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We study semiparametric likelihood-based methods for panel count data with propor-

tional mean model E[N(t)|Z] = Λ0(t) exp(βT0 Z), where Z is a vector of covariates and Λ0(t)

is the baseline mean function. We propose to estimate Λ0(t) and β0 jointly with Λ0(t) ap-

proximated by monotone polynomial B -splines and to compute the estimators using the

generalized Rosen algorithm utilized in Zhang and Jamshidian (2004) for nonparametric

maximum likelihood estimation problems. We show that the proposed spline-based likeli-

hood estimators of Λ0(t) are consistent with a possibly better than n1/3 convergence rate.

The normality of estimators of the β0 is also established. Comparisons between the proposed

estimators and their alternatives studied in Wellner and Zhang (2007) are made through sim-

ulations studies, regarding their finite sample performance and computational complexity.

A real example from a bladder tumor clinical trial is used to illustrate the methods.

KEY WORDS: Counting process; Empirical process; Generalized Rosen Algorithm; Maxi-

mum pseudo-likelihood method; Maximum likelihood method; Monotone polynomial splines;

Monte Carlo.

1. INTRODUCTION

In many long-term clinical trials or epidemiological studies, the subjects are observed at

several discrete time-points during the study. Only the number of recurrent events occurred

before each observation is observed. The number of observations and observation times may

vary from individual to individual. This kind of data is referred to as panel count data.
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A motivating example of panel count data is the bladder tumor randomized clinical trial

conducted by the Veterans Administration Cooperative Urological Research Group. In this

study, all patients had superficial bladder tumors when they entered the trial and they were

randomly assigned to one of the three arms: placebo, pyridoxine pill or thiotepa instillation.

Many patients had multiple recurrences of the tumor and new tumors were removed at each

visit. One of the primary goals of this study was to determine the effect of treatment on

suppressing the tumor recurrence; see for example, Byar (1980), Wei, Lin, and Weissfeld

(1989), Wellner and Zhang (2000, 2007), Sun and Wei (2000), and Lu, Zhang, and Huang

(2007).

Panel count data can be treated as incomplete observations on counting processes. The

methods for estimating the mean function of a counting process with this type of data have

been explored in literatures; see for example, Kalbfleisch and Lawless (1985), Thall and

Lachin (1988), Sun and Kalbfleisch (1995), and Wellner and Zhang (2000). In many appli-

cations, the effects of covariates on the underlying counting process are of primary interest.

Several studies have considered semiparametric regression methods with the proportional

mean model for panel count data, namely,

E[N(t)|Z] = Λ0(t) exp(βT0 Z), (1)

where the true baseline mean function Λ0(t) is left completely unspecified and β0 is a vector

of regression parameters. Sun and Wei (2000) proposed some procedures for estimating re-

gression parameters using generalized estimating equations techniques. Wellner and Zhang

(2007) studied both semiparametric maximum pseudo-likelihood estimator and semipara-

metric maximum likelihood estimator with the proportional mean model (1), assuming the

underlying counting process is nonhomogeneous Poisson conditional on covariates. Their

methods are shown to be robust against possible misspecification of the underlying counting
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process, as long as the proportional mean model (1) holds. The semiparametric maximum

pseudo-likelihood estimator is fairly easy to compute, but it can be very inefficient when the

distribution of the number of observations K is heavily tailed as shown in an example given

by Wellner, Zhang, and Liu (2004). The semiparametric maximum likelihood estimator is

more efficient than semiparametric maximum pseudo-likelihood estimator, but its compu-

tation is very intensive. Although the asymptotic normality was established for both the

pseudo-likelihood and likelihood estimators of β0, there are in general no explicit forms of

the asymptotic variances, which make it difficult to estimate the standard errors of these

estimators. A bootstrap semiparametric inference procedure proposed in Wellner and Zhang

(2007) is a common procedure in practice. However, this procedure often requires a substan-

tial amount of computing effort. It is, therefore, desirable to develop methods that not only

maintain good statistical properties but also are less computationally intensive.

The spline estimation of an unknown function such as a hazard function or a survival

function has been studied by many researchers. For example, in the context of nonparametric

estimation with right censored data, Kooperberg, Stone, and Truong (1995) reparameter-

ized the likelihood function in terms of the hazard function and approximated the logarithm

hazard function using polynomial splines. Although the nonnegativity of hazard function is

guaranteed, their estimation procedure incurred additional computing effort when the esti-

mate of survival function is desired. Lu, Zhang, and Huang (2007) studied nonparametric

likelihood-based estimators of the mean function with panel count data using monotone

polynomial splines. The spline likelihood estimators outperform the estimators proposed by

Wellner and Zhang (2000) in terms of rate of convergence and mean square errors. Moreover,

the spline likelihood estimators are much less computationally demanding than its alterna-

tive. These advantages motivate us to use monotone polynomial splines in semiparametric
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estimation for panel count data.

In this article, we use the monotone cubic B-splines (Schumaker, 1981) to directly ap-

proximate the logarithm of true baseline mean function log Λ0(t), i.e.

log Λ0(t) ≈
qn∑
j=1

αjBj(t),

subject to α1 ≤ α2 ≤ · · · ≤ αqn . The monotonicity of the resulted spline function is guaran-

teed by imposing nondecreasing constraints on the coefficients αj, j = 1, . . . , qn (Schumaker,

1981). Reparameterizaton of semiparametric proportional mean model (1)

E{N(t)|Z} = Λ0(t) exp(βT0 Z) ≈ exp

{
qn∑
j=1

αjBj(t) + βT0 Z

}

leads to simultaneous estimation of the spline coefficients α = (α1, α2, · · · , αqn) and regres-

sion parameters β0. Since the number of basis B -splines, qn, is often taken much smaller

than the sample size, the dimension of the estimation problem is greatly reduced. There-

fore, semiparametric spline estimations are expected to be less computationally expansive

than the semiparametric estimators of Wellner and Zhang (2007). The generalized Rosen

algorithm utilized by Zhang and Jamshidian (2004) for nonparametric estimation problems

is modified for computing the estimates of α = (α1, α2, · · · , αqn) and β0 jointly.

The rest of the paper is organized as follows. Section 2 characterizes the spline pseudo-

likelihood (β̂psn , Λ̂
ps
n ) and spline likelihood estimators (β̂n, Λ̂n) and describes the generalized

Rosen algorithm for computing these estimators. Section 3 states the asymptotic properties

of the spline estimators, including consistency, rate of convergence, and asymptotic normality.

Section 4 carries out two sets of simulation studies to evaluate finite sample performance of

the spline estimators and compare computational complexities between the spline estimators

and their alternatives. Section 5 applies the spline methods to the bladder tumor example.
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Section 6 summarizes our findings and discusses some related problems. Finally, the proofs

of the asymptotic properties are given in the Appendix.

2. TWO LIKELIHOOD-BASED SPLINE SEMIPARAMETRIC METHODS

Let {N(t) : t ≥ 0} be a univariate counting process with the conditional mean function

given by (1), where Z is a time-independent covariate vector with distribution F on Rd. K

is the total number of observations on the counting process and T = (TK,1, · · · , TK,K) is a

sequence of random observation times with 0 < TK,1 < . . . < TK,K . The cumulative numbers

of recurrent events up to these times, N = {N(TK,1), . . . ,N(TK,K)} with 0 ≤ N(TK,1) ≤ · · · ≤

N(TK,K), are observed accordingly. We assume that (K,TK) is conditionally independent of

N, given the covariate vector Z. The panel count data of the counting process consist of

X = (K,T,N, Z). In the sequel, we denote the observed data consisting of independently

and identically distributed random vectors by X1, · · · , Xn, where Xi = (Ki, Ti,N(i), Zi) with

Ti = (T
(i)
Ki,1

, · · · , T (i)
Ki,Ki

) and N(i) = {N(i)(T
(i)
Ki,1

), · · · ,N(i)(T
(i)
Ki,Ki

)}, for i = 1, · · · , n.

