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Summary

In medical research, it is common to have doubly censored survival data: origin time and

event time are both subject to censoring. In this paper, we review simple and probability-

based methods that are used to impute interval censored origin time and compare the

performance of these methods through extensive simulations in one-sample problem, two-

sample problem and Cox regression model problem. The use of bootstrap procedure for

inference is demonstrated.
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1. Introduction

Most statistical methods developed for the analysis of event time data assume that the

origin time is known, but allow the event to be censored. Data which are censored both

at the origin and at the event time are referred to as doubly censored data. HIV studies

have provided many examples for doubly censored data. In this paper, we are interested

in the distribution of time from HIV infection to death. The exact time of HIV infection

is usually interval censored and death is subject to right censoring. This is the doubly

censored situation considered here. However, that the term “doubly censored data” is also
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used for situations where both the origin and the event time are interval censored, for

example in De Gruttola and Lagakos (1989) and Sun (2004).

Doubly censored data can, in principle, be analyzed using a maximum likelihood ap-

proach, but this approach can be challenging, both numerically and theoretically, partic-

ularly when covariates are involved. Maximum likelihood has been applied to regression

analysis of doubly censored data in Kim et al. (1993), with both origin and event time

being interval censored, using the discrete proportional hazards model. For the continuous

proportional hazards model, Sun et al. (1999) propose an estimating equation procedure to

estimate the regression parameters and show that the estimator is asymptotically unbiased

and normally distributed. The procedure is difficult to implement and can be intractable

when the sample size is large. In addition, the method is challenging to implement when

the covariates are interval censored, as is the case in our motivating example of Xiang et

al. (2001). In contrast, if the origin time (HIV infection time) can be imputed reasonably,

the missing value of the covariate for this study (age at the time of HIV infection) will

be imputed simultaneously, then the analysis of doubly censored data with imputation is

straightforward analysis of right censored data.

Imputation is a general method for missing-data problems. One simple approach is to

impute infection time using the right limit of the interval in which the infection time is

censored. This typically corresponds to date of diagnosis or date of study entry, and is

expedient when no negative diagnostic test precedes the first positive test, as in Xiang et

al.(2001) and Tillmann et al., (2001). Another common approach is to impute infection

time using the midpoint of the interval (Liu et al. 1988; Mariotto et al., 1992; Williams

et al., 2004). Law and Brookmeyer (1992) however have shown that, under certain dis-

tributional assumptions consistent with data from studies of HIV disease, Kaplan-Meier

estimates of survival based on this method are considerably biased when censoring intervals
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are longer than two years. Yet another method of imputation is by the left limit of the

interval. In many HIV studies however, including our motivating example, the left limit

may correspond to either date of birth or a date before the HIV epidemic emerged, and

in this case left point imputation is likely to be unreasonable. For this reason left limit

imputation is not included in the following sections.

Other imputation methods impute the infection time of a subject based on Ĝ, an es-

timate of the marginal distribution G of HIV infection time. For example, Gauvreau et

al. (1994) adopt the self-consistency algorithm of Turnbull (1976) to estimate G, and then

impute the expected infection time based on Ĝ conditional on the subject’s interval. Gog-

gins et al. (1999) suggest a Monte Carlo EM algorithm to estimate G, and then repeatedly

impute infection times based on random draws from Ĝ conditional on subjects’ intervals.

The estimated distribution of HIV infection time, Ĝ, is treated as if known when imputing

infection times.

Pan (2001) uses the approximate Bayesian bootstrap scheme (Rubin, 1981; Efron,

1994) to take B bootstrap samples Db from the original data D, b = 1, . . . , B, then

obtain Ĝb using the self-consistency algorithm, and then repeatedly impute B infection

times based on random draws from Ĝb, b = 1, . . . , B. Finally, the results are combined

using Rubin’s multiple imputation formula (Rubin, 1987). Geskus (2001) compares the

midpoint imputation, the conditional mean imputation, and multiple imputation methods

for the bias and mean squared error (MSE) of the estimator of Kaplan-Meier curves.

In his simulation study, under some distributional assumptions for one-sample data, the

conditional mean imputation stands out as the preferred method.

In Section 2, both simple imputations and probability-based imputations are outlined,

and the multiple imputation inference procedure and bootstrap inference procedure are

introduced. In Sections 3 and 4, simulations are described and the numerical performance
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of the different imputation methods is compared. Section 5 presents conclusions and further

discussion.

