(t1), S2(t2), δ1, δ2)|

≤ Pn|Vα2(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2) − Vα2(α0, S1(t1), Ŝ2(t2), δ1, δ2)|

+Pn|Vα2(α0, S1(t1), Ŝ2(t2), δ1, δ2) − Vα2(α0, S1(t1), S2(t2), δ1, δ2)|

≤ DPn|Ŝ1(t1) − S1(t1)| +DPn|Ŝ2(t2) − S2(t2)|

≤ D sup
0≤t1≤t01

|Ŝ1(t1) − S1(t1)| +D sup
0≤t2≤t02

|Ŝ2(t2) − S2(t2)|

a.s→ 0.

So, PnVα2(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2) = PnVα2(α0, S1(t1), S2(t2), δ1, δ2) + op(1). By the Weak

Law of Large Number Theorem, PnVα2(α0, S1(t1), S2(t2), δ1, δ2)
p→ PVα2(α0, S1, S2, δ1, δ2).

Then we have

PnVα2(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2)
p→ PVα2(α0, S1, S2, δ1, δ2).

Second, we derive the asymptotic distribution of
√
nPnVα(α0, Ŝ1, Ŝ2, δ1, δ2). Note that:

PnVα(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2)

= (Pn − P )
(

Vα(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2) − Vα(α0, S1(t1), S2(t2), δ1, δ2)
)

+PnVα(α0, S1(t1), S2(t2), δ1, δ2)

+P
(

Vα(α0, Ŝ1(t1), Ŝ2(t2), δ1, δ2) − Vα(α0, S1(t1), S2(t2), δ1, δ2)
)

= u1n + u2n + u3n.

Lemma 2 indicates that under Conditions (A1),(A2), HF is a P-Donsker class. Furthermore,

since sup0≤tj≤t0j
|Ŝj(tj) − Sj(tj)|

p→ 0, j = 1, 2, by the Dominated Convergence Theorem,

∫

(Ŝj(tj) − Sj(tj))
2dP (t1, t2, δ1, δ2)

p→ 0, j = 1, 2.

31



Therefore,
√
nu1n = op(1) by van der Vaart (1998), Lemma 19.24 on page 280.

u2n is a sum of independent and identically distributed quantities. Where each quantity

has mean:
∫

Vα(α0, S1(t1), S2(t2), δ1, δ2)dP (t1, t2, δ1, δ2) = 0

and variance:

∫

[

Vα(α0, S1(t1), S2(t2), δ1, δ2)
]2
dP (t1, t2, δ1, δ2) = −W (α0, S1, S2, δ1, δ2).

By the Central Limit Theorem,
√
nu2n converges to a normal random variable with mean 0

and variance −W (α0, S1, S2, δ1, δ2).

Applying Von Mises Expansion by Mises (1947) on u3n around S1, S2, we get

u3n
d
=

∫ t01

0

IC1(t1)d(Ŝ1 − S1)(t1) +

∫ t02

0

IC2(t2)d(Ŝ2 − S2)(t2). (5)

Where
d
= means that both sides have the same asymptotic distribution. (Mises (1947), on

page 327.) ICj(t) is the influence curve of the functional PVα(α0, S1(t1), S2(t2), δ1, δ2) and

have the following form

IC1(t1) = −
∫ t1

0

∫ t02

0

Vα,u(α0, S1(τ1), S2(τ2), δ1, δ2)dP (τ1, τ2, δ1, δ2)

=

∫ t1

0

∫ t02

0

Mα,u(α0, S1(τ1), S2(τ2))f(τ1, τ2)dτ1dτ2

and

IC2(t2) = −
∫ t2

0

∫ t01

0

Vα,v(α0, S1(τ1), S2(τ2), δ1, δ2)dP (τ1, τ2, δ1, δ2)

=

∫ t2

0

∫ t01

0

Mα,v(α0, S1(τ1), S2(τ2))f(τ1, τ2)dτ1dτ2,
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where

Mα,u(α0, S1(τ1), S2(τ2)) = −Eδ1δ2|τ1τ2Vα,u(α0, S1(τ1), S2(τ2), δ1, δ2)

Mα,v(α0, S1(τ1), S2(τ2)) = −Eδ1δ2|τ1τ2Vα,v(α0, S1(τ1), S2(τ2), δ1, δ2).

Using the martingale theory for counting process, Pepe (1991) showed that, for t ∈ [0, t01],

(Ŝ1(t1) − S1(t1)) is asymptotically equivalent to a sum of n i.i.d. random Variables

∑

i I
0
1 (t1i, δ1i)(t1)/n. It follows that

∫ t01

0

IC1(t1)d(Ŝ1 − S1)(t1) =
1

n

n
∑

i=1

I1(t1i, δ1i, α0), (6)

where

I1(t1i, δ1i, α0) =

∫ t01

0

∫ t02

0

Mα,u(α0, S1(τ1), S2(τ2))f(τ1, τ2)I
0
1 (t1i, δ1i)(τ1)dτ1dτ2

and I0
1 is a martingale.

Since Mα,u(α0, S1(t1), S2(t2))f(t1, t2) is a deterministic function, EI1(t1i, δ1i, α0) = 0 for

all i = 1, 2, · · · , n. Then
√
n

∫ t01
0

IC1(t1)d(Ŝ1−S1)(t1) converges to a normal random variable

with mean 0.

On the other hand, (Ŝ2 − S2)(t2) can not be written as sum of i.i.d random quantities.

However, for current status data, the smooth functionals of NPMLE F̂ can still be shown

to be asymptotically normal at the n1/2 rate (Huang & Wellner (1995)). Under conditions

(A3)-(A6), Wang & Ding (2000) showed that

∫ t02

0

IC2(t2)d(Ŝ2 − S2)(t2) (7)

= −[
1

n

n
∑

i=1

l̃(t2i, δ2i, S2, G2, ψ2) −E(l̃)] + op(1),
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with l̃(t2, δ2, S2, G2, ψ2) = −[δ2−(1−S2(t2))]
ψ2(t2)
g2(t2)

I[g2(t2) > 0] and thus
√
n

∫ t02
0

IC2(t2)d(Ŝ2−

S2)(t2) converges to a normal random variable with mean 0.

In summary, we obtain that,

PnVα(α0, Ŝ1, Ŝ2, δ1, δ2)

=
1

n

n
∑

i=1

Vα(α0, S1(t1i), S2(t2i), δ1i, δ2i) +
1

n

n
∑

i=1

I1(α0, t1i, δ1i)

−1

n

n
∑

i=1

[

l̃(t2i, δ2i, S2, G2, ψ2) −E(l̃)
]

+ op(n
−1/2)

=
1

n

n
∑

i=1

[Q(α0, t1i, t2i, δ1i, δ2i, S1, S2) + E(l̃)] + op(n
−1/2).

Therefore,
√
nPnVα(α0, Ŝ1, Ŝ2, δ1, δ2) is asymptotically normal with mean zero and vari-

ance Var(Q(α0, S1, S2, t1, t2, δ1, δ2)). Hence,

√
n(α̂n − α0)

d→ N(0, σ2),

where

σ2 =
Var(Q(α0, S1, S2, t1, t2, δ1, δ2))

W 2(α0, S1, S2, δ1, δ2)
.
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