Zhang (2002) and Wellner and Zhang (2007) proposed a semiparametric pseudo-likelihood

method for estimating (β0,Λ0) under a working assumption that the underlying counting

process given the covariates is a nonhomogeneous Poisson process with the conditional mean

function given by (1). By ignoring the dependence of the cumulative counts within a subject,

they established the log pseudo-likelihood for (β,Λ),

lpsn (β,Λ) =
n∑
i=1

Ki∑
j=1

[
N(i)(T

(i)
Ki,j

) log Λ(T
(i)
Ki,j

) + N(i)(T
(i)
Ki,j

)βTZi (2)

− exp(βTZi)Λ(T
(i)
Ki,j

)
]
,

after omitting the additive terms that are independent of (β0,Λ0).
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Assuming that N(t) is (conditionally, given Z) a nonhomogeneous Poisson process and

using the conditional independence of the increments of N(t), Wellner and Zhang (2007) also

established the log likelihood for (β,Λ),

ln(β,Λ) =
n∑
i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log ∆ΛKi,j + ∆N(i)

Ki,j
βTZi − exp(βTZi)∆ΛKi,j

]
, (3)

where

∆N(i)
K,j = N(i)(T

(i)
K,j)− N(i)(T

(i)
K,j−1),

∆ΛK,j = Λ(T
(i)
K,j)− Λ(T

(i)
K,j−1),

for j = 1, 2, · · · , K.

As described in Zhang (2002) and Wellner and Zhang (2007), the semiparametric maxi-

mum pseudo-likelihood/likelihood estimation can be implemented in two steps based on the

profile likelihood method in which estimators of Λ0(t) are defined as nondecreasing step func-

tions with jumps only possibly occurring at the observation times. It is easy to compute the

semiparametric maximum pseudo-likelihood estimator, but the computation of the semipara-

metric maximum likelihood method is very time-consuming, especially when the sample is

large. Regardless of the underlying counting process, both likelihood-based semiparametric

approaches given in Wellner and Zhang (2007) are shown to be consistent and the asymptotic

normality of the estimators of β0 is established. The semiparametric maximum likelihood

method in general tends to be more efficient than its pseudo-likelihood counterpart, even

when the model is misspecified.

In this manuscript, we propose to estimate the baseline mean function using a monotone

polynomial spline instead of the step function, in order to alleviate the computation burden

and to achieve better rate of convergence in estimating the baseline function. The approach
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follows the idea of method of sieves in nonparametric maximum likelihood estimation, orig-

inally proposed by Geman and Hwang (1982).

For a finite closed interval [a, b], let T = {ti}mn+2l
1 , with

a = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = b,

be a sequence of knots that partition [a, b] into mn + 1 subintervals Ji = [tl+i, tl+i+1], for i =

0, . . . ,mn. Denote ϕl,t the class of polynomial splines of order l ≥ 1 with the knot sequence

T . The class ϕl,t can be linearly spanned by the B-spline basis functions {Bi, 1 ≤ i ≤ qn}

with qn = mn + l (Schumaker, 1981). Now, we define a subclass of ϕl,t,

ψl,t =

{
qn∑
i=1

αiBi : α1 ≤ · · · ≤ αqn

}
.

According to Theorem 5.9 of Schumaker (1981), ψl,t is a class of monotone nondecreasing

splines since the monotonicity of the B-splines is guaranteed by the nondecreasing order

of coefficients. We approximate the logarithm of smooth monotone baseline mean function

log Λ0(t) by
∑qn

i=1 αiBi(t) and estimate the coefficients α = (α1, α2, . . . , αqn) and regression

parameters β jointly through maximizing the approximated pseudo-likelihood and likelihood

subject to nondecreasing constraints, respectively.

Let α̂ps = (α̂ps1 , α̂
ps
1 , · · · , α̂psqn) and β̂psn be the values that maximize spline pseudo-likelihood,

lpsn (β, α) =
n∑
i=1

Ki∑
j=1

[
N(i)(T

(i)
Ki,j

)βTZi + N(i)(T
(i)
Ki,j

)

qn∑
l=1

αlBl(T
(i)
Ki,j

) (4)

− exp

{
βTZi +

qn∑
l=1

αlBl(T
(i)
Ki,j

)

}]
,

under constraints α1 ≤ α2 ≤ · · · ≤ αqn .
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Similarly, let α̂ = (α̂1, α̂1, · · · , α̂qn) and β̂n be the values that maximize spline likelihood,

ln(β, α) =
n∑
i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log ∆ΛKi,j + ∆N(i)

Ki,j
βTZi − exp(βTZi)∆ΛKi,j

]
, (5)

where

∆ΛKi,j = exp

(
qn∑
l=1

αlBl(T
(i)
Ki,j

)

)
− exp

(
qn∑
l=1

αlBl(T
(i)
Ki,j−1)

)
,

subject to the same constraints as above. We denote the spline pseudo-likelihood estimator

of Λ0(t) by Λ̂ps
n (t) = exp(

∑qn
j=1 α̂

ps
j Bj(t)) and the spline likelihood estimator of Λ0(t) by

Λ̂n(t) = exp(
∑qn

j=1 α̂jBj(t)), respectively.

We note that both the spline pseudo-likelihood and spline likelihood functions are concave

with respect to the unknown coefficients α1, α2. · · · , αqn and regression parameters β. So the

spline likelihood-based estimation problem is equivalent to a nonlinear convex programming

problem subject to linear inequality constraints. Specifically, the spline estimation problems

(4) and (5) can be formulated as the linear inequality constrained maximization problem

max
θ∈Θα×Rd

l(θ|X), (6)

where θ = (α, β) with α ∈ Θα = {α : α1 ≤ α2 ≤ · · · ≤ αqn}. Jamshidian (2004) proposed

a generalized gradient projection method for optimizing a nonlinear objective function with

linear inequality constraints, based on the generalized Euclidean metric ‖x‖ = xTWx with W

being a positive definite matrix and possibly varying from iteration to iteration. This method

essentially generalizes the algorithm proposed by Rosen (1960) and will be referred to as the

generalized Rosen algorithm throughout this manuscript. Zhang and Jamshidian (2004)

applied the generalized Rosen algorithm to large-scale nonparametric maximum likelihood

estimation problems by choosing W = DH , the matrix containing only the diagonal elements
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of the negative Hessian matrix H, in order to avoid the storage problem in updating H.

However, this will increase the number of iterations and thereby the computing time.

We use W = H directly because the dimension of unknown parameter space is usually

small in our applications due to the use of polynomial splines. The use of the full Hessian

matrix substantially reduces the number of iterations. As a result, the spline estimators are

expected to be much less computationally demanding than their alternatives proposed by

Wellner and Zhang (2007). We now describe the algorithm that was used in computing the

proposed spline estimators.

Let ˙̀(θ) and W be the gradient and negative Hessian matrix of the log pseudo-likelihood

or log likelihood with respect to θ, respectively. Let A = {i1, i2, · · · , im} denote the index set

of active constraints, i.e. αij = αij+1, for j = 1, 2, · · · ,m, during the numerical computation.

We define a working matrix corresponding to this set, given as follows:

A =


0 · · · −1 1 0 · · · · · · · · · 0
0 0 · · · · · · −1 1 · · · · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · −1 1 · · · 0


m×(qn+d)

,

where d is the dimension of regression parameter β. The generalized Rosen algorithm is

implemented in the following steps.

S0: (Computing the feasible search direction)

d =
(
I −W−1AT

(
AW−1AT

)−1
A
)
W−1 ˙̀(θ).

S1: (Forcing the updated θ fulfill the constraints) If the resulted direction d is not

nondecreasing in its components, compute

γ = min
i/∈A and di>di+1

(
−αi+1 − αi
di+1 − di

)
.
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Doing so guarantees that αi+1 + γdi+1 ≥ αi + γdi, for i = 1, 2, · · · , qn.

S2: (Step-Halving line search) Looking for a smallest integer k starting from 0 such

that

`
(
θ + (1/2)k d

)
> `(θ).

S3: (Updating the solution) If γ > (1/2)k, replace θ by θ̃ = θ + (1/2)k d and check the

stopping criterion (S5).

S4: (Updating the active constraint set) If γ ≤ (1/2)k, in addition to replace θ by

θ̃ = θ + γd, modify A by adding indexes of all the newly active constraints to A and

accordingly modify the working matrix A.