2. Imputation Methods

For simplicity, let HIV infection be the origin event and death the endpoint event. Let Xi

and Yi denote HIV infection time and death time for subject i, i = 1, . . . , n. Assume Xi

is interval censored Xi ∈ [Li, Ri]. We assume Yi is possibly right censored as in Sun et al.

(1999), Goggins et al. (1999), and Pan (2001). Imputation methods can be classified into

simple imputation methods and probability-based imputation methods.

2.1 Simple Imputation Methods

Right-point imputation refers to imputing the infection time by the right limit Ri of

the interval and is denoted RIGHT; midpoint imputation refers to imputing the infection

time by the midpoint of the interval [Li, Ri] as (Li + Ri)/2 and is denoted MID. When

HIV infection and death both occur between two successive screening tests, that is Li <

Xi < Yi < Ri, the MID uses midpoint of the interval [Li, Yi] as the infection time.

2.2 Probability-based Imputation Methods

Probability-based imputation requires estimating the distribution G for HIV infection

time Xi based on observed intervals. The nonparametric maximum likelihood estimator

(NPMLE) of G with interval censored data is fully developed in the statistical litera-

tures. Groeneboom and Wellner (1992) characterize the NPMLE and propose an itera-

tive convex minorant algorithm for computing the estimate. Turnbull (1976) proposes a

self-consistency algorithm which can be realized as an application of the EM algorithm

introduced by Dempster et al. (1977). The details of these algorithms can be found in

Sun (2006). Turnbull’s self-consistency algorithm is used throughout this paper due to its

simplicity of implementation.
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Assume that the infection time X is a discrete random variable with a set of possible

values x = {x1, x2, . . . , xm} associated with a set of probabilities g = (g1, g2, . . . , gm),

respectively, where x1 < x2 < · · · < xm. Suppose for subject i, there are ri possible

values of infection time yi = (yi1, . . . , yiri
) ∈ [Li, Ri], associated with probabilities pi =

(pi1, . . . , piri
), i = 1, . . . , n. Note that both yi and pi are subsets of x and g, respectively.

Let hi = (hi1, . . . , hiri
), the conditional probability for subject i taking the value yik is

hik = pik/
∑ri

q=1 piq, k = 1, . . . , ri, conditioning on the interval [Li, Ri] and g.

Conditional mean imputation has been previously used (Gauvreau et al., 1994; Geskus,

2001) but conditional median and conditional mode appear to be new methods for impu-

tation.

2.2.1 Conditional Mean Imputation (MEAN) For subject i, the expected time of in-

fection is E(Xi|Xi ∈ [Li, Ri],g) = yih
′
i. Therefore, infection time Xi can be imputed by

yih
′
i.

2.2.2 Conditional Median Imputation (MEDIAN) Infection time Xi is imputed by the

median of yi weighted by the probability vector hi. In case the median is not unique, X̂i

is taken as the average of medians.

2.2.3 Conditional Mode Imputation (MODE) Infection time Xi is imputed by the

mode of yi: the value corresponding to the maximum probability among hi. That is

X̂i = yik, where k = max1≤k≤ri
{ĥik}. In case the mode is not unique, X̂i is taken as the

average of modes.
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2.2.4 Multiple Imputation (MI) MI is a commonly used method. For m = 1, . . . , M ,

randomly sample ym
ik from yi with replacement using the conditional probability vector

hi as weight. Let D denote the original dataset with interval censored origin event, D̂m

denote the dataset that replaces the interval censored origin event by the mth imputation.

Then D̂m is analyzed using the regular right censored data method. Let θ̂m be the estimate

of the parameter of interest obtained from the mth imputed data set D̂m, m = 1, . . . , M .

The MI estimate of θ is θ̄M = 1
M

∑M
m=1 θ̂m.

2.2.5 Random Imputation (RAND) Randomly sample one value yik from the vector

yi using the conditional probability vector hi as weight. Then the infection time Xi is

imputed by yik. This is a special case of MI where M = 1.

2.3 Bootstrap Inference Procedure

The imputation methods in the previous section provide ways to estimate population

parameters of interest for doubly censored data. To derive standard errors, Rubin’s variance

estimation formula (Rubin, 1987) has been used in multiple imputation inference (Muñoz

and Xu, 1996; Pan, 2000, 2001). The formula adds an expression for between-imputation

variance to an expression for average within-imputation variance, to incorporate imputation

uncertainty. An alternative bootstrap inference procedure for doubly censored data is

introduced here.