S5: (Checking the stopping criterion) If ‖d‖ ≥ ε for a small ε > 0, go to S0. Otherwise,

compute λ =
(
AW−1AT

)−1
AW−1 ˙̀(θ).

i. If λi ≤ 0 for all i ∈ A, set θ̂ = θ and stop.

ii. If at least one λi > 0 for i ∈ A, remove the index corresponding to the largest λi

from A, and update A and go to S0.

To initialize the algorithm, we choose α = (0, 0, 1, · · · , qn− 2)T1×qn and β = (0, · · · , 0)T1×d.

With this choice, A = (−1, 1, 0, · · · , 0)1×(qn+d). In our experience, the active constraint set

is usually identified in the first few iterations and no updates for A are needed thereafter.

3. ASYMPTOTIC RESULTS

In this section, we study the asymptotic properties of the spline pseudo-likelihood es-

timator (β̂psn , Λ̂
ps
n ) and the spline likelihood estimator (β̂n, Λ̂n). Let Bd and B denote the
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collection of Borel sets in Rd and R, respectively, and let B[0,τ ] = {B ∩ [0, τ ] : B ∈ B}.

Following Wellner and Zhang (2007), define the measures µ1, µ2, ν1, ν2, and γ as follows: for

B,B1, B2 ∈ B[0,τ ], and C ∈ Bd,

ν1(B × C) =

∫
C

∞∑
k=1

P (K = k|Z = z)
k∑
j=1

P (Tk,j ∈ B|K = k, Z = z)dF (z),

µ1(B) = ν1(B × Rd),

ν2(B1 ×B2 × C) =

∫
C

∞∑
k=1

P (K = k|Z = z)
k∑
j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k, Z = z)dF (z),

µ2(B1 ×B2) = ν2(B1 ×B2 × Rd),

γ(B) =

∫
Rd

∞∑
k=1

P (K = k|Z = z)P (Tk,k ∈ B|K = k, Z = z)dF (z).

We study the consistency and the rate of convergence in the L2-metrics d1 and d2, given

by

d1(ϑ1, ϑ2) =

{
|β2 − β1|2 +

∫
|Λ2(t)− Λ1(t)|2dµ1(t)

}1/2

,

d2(ϑ1, ϑ2) =

{
|β2 − β1|2 +

∫ ∫
|Λ1(u)− Λ1(v)− (Λ2(u)− Λ2(v))|2dµ2(u, v)

}1/2

,

where ϑi = (βi,Λi), for i =1 and 2, with Λ1,Λ2 ∈ F = {Λ : Λ is monotone nondecreas-

ing, Λ(0) = 0}.

Let

σ = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ

be a sequence of knots with mn = O(nν), for 0 < ν < 1/2. To study the asymptotic

properties of the spline estimators, we need to allocate the knots properly and assume the

smoothness of the true baseline mean function.

C1: The maximum spacing of the knots, ∆ ≡ max
l+1≤i≤mn+l+1

|ti − ti−1| = O(n−ν). More-
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over, there exists a constant M > 0 such that ∆/δ ≤ M uniformly in n, where

δ = min
l+1≤i≤mn+l+1

|ti − ti−1|.

C2: The true baseline mean function Λ0 has a bounded rth derivative in [0, τ ] with r ≥ 1.

Moreover, the first derivative has a positive lower bound in [0, τ ]. That is, there exists

a constant C0 > 0 such that Λ′0(t) ≥ C0, for t ∈ [0, τ ].

Some regularity conditions for observation schemes and underlying counting process pro-

vided in Wellner and Zhang (2007) are also needed in this project.

C3: The parameter space of β, R, is bounded and convex on Rd and the true parameter

ϑ0 = (β0,Λ0) ∈ Ro ×F , where Ro is the interior of R.

C4: The measure µi × F is absolutely continuous with respect to νi, for i = 1, 2, and

E(K) <∞.

C5: There exists a z0 such that P (|Z| ≤ z0) = 1. That is, the covariate vector is uniformly

bounded.

C6: For all a ∈ Rd, a 6= 0, and c ∈ R, P (aTZ 6= c) > 0.

C7: (a) The function Mps
0 (X) =

∑K
j=1 NKj log(NKj) satisfies PMps

0 (X) < ∞. (b) The

function M0(X) =
∑K

j=1 ∆NKj log(∆NKj) satisfies PM0(X) <∞.

C8: There exists a positive integer M0 such that P (K ≤ M0) = 1. That is, the number of

observations is finite.

C9: E
{
eCN(t)

}
is uniformly bounded in [0, τ ]. The τ can be viewed as the termination time

in a follow-up study.
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C10: The observation time points are s0−separated. That is, there exists a constant s0 such

that P (TK,j − TK,j−1 ≥ s0) = 1, for all j = 1, 2, · · · , K.

Remark 1. C1 is similar to those required by Stone (1986) and Zhou, Shen, and Wolfe (1998).

C2 is standard in the literature of nonparametric smoothing estimation. C3 is a common

assumption in semiparametric estimation problems. C4 and C6 are needed to establish

the identifiability of the semiparametric model. The conditions related to the observation

schemes, C5, C8 and C10 are mild and are easily justified in many applications. C9 holds if

the underlying counting process is uniformly bounded which is often true in real life problems,

or if it is a Poisson or mixed Poisson process conditional on covariates.

Remark 2. C7(a) and C7(b) are used in the proof of consistency for the pseudo-likelihood

estimator (β̂psn , Λ̂
ps
n ) and the likelihood estimator (β̂n, Λ̂n), respectively. C10 is only needed

for likelihood estimator.

Theorem 1 (Consistency). Suppose that C1 - C9 hold and the counting process N satisfies the

proportional mean regression model (1). Then, for every 0 < b < τ for which µ1([b, τ ]) > 0,

lim
n→∞

d1((β̂psn , Λ̂
ps
n 1[0,b]), (β0,Λ01[0,b])) = 0,

in probability. In particular, if µ1({τ}) > 0, then

lim
n→∞

d1((β̂psn , Λ̂
ps
n ), (β0,Λ0)) = 0,

in probability. In addition, if C10 holds, then, for every 0 < b < τ for which γ([b, τ ]) > 0,

lim
n→∞

d2((β̂n, Λ̂n1[0,b]), (β0,Λ01[0,b])) = 0,

in probability. In particular, if γ({τ}) > 0, then

lim
n→∞

d2((β̂n, Λ̂n), (β0,Λ0)) = 0,
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in probability.

Remark 3. The metrics d1 and d2 are closely related. By Lemma 8.1 of Wellner and Zhang

(2000), the two metrics are equivalent under C8, and therefore the consistency and rate of

convergence results (shown below) for maximum likelihood estimator (β̂n, Λ̂n) hold for metric

d1 as well.

To derive the rate of convergence and asymptotic normality of the estimators of regression

parameters, we need to assume the following three additional conditions.

C11: There exists an interval O[T ] = [σ, τ ] with σ > 0 such that Λ0(σ) > 0 and

P
(
∩Kj=1{TKj ∈ [σ, τ ]}

)
= 1.

C12: There exists η ∈ (0, 1) such that aTV ar(Z|U)a ≥ ηaTE(ZZT |U)a a.s., for all a ∈ Rd.

C13: There exists η ∈ (0, 1) such that aTV ar(Z|U, V )a ≥ ηaTE(ZZT |U, V )a a.s., for all

a ∈ Rd.

Theorem 2 (Rate of Convergence). In addition to C1-C9, suppose C11 and C12 hold. If ν

is chosen to be 1/(1 + 2r), then

nr/(1+2r)d1((Λ̂ps
n , β̂

ps
n ), (Λ0, β0)) = Op(1).

Moreover, under C1-C11 and C13, it follows that

nr/(1+2r)d2((Λ̂n, β̂n), (Λ0, β0)) = Op(1).

Remark 4. The justifications for these three additional conditions were given in Wellner

and Zhang (2007). Theorem 2 indicates that the spline estimators can have a higher rate
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of convergence than the semiparametric estimators studied in Wellner and Zhang (2007), if

the baseline mean function is sufficiently smooth, because r/(1 + 2r) ≥ 1/3 when r ≥ 1.

Theorem 3 (Asymptotic Normality). Under the conditions listed in Theorem 2, the estima-

tors β̂psn and β̂n are asymptotically normal and

√
n(β̂psn − β0) →d N(0, (Aps)−1Bps(ApsT )−1) ≡d N (0,Σps) ,

√
n(β̂n − β0) →d N(0, A−1B(AT )−1) ≡d N (0,Σ) ,

where

Aps = E


K∑
j=1

Λ0(TKj)e
βT0 Z

[
Z − E(Zeβ

T
0 Z |K,TK,j)

E(eβ
T
0 Z |K,TK,j)

]⊗2
 ,

Bps = E


K∑

j,j′=1

Cps
j,j′(Z)

[
Z − E(Zeβ

T
0 Z |K,TK,j)

E(eβ
T
0 Z |K,TK,j)

][
Z − E(Zeβ

T
0 Z |K,TK,j′)

E(eβ
T
0 Z |K,TK,j′)

]T ,

A = E


K∑
j=1

∆Λ0(TKj)e
βT0 Z

[
Z − E(Zeβ

T
0 Z |K,TK,j−1, TK,j)

E(eβ
T
0 Z |K,TK,j−1, TK,j)

]⊗2
 ,

B = E


K∑

j,j′=1

Cj,j′(Z)

[
Z − E(Zeβ

T
0 Z |K,TK,j, TK,j′)

E(eβ
T
0 Z |K,TK,j, TK,j′)

]⊗2
 ,

with

Cps
j,j′(Z) = Cov(N(TKj),N(TKj′)|Z,K, TK,j, TK,j′)

and

Cj,j′(Z) = Cov(∆N(TKj),∆N(TKj′)|Z,K, TK).

Remark 5. Although the overall rate of convergence for the pseudo-likelihood estimator

(β̂psn , Λ̂
ps
n ) and likelihood estimator (β̂n, Λ̂n) are nr/(1+2r) < n1/2, the rate of convergence

for β̂psn and β̂n are still n1/2. Theorem 3 shows that the spline estimators of β0 and their
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alternatives proposed by Wellner and Zhang (2007) are asymptotically equivalent. The proofs

of these theorems are sketched in the Appendix.

4. SIMULATION STUDIES

Two Monte Carlo simulation studies are carried out to compare the statistical prop-

erties and computational complexity between the spline estimators and their alternatives

studied in Wellner and Zhang (2007), and to demonstrate the robustness of the proposed

methods as well. The data are simulated in the same manner as in Zhang (2002). In

each simulation study, we generate n independently and identically distributed observations

{(Ki, Ti,N(i), Zi) : i = 1, 2, . . . , n} with Zi = (Zi1, Zi2, Zi3). For each subject i, the data

are generated by the following schemes: Zi1 ∼ Uniform(0,1), Zi2 ∼ N(0, 1), and Zi3 ∼

Bernoulli(0.5); Ki is randomly sampled from a discrete uniform distribution {1, 2, 3, 4, 5, 6};

Given Ki, the random panel observation times Ti = (T
(i)
Ki,1

, . . . , T
(i)
Ki,Ki

) are Ki ordered random

draws from Uniform(0,10) and rounded to the second decimal point to make the observation

times possibly tied. The two simulations differ in the methods of generating the panel counts

N(i) = {N(i)(T
(i)
Ki,1

), . . . ,N(i)(T
(i)
Ki,Ki

)}, given (Ki, Ti). They are described as follows:

Simulation 1. The panel counts are generated from a Poison process with conditional mean

function E(N(t)|Z) = 2teβ
T
0 Z . That is,

N(i)(T
(i)
Ki,j

)− N(i)(T
(i)
Ki,j−1) ∼ Poisson{2(T

(i)
Ki,j
− T (i)

Ki,j−1) exp(βT0 Zi)},

for j = 1, 2, . . . , Ki, where β0 = (β1, β2, β3)T = (−1.0, 0.5, 1.5)T . Under this simulation

setting, we can directly compute the asymptotic covariance matrices stated in Theorem 3,

Σps = (Aps)−1Bps((Aps)−1)T =
29

315
Ω−1
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and

Σ = A−1B(A−1)T = A−1 =
42

617
Ω−1,

where Ω = E{eβT0 Z [Z − E(Zeβ
T
0 Z)/E(eβ

T
0 Z)]⊗2}. A direct calculation of Ω results in

Σps =

 0.591151 0.000000 0.000000
0.000000 0.046894 0.000000
0.000000 0.000000 0.314416


and

Σ =

 0.437094 0.000000 0.000000
0.000000 0.034673 0.000000
0.000000 0.000000 0.232478

 .

Simulation 2. The panel counts are generated from a mixed Poisson process. We first

generate a random sample γ1, γ2, . . . , γn ∼ {−0.4, 0, 0.4} with pr(γi = −0.4) = pr(γi = 0.4)

= 1/4 and pr(γi = 0) = 1/2, for i = 1, 2, . . . , n. Given γi, the panel counts for the ith subject

are generated according to Poisson{(2 + γi)t exp(βT0 Zi)}. That is,

N(i)(T
(i)
Ki,j

)− N(i)(T
(i)
Ki,j−1)|γi ∼ Poisson{(2 + γi)(T

(i)
Ki,j
− T (i)

Ki,j−1) exp(βT0 Zi)},

for j = 1, 2, . . . , Ki. This counting process given only the covariates is not a Poisson process.

However, the conditional mean given covariates still satisfy the proportional mean model (1)

with Λ0(t) = 2t and thus the proposed method is expected to be valid in this scenario as

well. The asymptotic covariance matrices in Theorem 3 for this simulation setting are given

by

Σps = (Aps)−1Bps((Aps)−1)T =
29

315
Ω−1 +

2

75
Ω−1Ω̃(Ω−1)T

and

Σ = A−1B(A−1)T = A−1 =
42

617
Ω−1 +

8383.2

6172
Ω−1Ω̃(Ω−1)T ,

where Ω̃ = E{e2βT0 Z [Z −E(Zeβ
T
0 Z)/E(eβ

T
0 Z)]⊗2}. A direct calculation of Ω̃ along with the Ω

17



calculated above leads to

Σps =

 1.207044 −0.024428 −0.044223
−0.024428 0.111885 0.023531
−0.044223 0.023531 0.462607


and

Σ =

 0.945694 −0.020173 −0.036519
−0.020173 0.088343 0.019432
−0.036519 0.019432 0.354853

 .

In these two simulations, the cubic B-splines are used in computing the spline estimators.

Let Tmin and Tmax be the respective minimum and maximum values of the collection of total

distinct observation times in the data. The interval [Tmin, Tmax] is equally divided into mn+1

subintervals, in which mn is selected as the cubic root of the number of distinct observation

times plus 1. Hence, the spacing of the knots ∆i = ti − ti−1 is proportional to n−1/3, for

i = l + 1, l + 2, . . . ,mn + l + 1, and C1 listed in Section 3 automatically satisfies. In our

studies, we generate 1000 Monte Carlo samples with n = 50 and 100, respectively, for each

scenario.

To compare the estimators for Λ0(t) in detail, we calculate the estimates of Λ0(t) at the

time-points t = 1.5, 2.0, 2.5, . . . , 9.5. For Simulation 1, the square of pointwise biases and

the pointwise mean squared errors at these time-points for n = 50 and 100, respectively,

are plotted in Fig.1. From the graph, we can see that the biases of the four estimators are

clearly negligible compared to the mean squared errors, and the pointwise mean squared

errors of the spline estimators are smaller than their alternatives. The spline likelihood

estimator appears to be the most efficient one among the four. When sample size doubles,

the pointwise mean squared errors drop substantially, which indicates the consistency of

these estimators. The results of the Monte Carlo study for the regression parameters are

summarized in Table 1, we find that the biases for all estimators of β0 are small, and the

Monte Carlo standard deviations of the spline estimators are almost identical to those of their
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alternatives, which are consistent with the asymptotic results given in Theorem 3. Similar

to their alternatives proposed in Wellner and Zhang (2007), the spline likelihood estimators

of β0 are more efficient than the spline pseudo-likelihood estimators. Moreover, the standard

errors calculated based on Theorem 3 are close to the Monte Carlo standard deviations for

all estimators and hence the use of asymptotic results in applications with moderate sample

size is justified.