Suppose B bootstrap samples Db, b = 1, . . . , B, are generated from the doubly censored

data D. An estimate θ̂ of parameter θ is computed based on the imputed data D̂ by

imputing infection times using a method described in Sections 2.1 and 2.2. A 100(1−α)%

empirical bootstrap CI (EBCI ) of θ for the chosen imputation procedure is given by [θ̂l, θ̂u],

where θ̂l and θ̂u are the empirical 100(α/2) and 100(1− α/2) percentiles of the bootstrap
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distribution of θ̂ (Little and Rubin, 2002).

Since estimation with right censored data consumes very little in computing time, the

bootstrap procedure for doubly censored data described above will not be computationally

intensive, making it potentially attractive in practice.

2.4 Motivating Example

Xiang et al. (2001) examined the effect of coinfection with GBV-C virus on the survival

of HIV-infected patients. The data set is doubly censored in that the origin time (HIV

infection) is interval censored and the endpoint event (death) is right censored. The date

of subjects first known positive HIV test is used as the right limit of the interval: the right

limit ranges from 1988 to 1999. January 1st 1978 (or date of birth for subjects born after

January 1st 1978) is treated as the left limit of the interval, because it is reasonable to

assume that no HIV infections occurred prior to 1 January 1978 in this population (Jaffe

et al., 1985). The dataset has 362 subjects with mean interval width of 11.4 years.

We applied all seven imputation methods described in Section 2. Results are summa-

rized in Figure 2. The estimate of β1, log(hazard ratio) of GBV-C coinfection, varies from

-1.0 to -1.3 based on different imputation methods. For all but MI the 95% asymptotic

standard error (ASE) CI of β1 is the confidence interval based on the asymptotic standard

error of β1 from the Cox model, treating imputed date as if it were known. The 95% ASE

CI underestimates the variability of β1 by ignoring the imputation uncertainty and the

95% EBCI is wider than the 95% ASE CI for every imputation method except for MI.

In MI, ASE is computed based on Rubin’s variance formula (Rubin, 1987) to attempt to

account for imputation uncertainty and only in this case is the 95% ASE CI wider than

the 95% CI.

To assess the performance of point estimates based on these seven imputation methods
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and the validity of using bootstrap inference for doubly censored data, simulation studies

are implemented. Section 3 describes the design of the simulations, and Section 4 presents

the results.

3. Simulation Design

Simulation studies are designed (1) to evaluate the Kaplan-Meier estimator in the one-

sample problem, (2) to evaluate the size and power of the logrank test in the two-sample

problem and also a new bootstrap based test which is introduced in Section 4.2, and (3) to

evaluate the regression coefficient estimate from the Cox proportional hazards model (Cox,

1972) adjusting for an interval censored covariate (to be consistent with the motivating

example), based on seven imputation methods. We also assess the validity of the bootstrap

inference procedure through simulation studies.

Distributions for infection time X and the subsequent survival time T are key parts of

simulation studies for doubly censored data. Law and Brookmeyer (1992) assume a log-

logistic distribution for HIV infection time X with restriction X ∈ [1978, 1986] (subjects

involved in their study were exposed to HIV from early 1978 to mid-1985) and a Weibull

distribution W (2.51, 11.66) for survival time T , to evaluate the effect of midpoint impu-

tation on the Kaplan-Meier estimator and logrank test. In a study to assess the effect of

a binary covariate using the Cox model, Goggins et al. (1999) adopt a log-normal distri-

bution LN(3.8, 0.3) for X, and simulate survival time T1 for one group from W (2.5, 70.1)

and survival time T2 for another group from W (2.5, 60) so that the logarithm of hazard

ratio β1 is 0.389. This mimics haemophilia data described by Kim et al. (1993). To inves-

tigate RIGHT, MID, and MEAN imputation methods for Kaplan-Meier estimator, Geskus

(2001) specifies a shifted log-logistic distribution for infection time X, X ∈ [1980, 1997]

and W (2, 11) for survival time T . Pan (2001) uses a similar simulation design to that in

Goggins et al. (1999).
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3.1 Distribution for X and Interval Censoring