For Simulation 2, the finite-sample study is similarly conducted. The results are displayed

in Table 2 and Fig.2. The same patterns as those in Simulation 1 are observed. The Monte

Carlo standard deviations of the likelihood estimators of both Λ0(t) and β0 are smaller than

those of the pseudo-likelihood estimators, and the biases for all estimators are negligible.

Again, the spline estimators for Λ0 have smaller mean square errors than their alternatives

studied in Wellner and Zhang (2007), and the spline estimators of β0 behave the same as their

alternatives asymptotically. The standard errors calculated based on the asymptotic theory

are all close to the Monte Carlo standard deviations. This simulation also reinforces the

conclusion made in Wellner and Zhang (2007) that the likelihood method based on Poisson

process is robust again the underlying counting process. However, the mean squared errors

of the estimators of both Λ0 and β0 increase when the Poisson process model is misspecified

for the true underlying counting process.

We also compare the computing time among the four estimators and summarize the re-

sults in Table 3. The computational advantage of the spline estimators over their alternatives

in Wellner and Zhang (2007) is remarkable, especially for the case of likelihood estimation.

This advantage makes the bootstrap procedure for estimating the standard errors of the

spline-based maximum likelihood estimates of β0 feasible in practice.
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To assess the inference performance, the coverage probabilities of 95% confidence intervals

for β0 with both Poisson and mixed Poisson processes are obtained with 1000 Monte Carlo

samples. For each Monte Carlo sample, the standard errors of the estimates of β0 are

estimated by the bootstrap standard deviation with 1000 replications, and then the Wald-

95% confidence intervals are constructed. Table 4 exhibits the right coverage probabilities

of 95% confidence intervals with sample 50 and 100, respectively. Although we used 1000

replications in bootstrap for this study, we actually found out that the bootstrap method with

only 100 replications yields reasonable estimates of the standard errors for this application.

This finding supports the statement about the number of bootstrap samples needed to yield

a valid estimate of standard error given by Efron and Tibshirani (1993).

As a concluding remark, the proposed spline semiparametric bootstrap inference proce-

dure is a sound practical method for applications with moderate sample size.

5. A REAL EXAMPLE: BLADDER TUMOR TRAIL

The proposed methods are illustrated using the bladder tumor data described in the

introduction (Andrews and Herzberg, 1985, p.250-60). In this randomized clinical trial,

a total of 116 patients were randomly assigned into one of three treatment groups, 40 to

placebo, 31 to pyridoxine, and 38 to thiotepa. The number of follow-ups and follow-up times

varied greatly from patient to patient.

To investigate the efficacy of the two treatments (pyridoxine pill and thiotepa installation)

on suppressing the recurrences of bladder tumors, we use the proportional mean model

proposed by Sun and Wei (2000) and Wellner and Zhang (2007),

E{N(t)|Z} = Λ0(t) exp(β1Z1 + β2Z2 + β3Z3 + β4Z4),
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where Z1 and Z2 represent number and largest size of bladder tumors at beginning of the trial;

and Z3 and Z4 are the indicators for pyridoxine pill and thiotepa installation, respectively.

For this example only the spline estimators of regression parameters are calculated. The

bootstrap procedure is applied to estimate the standard errors. The results of inference

based on 1000 bootstrap samples are summarized in Table 5.

Both the spline pseudo-likelihood method and spline likelihood method yield the same

conclusion that the individuals with more tumors at baseline tend to have more recurrent

tumors with p-values 0.012 and 0.01, respectively. On average, for each additional tumor

at the baseline, the number of recurrent tumors will increase by 15.6% or 23% using the

pseudo-likelihood method or the likelihood method, respectively. The thiotepa treatment

significantly suppresses the recurrence of tumors with p-values 0.015 and 0.019 based on the

pseudo-likelihood method and likelihood method, respectively. On average, the number of

recurrent tumors for thiotepa group is 50% or 45% of that for control group by the pseudo-

likelihood method or likelihood method, adjusting for the baseline tumor number and size.

These conclusions are consistent with those made in Wellner and Zhang (2007).

6. FINAL REMARKS AND FURTHER PROBLEMS

The monotone spline semiparametric methods have the advantage over the methods proposed

by Wellner and Zhang (2007) in terms of the computing efficiency and the convergence rate

of the estimators of the infinite dimensional parameter Λ0(t). Meanwhile, the estimates of

regression parameters β0 in the spline methods have the same asymptotic distributions as

their alternatives proposed in Wellner and Zhang (2007). Furthermore, the ease of com-

puting spline estimators makes the statistical inference based on the bootstrap procedure
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feasible in practice. The proposed spline method provides a practical approach for semipara-

metric regression analysis with panel count in which joint estimation of the nonparametric

component and parametric regression parameters is a challenging task.

We have used the pre-specified partition for monotone polynomial splines. It would be

preferable to adaptively select the number and spacings of the knots such as using the penal-

ized likelihood method. One may also explore other models such as additive and additive-

multiplicative mean model instead of proportional mean model (1). In this manuscript, we

assume the number of observation and observation times (K,T ) given covariates Z are in-

dependent of the underlying counting process N. This assumption may not be realistic in

some applications, since patients with rapid disease progression may tend to visit the clinics

more often. Therefore, it is worthwhile to extend our methods to such applications.

APPENDIX: PROOFS AND TECHNICAL DETAILS

The proofs for asymptotic results are sketched here. The empirical process theory is the

major technical tool to prove the asymptotic results. The notations used in this section

follow those given in van der Vaart and Wellner (1996), Huang (1996, 1999), and Wellner

and Zhang (2007). Here we only sketch the proofs for the spline pseudo-likelihood estimator,

since the proofs for the spline likelihood estimator are basically parallel.

Let N[ ](ε, φl,t, L2(µi)), i = 1, 2, be the bracketing number of ε-brackets with metric L2(µi)

needed to cover the class φl,t which is defined in van der Vaart and Wellenr (1996). Using

the bracketing number theorem developed in Shen and Wong (1994, p.597), we have the

following technical lemma which will be used extensively in our proofs.

Lemma A1. Assume ψl,t is the set of all monotone polynomial splines with order l and
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sequence T = {ti}mn+2l
1 . Then, for any η > 0 and ε ≤ η,

logN[ ](ε, ψl,t, L2(µi)) ≤ cqn log(η/ε),

for i = 1, 2 and a positive constant c, where qn = mn + l is the number of spline basis

functions.

Proof of Theorem 1 (Consistency)

LetXi = (Ki, Ti,N(i), Zi), i = 1, 2, · · · , n, be n independently and identically distributed

copies of X = (K,T,N, Z). The pseudo-likelihood for ϑ = (β,Λ) can be rewritten as

mps
n (ϑ) =

n∑
i=1

Ki∑
j=1

[
N(i)(T

(i)
Ki,j

) log{Λ(T
(i)
Ki,j

) exp(βTZi)} − Λ(T
(i)
Ki,j

) exp(βTZi)
]
.

Let Mps
n (ϑ) = Pnmps

ϑ (X) = 1
n
mps
n (ϑ) and Mps(ϑ) = Pmps

ϑ (X), where

mps
ϑ (X) =

K∑
j=1

{N(TK,j) log Λ(TK,j) + N(TK,j)β
TZ − Λ(TK,j) exp(βTZ)}.

Wellner and Zhang (2007) showed that Mps(ϑ0) ≥ Mps(ϑ) and Mps(ϑ0) = Mps(ϑ) if and

only if β = β0 and Λ(u) = Λ0(u) a.e. with respect to µ1 for true parameters ϑ0 = (β0,Λ0)

by C2 and C6.

Let T = {ti}mn+2l
i=1 with

σ = t1 = · · · tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ

be a sequence of knots with qn = mn + l = O(nν), for 0 < ν < 1/2. There exists a

monotone spline Λn ∈ ψl,t with order l ≥ r + 2 and knots T such that ‖Λn − Λ0‖∞ =

sup
t∈[σ,τ ]

|Λn(t)− Λ0(t)| = O(n−νr) by Lemma A1 of Lu, Zhang, and Huang (2007).
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Dominated Convergence Theorem and C7(a) yield that Mps(ϑ) is continuous in ϑ. There-

fore, for any arbitrary ε > 0, there exists Λ∗0 ∈ ψl,t such that Mps(β0,Λ0)− ε ≤ Mps(β0,Λ
∗
0)

with ‖Λ0 − Λ∗0‖∞ = o(1).

Using the similar arguments as those in Wellner and Zhang (2007), we can show that

spline pseudo-likelihood estimator Λ̂ps
n (t) is uniformly bounded in probability for t ∈ [0, b] if

µ1[b, τ ] > 0 for some 0 < b < τ or for t ∈ [0, τ ] if µ1({τ}) > 0.

Lemma A1 guarantees that ψl,t is compact. Then by Helly-Selection Theorem and com-

pactness of R × ψl,t, it concludes that ϑ̂psn = (β̂psn , Λ̂
ps
n ) has a subsequence ϑ̂psnk = (β̂psnk , Λ̂

ps
nk

)

converging to ϑ+ = (β+,Λ+), where Λ+ is a nondecreasing function on [σ, τ ].

Note that ψl,t is compact, and the function ϑ 7→ mps
ϑ (x) is upper semicontinuous in ϑ for

almost all x. Furthermore, mps
ϑ (X) ≤Mps

0 (X) with PMps
0 (X) <∞ by C7(a). Thus, Lemma

A.1 (One-sided Gilvenko-Cantelli Theorem) of Wellner and Zhang (2000) yields

lim sup
n→∞

sup
ϑ∈R×ψl,t

(Pn − P )mps
ϑ (x) ≤ 0 a.s. (A1)

Next, we show that Mps
n (β0,Λ

∗
0)−Mps(β0,Λ

∗
0) = op(1). Define the class

N ps
η = {mps

(β0,Λ)(X)−mps
(β0,Λ0)(X) : Λ ∈ ψl,t and ‖Λ− Λ0‖L2(µ1) ≤ η}.

It easy to show that N ps
η is a Donsker class by C2, C8, C9, and Lemma A1. Cauchy-Schwarz

inequality and C5, C8, and C9 yield

P
(
mps

(β0,Λ)(X)−mps
(β0,Λ0)(X)

)2

≤ CP

K∑
j=1

(Λ(TK,j)− Λ0(TK,j))
2 ≤ cη2,

for Λ ∈ ψl,t and ‖Λ− Λ0‖L2(µ1) ≤ η.
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It is followed that, for the seminorm ρP (f) = {P (f − Pf)2}1/2,

sup
f∈N psη

ρP (f) ≤ sup
f∈N psη

{Pf 2}1/2 ≤ cη → 0,

as η → 0. Due to Corollary 2.3.13 of van der Vaart and Wellner (1996) (the relationship

between P−Donsker and asymptotic equicontinuity), we have

(Pn − P )(mps
(β0,Λ∗)

(X)−mps
(β0,Λ0)(X)) = op(n

−1/2).

Furthermore, (Pn − P )mps
(β0,Λ0)(X) = op(1) due to the Central Limit Theorem. Thus,

Mps
n (β0,Λ

∗
0)−Mps(β0,Λ

∗
0) = op(1).

Moreover, Mps
n (β0,Λ

∗
0) ≤Mps

n (β̂psn , Λ̂
ps
n ), and it follows that

Mps(β0,Λ0)− ε ≤Mps(β0,Λ
∗
0) = Mps

n (β0,Λ
∗
0) + op(1) ≤Mps

n (β̂psn , Λ̂
ps
n ) + op(1).

Inequality (A1) yields

lim sup
nk→∞

(Pn − P )mps

ϑ̂psnk
(X) ≤ lim sup

nk→∞
sup

ϑ∈R×ψl,t
(Pn − P )mps

ϑ (X) ≤ 0.

It follows that

Mps(β0,Λ0)− ε ≤ lim sup
nk→∞

Mps
n (ϑ̂psnk) ≤ lim sup

nk→∞
Mps(ϑ̂psnk) = Mps(ϑ+)

in probability. The continuity of Mps, ϑ̂psnk → ϑ+, and Dominated Convergence Theorem

yield the last limit. Hence, for any ε > 0, −ε ≤ Mps(ϑ+) −Mps(ϑ0) ≤ 0. This implies that

Mps(ϑ+) = Mps(ϑ0). It follows that β0 = β+ and Λ0(u) = Λ+(u) a.e. Since this is true for

any convergent subsequence, we conclude that all the limits of subsequence of ϑ̂psn are equal

to ϑ0 a.e. This implies that limn→∞ Λ̂ps
n (u) = Λ0(u) in probability. Since Λ̂ps

n is uniformly

bounded for t ∈ [0, b] if µ1[b, τ ] > 0 for some 0 < b < τ or for t ∈ [0, τ ] if µ1(τ) > 0, the

Dominated Convergence Theorem yields the weak consistency of (β̂psn , Λ̂
ps
n ) in the metric d1.
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Proof of Theorem 2 (Rate of Convergence)

The proof of the rate of convergence is based on Theorem 3.2.5 of van der Vaart and

Wellner (1996). For any ϑ in a sufficiently small neighborhood of ϑ0, Wellner and Zhang

(2007) showed that Mps(ϑ0)−Mps(ϑ) ≥ Cd2
1(ϑ, ϑ0), for C > 0. Therefore, the first condition

of Theorem 3.2.5 of van der Vaart and Wellner (1996) holds.

For any η > 0, define the class

Fpsη = {Λ|Λ ∈ ψl,t, ‖Λ− Λ0‖L2(µ1) ≤ η}.

By Theorem 1, Λ̂ps
n ∈ Fpsη , for any η > 0 and sufficiently large n.

Next, define the class

Mps
η = {mps

ϑ (X)−mps
ϑ0

(X) : Λ ∈ Fpsη and d1(ϑ, ϑ0) ≤ η}.

With C2, C4, C5, C8, C9, and the result of Lemma A1, for any ε ≤ η, we can have

logN[ ](ε,Mps
η , || · ||P,B) ≤ cqn log(η/ε),

where ‖ · ‖P,B is the Bernstein Norm defined as ‖f‖P,B = {2P (e|f | − 1− |f |)}1/2 by van der

Vaart and Wellner (1996, p. 324). Moreover, some algebraic calculations lead to ||Mps(ϑ)−

Mps(ϑ0)||2P,B ≤ Cη2, for any mps
ϑ (X) −mps

ϑ0
(X) ∈ Mps

η . Therefore, by Lemma 3.4.3 of van

der Vaart and Wellner (1996), we obtain

EP ||n1/2(P− P )||Mps
η
≤ CJ[ ](η,Mps

η , || · ||P,B)

{
1 +

J[ ](η,Mps
η , || · ||P,B)

η2n1/2

}
, (A2)

where

J[ ](η,Mps
η , || · ||P,B) =

∫ η

0

{1 + logN[ ](ε,Mps
η , || · ||P,B)}1/2dε ≤ c0qn

1/2η.
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The right hand side of (A2) yields φn(η) = C(qn
1/2η+qn/n

1/2). It is easy to see that φn(η)/η

is decreasing in η, and

r2
nφn(

1

rn
) = rnqn

1/2 + r2
nqn/n

1/2 ≤ 2n1/2,

for rn = n(1−ν)/2 and 0 < ν < 1/2. Hence, n(1−ν)/2d1(ϑ̂psn , ϑ0) = Op(1) by Theorem 3.2.5 of

van der Vaart and Wellner (1996). The choice of ν = 1/(1+2r) yields the rate of convergence

of nr/(1+2r) which completes the proof.

Proof of Theorem 3 (Asymptotic Normality)

We show the normality by checking the assumptions A1 - A6 of Theorem 6.1 of Wellner

and Zhang (2007). This theorem is a generalization of a result of Huang (1996). The

rate of convergence given in Theorem 2 guarantees the assumption A1 holds with γ >

1/3. Assumptions A2, A3, A5 and A6 only depend on the model and verification of these

assumptions in the likelihood-based methods for panel count data has been done in Wellner

and Zhang (2007). Here, we only need to verify Assumption A4 for the spline pseudo-

likelihood method, that is,

S1n(β̂psn , Λ̂
ps
n ) = Pn

K∑
j=1

Z(NKj − Λ̂ps
nKj exp(β̂psTn Z)) = op(n

−1/2),

S2n(β̂psn , Λ̂
ps
n )[h∗] = Pn

K∑
j=1

(
NKj

Λ̂ps
nKj

− exp(β̂psTn Z)

)
h∗Kj = op(n

−1/2),

where

h∗Kj = Λ0Kj
E(Zeβ

T
0 Z |K,TK,j)

E(eβ
T
0 Z |K,TK,j)

,

with Λ0Kj = Λ0(TKj) and Λ̂ps
nKj = Λ̂ps

n (TKj).
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Since β̂psn satisfies the pseudo-score equation, it follows that

S1n(β̂psn , Λ̂
ps
n ) = Pn

K∑
j=1

Z(NKj − Λ̂ps
nKj exp(β̂psTn Z)) = 0.