The variable X is simulated from a log-normal distribution as in Goggins et al. (1999)

and Pan (2001), and is truncated with an upper limit of 65 and with parameters chosen so

that the simulated data are similar to the real data in Xiang et al. (2001). Specifically, X

is distributed as log-normal LN(3.55, 0.24) and truncated to [0, 65]. To mimic screening

studies, we simulate a subject’s first visit as a random number from a uniform distribution

U(0, 5). After the first visit, each subject is scheduled to have annual follow-ups. Whether

or not a subject completes each annual follow-up is modeled as an independent Bernoulli

variable. The probability of making an annual visit P can be tuned to result in intervals

with specified average censoring width of w years for X. A subject’s HIV infection time Xi

is accordingly censored between two consecutive visits, Xi ∈ [Li, Ri], i = 1, . . . , n. These

intervals are then used to obtain an NPMLE Ĝ of G using Turnbull’s self-consistency

algorithm. For convenience, we refer the simulation setting described here as the GA

setting.

Suppose HIV-positive subjects entered the HIV study before the year 1995. Given HIV

infections before 1978 are extremely rare (Jaffe et al., 1985) it is reasonable to assume the

HIV infection time X is between 1978 and 1995. The HIV infection time X is simulated

from a truncated normal distribution N(1995, 5) with upper limit 1995. Assume that for

half of the subjects, we are able to establish intervals for HIV infection time based on their

annual seronegative tests. For these subjects, censoring intervals are generated using the

algorithm described in the above paragraph. The NPMLE Ĝ for the distribution of X is

estimated using only these subjects. For the other half of the subjects it is known only

that they were HIV-positive at the time of entry. If an individual was born before 1978,

we use 1978 as the left limit, otherwise we use his/her birth year as this person’s left limit.

For convenience, we refer the simulation setting described here as the GB setting. Table 1
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summarizes both GA and GB settings and Figure 1 portrays the distribution of X in these

two settings.

3.2 Distribution for T and Right Censoring

For the one-sample problem, survival time T is simulated from a Weibull distribution

W (2, 10). For the two-sample problem, a binary covariate is used to indicate group mem-

bership. T is simulated from two different distributions for two groups with equal sample

size n/2. Distributions considered for the two groups include Weibull W (2, 10) versus

W (2, 12.84), and log-normal LN(2.2, 0.4) versus LN(2.4, 0.4). To compare the size of a

test resulting from different imputation methods, T is simulated from the same distribution

for the two groups with equal sample size n/2, either W (2, 10), or LN(2.2, 0.4).

For the Cox regression problem, survival time T is simulated from the distribution

W (γ, λ), where λ = λ0 · exp(−zβ/γ), resulting in a proportional hazards model with

log(HR) = β. To mimic the study by Xiang et al., we let z = (z1, z2) denote GBV-C

coinfection (yes/no) and age at HIV infection respectively, with corresponding coefficients

β = (β1, β2) = (−0.5, 0.1). We set γ = 2 and λ0 = 10.

In all scenarios, a censoring random variable C is simulated from W (γ, a · λ), where a

is a positive coefficient. As in Goggins et al. (1999), Sun et al. (1999) and Pan (2001),

the survival time T is subject to right censoring. The coefficient a can be tuned so that

Pr(T ≤ C) = 0.9, that is T is subject to 10% random right-censoring.

For each problem, 1000 independent doubly censored data sets are repeatedly simulated.

For each simulated dataset, 1000 bootstrap datasets are generated to obtain the 95%

empirical bootstrap confidence interval (EBCI) for the parameter of interest. Specifically,

in the one-sample problem, the pointwise 95% EBCI for the survival function is calculated;

in the Cox regression model, the 95% EBCI for β1 is constructed. To facilitate comparison,
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the results based on data with exact HIV infection time X and right censored survival time

T are also included (these data are refered to as exact data). With multiple imputation for

missing data problems, Rubin (1987, pp. 114) shows that in most situations there is little

advantage to producing and analyzing more than a few imputed data sets, and claims only

3-10 imputations may be needed. For the doubly censored data, Pan (2000) suggests that

M = 5 or M = 10 would suffice. We use M = 10 for the MI method. The RAND method

corresponds to M = 1.