The first part of A4 holds. Therefore, we only need to verify

S2n(βpsn ,Λ
ps
n )[h∗] = op(n

−1/2).

Since (β̂psn , Λ̂
ps
n ) maximizes Pnmps

ϑ (x) over the feasible region, for ϑε = (β̂psn , Λ̂
ps
n + εh) with

any h ∈ ψl,t, we have

lim
ε↓0

d

dε
Pnmps

ϑε
(X)

= Pn
K∑
j=1

lim
ε↓0

d

dε

[
NKj log(Λ̂nKj + εh) + NKjβ̂

psT
n Z − exp(β̂psTn Z)(Λ̂ps

nKj + εh)
]

= Pn
K∑
j=1

[
NKj

Λ̂ps
nKj

− exp(β̂psTn Z)

]
h = 0.

Take h = Λ̂ps
nKjαKj with αKj =

E(Z exp(βT0 Z)|K,TKj)
E(exp(βT0 Z)|K,TKj)

. We have

Pn

[
K∑
j=1

1

Λ̂ps
nKj

{
NKj − Λ̂ps

nKj exp(β̂psTn Z)
}

Λ̂ps
nKjαKj

]
= 0.

Thus, to show

S2n(β̂psn , Λ̂
ps
n )[h∗] = Pn

[
K∑
j=1

1

Λ̂ps
nKj

{NKj − Λ̂ps
nKj exp(β̂psTn Z)}Λ0KjαKj

]
= op(n

−1/2),

it is equivalent to show that

I = Pn

[
K∑
j=1

1

Λ̂ps
nKj

{NKj − Λ̂ps
nKj exp(β̂psTn Z)}(Λ0Kj − Λ̂ps

nKj)αKj

]
= I1 − I2 + I3 = op(n

−1/2),

28



where

I1 = (Pn − P )

[
K∑
j=1

NKj

Λ̂ps
nKj

(Λ0Kj − Λ̂ps
nKj)αKj

]
,

I2 = (Pn − P )

[
K∑
j=1

exp(β̂psTn Z)(Λ0Kj − Λ̂ps
nKj)αKj

]
,

I3 = P

[
K∑
j=1

1

Λ̂ps
nKj

{NKj − Λ̂ps
nKj exp(β̂psTn Z)}(Λ0Kj − Λ̂ps

nKj)αKj

]
.

Next we show that I1, I2, and I3 are all op(n
−1/2).

Let

Φps
1 (η) =

{
K∑
j=1

NKj

ΛKj

(Λ0Kj − ΛKj)αKj : Λ ∈ ψl,t and ‖Λ− Λ0‖L2(µ1) ≤ η

}
.

It is easy to show that Φps
1 (η) is a Donsker class by C2, C8, C9, and C11. Cauchy-Schwarz

inequality in addition to C2, C8, C9, and C11 yield

P

(
K∑
j=1

NKj

ΛKj

(Λ0Kj − ΛKj)αKj

)2

< CP
K∑
j=1

(Λ0Kj − ΛKj)
2 < Cη2,

for Λ ∈ ψl,t and ‖Λ − Λ0‖L2(µ1) ≤ η. It is followed that, for the seminorm ρP (f) = {P (f −

Pf)2}1/2,

sup
f∈Φps1 (η)

ρP (f) ≤ sup
f∈Φps1 (η)

{Pf 2}1/2 ≤ cη → 0

as η → 0. Due to Corollary 2.3.13 of van der Vaart and Wellner (1996), we have I1 =

op(n
−1/2).

Next, Let

Φps
2 (η) =

{
K∑
j=1

exp(βTZ)(Λ0Kj − ΛKj)αKj : Λ ∈ ψl,t and d1(ϑ, ϑ0) ≤ η

}
.
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C5, C8, and C11 along with the assumption that R is compact yield Φps
2 (η) is a Donsker

class. Moreover, by conditions C5, C8, C11, and Cauchy-Schwarz inequality, we have

P

(
K∑
j=1

exp(βTZ)(Λ0Kj − ΛKj)αKj

)2

< CP
K∑
j=1

(Λ0Kj − ΛKj)
2 < Cη2,

for Λ ∈ ψl,t and d1(ϑ, ϑ0) ≤ η. Therefore, due to Corollary 2.3.13 of van der Vaart and

Wellner (1996), I2 = Op(n
−1/2).

The quantity I3 equals

P

K∑
j=1

1

Λ̂ps
nKj

{Λ0Kj exp(βT0 Z)− Λ̂ps
nKj exp(β̂psTn Z)}(Λ0Kj − Λ̂ps

nKj)αKj

= P
K∑
j=1

1

Λ̂ps
nKj

(Λ0Kj − Λ̂ps
nKj)

2 exp(βT0 Z)αKj + P
K∑
j=1

(exp(βT0 Z)− exp(β̂psTn Z))(Λ0Kj − Λ̂ps
nKj)αKj.

Because Λ̂ps
nKj is uniformly bounded in probability as shown in the proof for consistency, by

C5, C8, and C11, we have

P
K∑
j=1

1

Λ̂ps
nKJ

(Λ0Kj − Λ̂ps
nKj)

2 exp(βT0 Z)αKj ≤ C1

K∑
j=1

(Λ0Kj − Λ̂ps
nKj)

2.

Performing Taylor expansion of exp(β̂psTn Z) at β = β0, we have

exp(β̂psTn Z)− exp(βT0 Z) = exp(ξTZ)(β̂psTn Z − βT0 Z),

where ξ is between β̂psn and βT0 . By Conditions C5, C8, and C11, we have

P

K∑
j=1

(exp(βT0 Z)− exp(β̂psTn Z))(Λ0Kj − Λ̂ps
nKj)αKj

≤ CP
K∑
j=1

(βT0 Z − β̂psTn Z)(Λ0Kj − Λ̂ps
nKj)

≤ C

K∑
j=1

P (β̂psn − β0)TZTZ(β̂psn − β0) + CP

K∑
j=1

(Λ0Kj − Λ̂ps
nKj)

2.
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The last inequality holds due to Cauchy-Schwarz inequality.

Hence,

I3 ≤ C|β̂psn − β0|2 + CE
K∑
j=1

(Λ0Kj − Λ̂ps
nKj)

2 = Cd2
1((Λ̂ps

n , β̂
ps
n ), (Λ0, β0)).

Finally, the rate of convergence yields I3 = op(n
−1/2).

REFERENCES

Andrews, D. F., and Herzberg, A. M. (1985), Data; A Collection of Problems from Many

Fields for the Students and Research Works, New York: Springer-Verlag.

Byar, D. P. (1980), “The Veterans Administration Study of Chemoprophylaxis for Recurrent

Stage I Bladder Tumors: Comparisons of Placebo, Pyridoxine, and Topical Thiotepa,” In

Bladder Tumors and Other Topics in Urological Oncology, 363 - 370, edited by M. Macaluso,

P. H. Smith, and F. Edsmyr. New York: Plenum.

Efron, B., and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, London: Chapman

and Hall.

Geman, A. and Hwang, C. R. (1982), “Nonparametric Maximum Likelihood Estimation by

the Method of Sieves,” The Annals of Statistics, 10, 401-414.

Huang, J. (1996), “Efficient Estimation for the Proportional Hazards Model with Interval

Censored Data,” The Annals of Statistics, 24, 540-568.

Huang, J. (1999), “Efficient Estimation of the Partly Linear Additive Cox Model,” The

Annals of Statistics, 27, 1536-1563.

Jamshidian, M. (2004), “On Algorithms for Restricted Maximum Likelihood Estimation,”

Computational Statistics and Data Analysis, 45, 137-157.