4. Simulation Results

4.1 One-sample Problem

The survival probability S(t) at 2.5, 5, 7.5 and 10 years after HIV infection is estimated

by the Kaplan-Meier estimator, using different imputation methods to impute infection

time X. The probability of making an annual visit is chosen to be P = 0.3, which results

in an average interval width about 5.3 years. Seven imputation methods are compared

with respect to bias, mean squared error (MSE) and coverage probability of 95% EBCI.

Table 2 summarizes results for the Kaplan-Meier estimator of survival function for

n = 200 in the GA and GB settings, with the results for the GB setting displayed in

parentheses. The true values for the S(t) at (2.5, 5, 7.5, 10) years after HIV infection are

(0.94, 0.78, 0.57, 0.37), respectively. In the GA setting, all imputation methods give similar

bias and MSE except RIGHT for which the bias and MSE is much larger. All imputation

methods except the methods RIGHT and MI give acceptable coverage probability of 95%

EBCI. Methods MID and MEAN have the smallest biases, followed by MEDIAN. MEAN

has smaller bias than MID in early years, but MID has smaller bias at, and after 7.5

years. MID, MEAN and MEDIAN have comparable MSEs to that of the exact data. In

the GB setting, the probability based imputation methods perform better than the simple
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imputation methods for the Kaplan-Meier estimator in terms of bias, MSE and coverage

probability of 95% EBCI. Indeed, both RIGHT and MID work badly for the GB setting.

4.2 Two-sample Problem

Let F1 and F2 be the distribution functions for groups 1 and 2, respectively. For right

censored data, under the null hypothesis H0 : F1 = F2, the logrank test statistic S is

asymptotically a standard normal N(0, 1) random variable. There are two tests for which

the power and size can be estimated. One is for the regular logrank test by ignoring the

fact that the origin time is imputed. The second is a new test that incorporates the double

censoring, where the asymptotic distribution of the logrank statistic S is not known. The

latter test is based on the bootstrap empirical distribution of the logrank statistic. For

convenience, we call the latter the empirical logrank (ELR) test. The power for the ELR

test is defined as the probability that the 100(1 − α)% EBCI of S exclude 0, based on

data simulated under an alternative hypothesis H1 : F1 6= F2. The size for the ELR test

is defined as the probability that the 100(1 − α)% EBCI of S exclude 0, based on data

simulated under the null hypothesis H0.

The results for power and size comparison in the GA and GB settings are shown in Table

3. In the GA setting, the probability of making an annual visit P is set as 0.3 for both

groups resulting in a mean interval width w = 5 years for each group. For each imputation

method, the power of the ELR test and of the regular logrank test are similar. The power

based on MODE and RAND tends to be smaller than that from the other imputation

methods. Overall, the loss in power using MEAN imputation is ignorable comparing to

the EXACT approach where the original time is known. The size of the logrank test is

close to the 5% nominal level. The size of the ELR test is also close to the 5% nominal

level, except that the size based on MODE or RAND tends to be lower than nominal.
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Overall, the size of both tests based on MEDIAN is closer to the 5% nominal level than

that of other imputation methods.

In the GB setting, the probability of making an annual visit P is again 0.3 but for half

of subjects, the other half having the left limit of the interval being 1978. The power of the

ELR test is similar to that of the logrank test. Overall, the power based on the MEDIAN

and MEAN is greater than the one based on other imputation methods. The MID, MODE

and RAND methods perform worst in term of power. The size of the logrank test based

on methods MID is lower than nominal. The size of the ELR test based on methods MID,

MODE, and RAND is also low.

In the case where the mean interval width w is 2.1 years (P = 0.65) for both groups in

the GA setting (Table 4), the power of each imputation method is closer to the test with

exact data comparing to the scenario where mean interval width is about 5 years. This is

reasonable since more information is lost in the case of heavy interval censoring for origin

event. The sizes of the ELR test and the regular logrank test are comparable and close to

the 5% nominal level.

4.3 Cox Regression Problem

For doubly censored data with interval censored HIV infection time X, once X is

imputed using the imputation methods described in Section 2, we can make inference

based on the methods for right censored data. If we regard the date of birth as time 0,

then the HIV infection time X can be treated as age at HIV infection. For subject i, let

Xi, z2i and Ti denote the HIV infection time, age at HIV infection and time from HIV

infection to death, respectively, for i = 1, . . . , n. Let X̂i denote the imputed HIV infection

time for subject i regardless of the imputation methods. Since the HIV infection time X is

interval censored, so is age at HIV infection z2. Once X is imputed as X̂, z2 is estimated
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by ẑ2 = X̂. The survival time of interested Ti is then estimated by T̂i = T ∗
i + Ri − X̂i,

where T ∗
i is time from study entry to event. The performance of β̂1, the estimator of Cox

regression coefficient β1 after adjusting for z2, is of interest.

The results for the GA and GB settings with β = (−0.5, 0.1) and heavy interval censor-

ing (mean interval width w = 5.3 years) for HIV infection time are summarized in Table 5.

In the GA setting, the estimator of β1 is a little biased (towards 0) for all seven imputation

methods with the bias percentage ranging from 1.2-4.3%. The method MID has the small-

est bias, followed by the RIGHT, MEAN, MODE and MEDIAN. The estimator based on

RAND and MI has relatively larger bias. These results are based on the same 1000 simu-

lated data sets for each of the seven imputation methods. Treating each simulated data as

a block, a two-way ANOVA can be carried out to test for differences among biases of the

seven imputation methods. Overall, biases of seven imputation methods differ significantly

(F6,6×999 = 37.69, p < 0.001). The bias using the MID method is significantly smaller than

the bias based on any other imputation method (p < 0.001). The mean asymptotic stan-

dard error (ASE) of β̂1 based on MI is slightly larger than those based on other imputation

methods, since it incorporates the between-imputation variability using Rubin’s variance

formula (Rubin, 1987). There are some differences (F6,6×999 = 2.61, p = 0.016) among

the MSEs of the seven imputation methods but the differences are small. Table 5 gives

coverage probability, power and size for testing β1 = 0 based on two different estimation

procedures. The first is based on the asymptotic standard error using the normality as-

sumption of β̂1. The second is based on the 2.5% and 97.5% empirical bootstrap quantiles.

All seven imputation methods work reasonably well. For the method MI, the coverage

probability of 95% ASE CI is slightly bigger than 0.95; the ASE power is the smallest one;

and the ASE size is below the 5% nominal level.

In the GB setting the estimator of β1 also shows some bias towards 0 for all 7 impu-
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tation methods. The estimate β̂1 based on any imputation method is small with the bias

percentage ranging from 1.6-4.7%. The method MID has the largest bias; the methods

MEAN and MEDIAN have the smallest biases. Overall, there are significant differences

between the seven imputation methods in biases (F6,6×999 = 41.95, p < 0.001). The bias

using the MID method is significantly larger than the bias based on any other imputation

method (p < 0.001). Again, the mean ASE of β̂1 based on MI is slightly bigger than the

one based on other imputation methods. There are significant differences (F6,6×999 = 4.92,

p < 0.001) among the MSEs based on the 7 imputation methods. All imputation meth-

ods work reasonably well for the coverage probability of 95% CI, power and size. For the

method MI, the coverage probability of 95% ASE CI is slightly bigger than 0.95; the ASE

power is the smallest one except MID; and the ASE size is below the 5% nominal level.

In the scenario GA with light interval censoring for HIV infection time (w = 2.1 years,

Table 6), the bias of β̂1 shrinks for every imputation method, resulting in bias percentage

ranging from 1-2%. In the scenario GB with light interval censoring for HIV infection time

(w = 2.1 years, Table 7), the bias of β̂1 also shrinks for every imputation method, resulting

in bias percentage ranging from 0.5-4.3%.

5. Discussion

In the one-sample scenario, the method RIGHT does not perform well in terms of esti-

mating the Kaplan-Meier curve. The method MID works very well in the GA setting, but

fails in the GB setting, when half of the left limits of the interval correspond to the date

1978. Caution is therefore suggested in using simple imputation methods to impute the

actual HIV infection time. The probability-based imputation methods perform well for

estimating the Kaplan-Meier curve in both simulation settings. Methods MEDIAN and

MODE stand out as preferred ones in estimating Kaplan-Meier curve.

In the two-sample scenario, the regular logrank test and empirical logrank test perform
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similarly in terms of power and size regardless of imputation methods. Methods MEAN

and MEDIAN are recommended for their robust performance in both simulation settings.