31



Kalbfleisch, J. D., and Lawless, J. F. (1985), “The Analysis of Panel Count Data under a

Markov Assumption,” Journal of American Statistical Association, 80, 863-871.

Kooperberg, C., Stone, C. J., and Truong, Y. K. (1995), “Hazard Regression,” Journal of

American Statistical Association, 90, 78-94.

Lu, M., Zhang, Y., and Huang, J. (2007), “Estimation of the Mean Function with Panel

Count Data Using Monotone Polynomial Splines,” Biometrika, 94, 705-718.

Rosen, J. B. (1960), “The Gradient Projection Method for Nonlinear Programming,” Journal

of the Society for Industrial and Applied Mathematics, 8, 181-217.

Schumaker, L. (1981), Spline Functions: Basic Theory, New York: Wiley.

Shen, X., and Wong, W. H. (1994), “Convergence Rate of Sieve Estimates,” The Annals of

Statistics, 22, 580-615.

Sun, J., and Kalbfleisch, J. D. (1995), “Estimation of the Mean Function of Point Processes

Based on Panel Count Data,” Statistical Sinica, 5, 279-290.

Stone, C. J. (1986), “The Dimensionality Reduction Principal for Generalized Additive Mod-

els,” The Annals of Statistics, 14, 590-606.

Sun, J., and Wei, L. J. (2000), “Regression Analysis of Panel Count Data with Covariate-

Dependent Observation and Censoring Times,” Journal of the Royal Statistical Society, Ser.

B 62, 293 -302.

Thall, P. F., and Lachin, J. M. (1988), “Analysis of Recurrent Events: Nonparametric

Methods for Random-Interval Count Data,” Journal of American Statistical Association,

83, 339-347.

32



Van der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence and Empirical Processes,

New York: Springer-Verlag.

Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989), “Regression Analysis of Multivariate In-

complete Failure Time Data by Modeling Marginal Distributions,” Journal of American

Statistical Association, 84, 1065-1073.

Wellner, J. A., and Zhang, Y. (2000), “Two Estimators of the Mean of A Counting Process

with Panel Count Data,” The Annals of Statistics, 28, 779-814.

Wellner, J. A., and Zhang, Y. (2007), “Likelihood-Based Semiparametric Estimation Meth-

ods for Panel Count Data with Covariates,” The Annals of Statistics, 35, 2106-2142.

Wellner, J. A., Zhang, Y., and Liu, H. (2004), “ A semiparametric regression model for panel

count data: When do pseudo-likelihood estimators become badly inefficient?” Proceedings

of the Second Seattle Biostatistical Symposium: Analysis of Correlated Data. Lecture Notes

in Statistics. 179, 143-174. Springer, New York.

Zhang, Y. (2002), “A Semiparametric Pseudolikelihood Estimation Method for Panel Count

Data,” Biometrika, 89, 39-48.

Zhang, Y., and Jamshidian, M. (2004), “On Algorithms for NPMLE of the Failure Function

with Censored Data,” The Journal of Computational and Graphical Statistics, 13, 123-140.

Zhou, S., Shen, X., and Wolfe, D. A. (1998), “Local Asymptotics for Regression Splines and

Confidence Region,” The Annals of Statistics, 26, 1760-1782.

33



Table 1. Comparison of Bias and Standard Deviation for β0, Based on the Data Generated from
Poisson Process, n = 50 or 100.

n = 50 n = 100
a b c d a b c d

Estimate of β1

BIAS -0.0050 -0.0045 -0.0025 -0.0035 0.0013 0.0010 0.0016 0.0023
SD 0.1200 0.1196 0.1055 0.1042 0.0854 0.0839 0.0754 0.0742
ASE 0.1087 0.1087 0.0935 0.0935 0.0769 0.0769 0.0661 0.0661

Estimate of β2

BIAS 0.0007 0.0011 -0.0008 -0.0010 0.0007 0.0007 0.0005 0.0006
SD 0.0338 0.0330 0.0296 0.0294 0.0238 0.0232 0.0208 0.0204
ASE 0.0306 0.0306 0.0263 0.0263 0.0217 0.0217 0.0186 0.0186

Estimate of β3

BIAS -0.0007 -0.0001 0.0004 -0.0002 -0.0021 -0.0023 -0.0013 -0.0016
SD 0.0850 0.0837 0.0734 0.0724 0.0600 0.0594 0.0509 0.0508
ASE 0.0793 0.0793 0.0682 0.0682 0.0561 0.0561 0.0482 0.0482

a. Maximum Pseudo-likelihood Estimator

b. Spline Pseudo-likelihood Estimator

c. Maximum Likelihood Estimator

d. Spline Likelihood Estimator
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Figure 1. Simulation 1, with Data from Poisson Process and Λ0(t) = 2t.
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Table2. Comparison of Bias and Standard Deviation for β0, Based on the Data Generated from
the Mixed Poisson Process, n = 50 or 100.

n = 50 n = 100
a b c d a b c d

Estimate of β1

BIAS 0.0003 0.0006 -0.0010 0.0004 0.0028 0.0034 0.0050 0.0052
SD 0.1535 0.1548 0.1376 0.1377 0.1095 0.1103 0.1007 0.1007
ASE 0.1554 0.1554 0.1375 0.1375 0.1099 0.1099 0.0972 0.0972

Estimate of β2

BIAS -0.0012 -0.0019 -0.0016 -0.0019 -0.0001 -0.0002 -0.0001 -0.0001
SD 0.0467 0.0466 0.0426 0.0423 0.0319 0.0323 0.0294 0.0295
ASE 0.0473 0.0473 0.0420 0.0420 0.0334 0.0334 0.0297 0.0297

Estimate of β3

BIAS 0.0016 0.0013 0.0022 0.0013 0.0004 0.0002 0.0010 0.0008
SD 0.1050 0.1048 0.0924 0.0916 0.0693 0.0693 0.0614 0.0614
ASE 0.0962 0.0962 0.0842 0.0842 0.0680 0.0680 0.0596 0.0596

a. Maximum Pseudo-likelihood Estimator

b. Spline Pseudo-likelihood Estimator

c. Maximum Likelihood Estimator

d. Spline Likelihood Estimator
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Figure 2. Simulation 2, with Data from the Mixed Poisson Process and Λ0(t) = 2t.
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Table 3. Comparison of Computing Time in Seconds among Four Estimators, Based on the Data
Generated from the Poisson Process or Mixed Poisson Process with Sample Size 50 or 100.

Poisson Process Mixed Poisson Process
Estimators n = 50 n = 100 n = 50 n = 100
Maximum Pseudo-likelihood 9.2 17.2 9.5 20.7
Spline Pseudo-likelihood 3.0 10.4 3.2 7.8

Maximum Likelihood 603.4 1534.1 662.5 1564.6
Spline Likelihood 14.2 42.1 13.7 43.2

Table 4. Coverage Probabilities of 95% Confidence Intervals, Based on 1000 Bootstrap Samples
and Data Generated from the Poisson Process or Mixed Poisson Process with Sample Size 50 or

100.

Poisson Process Mixed Poisson Process
Estimators β1 β2 β3 β1 β2 β3

n = 50
Spline Pseudo-likelihood 95.73% 95.28% 88.50% 95.02% 93.82% 93.42%
Spline Likelihood 94.99% 93.96% 94.55% 94.62% 94.62% 92.72%

n = 100
Spline Pseudo-likelihood 94.88% 95.27% 93.91% 93.19% 94.18% 94.97%
Spline Likelihood 94.67% 96.52% 94.98% 93.58% 94.77% 95.76%

Table 5. Spline Inference for the Bladder Tumor Study, Based on 1000 Bootstrap Samples from
the Original Data.

Spline Pseudo-likelihood Spline Likelihood
Variable β̂ ŝd(β̂) β̂/ŝd(β̂) p-value β̂ ŝd(β̂) β̂/ŝd(β̂) p-value
Z1 0.145 0.057 2.535 0.012 0.208 0.082 2.515 0.010
Z2 -0.049 0.061 -0.731 0.475 -0.035 0.082 -0.429 0.672
Z3 0.191 0.280 0.694 0.507 0.064 0.395 0.167 0.870
Z4 -0.688 0.276 -2.486 0.015 -0.797 0.331 -2.403 0.019
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