In the Cox model scenario, all seven imputation methods yield acceptable bias in es-

timating Cox regression coefficient. We also studied the performance of seven imputation

methods for different values of the Cox regression coefficient. As shown in Figure 3, all

imputation methods tend to yield a downward bias and the bias percentage appears to

decrease as the magnitude of the Cox regression coefficient increases. The method MID

works well in the GA setting, but fails in the GB setting. Though the method RIGHT

works well in both simulation settings, but it fails in a scenario when both groups have dif-

ferent interval censoring widths (data not shown). Overall, probability-based imputation

methods, especially MEAN and MEDIAN, appear to perform robustly against different

simulation settings.

To account for the imputation uncertainty, Pan (2001) adopts the method MI and

makes inference by using the variance formula proposed by Rubin (1987) under a Bayesian

inference framework. The validity of using Rubin’s formula in a frequentist framework

has been discussed by Zhang (2003) and Nielsen (2003). Our simulation results show that

validity of this procedure may be questionable in the scenarios examined in this paper.

For the Cox regression problem in the simulation studies, the comparison between mean

ASE(β̂1) and SD(β̂1) implies that using the Rubin’s formula may overcorrect the standard

error of β̂1 and this is also evident in Figure 1. Zhang (2003) presents rules for making MI

inferences with missing data. Those rules are not directly applicable for doubly censored

data.

In all the problems considered, as the interval width decreases, the performance of each

imputation method improves. In the simulation studies, note also that ignoring the uncer-

tainty in the imputed date of origin event, the usual inference based on the ASE performs
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surprisingly well. The bootstrap inference procedure is recommended, however, since the

computational demand with imputation methods is not excessive. Zhang et al. (2008a)

propose a Bayesian approach to analyze doubly censored data by making a parametric

assumption for the interval censored origin and treating it as an unknown quantity. This

approach could be used as an alternative to the bootstrap inference procedure.
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Table 1
Two simulation settings: GA and GB.

Specifications GA setting GB setting
Sample size n n
Dist. of X LN(3.55, 0.24) N(1995, 5)
Range of X X ∈ [0, 65] X ∈ [1978, 1995]
NPMLE Ĝ based on n intervals based on n/2 intervals
Dist. of T

One-sample W (2, 10) W (2, 10)
Two-sample (1) W (2, 10) vs. W (2, 12.84) W (2, 10) vs. W (2, 12.84)

(2) LN(2.2, 04) vs. LN(2.4, 0.4) LN(2.2, 04) vs. LN(2.4, 0.4)
Cox model W (2, 10 · exp(−zβ/2)) W (2, 10 · exp(−zβ/2))

Right censoring for T 10% 10%
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Table 2
Comparison of imputation methods for the Kaplan-Meier estimator with heavy interval

censoring.

Imputation Years after HIV Infection
2.5 5 7.5 10

S(t) =0.9394 0.7788 0.5698 0.3679

Bias ×102

EXACT 0.00 (0.05) -0.05 (0.05) 0.01 (-0.02) -0.16 (-0.07)
RIGHT 18.85 (13.92) 21.31 (16.85) 18.97 (15.63) 14.23 (11.98)
MID -0.22 (-3.30) 0.26 (-11.55) -0.65 (-21.11) -1.59 (-25.46)
MEAN -0.15 (-2.17) 0.02 (-4.71) -1.12 (-7.29) -1.99 (-7.61)
MEDIAN 0.43 (-0.95) 0.09 (-2.63) -1.26 (-4.62) -2.28 (-5.08)
MODE 2.29 (2.75) 0.89 (1.37) -1.35 (-1.24) -2.95 (-3.13)
RAND 2.42 (0.43) 1.16 (-2.73) -1.02 (-6.18) -2.91 (-7.91)
MI 2.44 (0.54) 1.12 (-2.77) -1.15 (-6.27) -2.87 (-8.01)

MSE ×102

EXACT 0.03 (0.03) 0.09 (0.09) 0.14 (0.13) 0.13 (0.12)
RIGHT 3.65 (2.02) 4.68 (2.97) 3.73 (2.57) 2.12 (1.54)
MID 0.03 (0.12) 0.08 (1.38) 0.14 (4.52) 0.16 (6.58)
MEAN 0.03 (0.07) 0.09 (0.30) 0.15 (0.67) 0.18 (0.72)
MEDIAN 0.03 (0.04) 0.09 (0.17) 0.15 (0.36) 0.19 (0.41)
MODE 0.10 (0.15) 0.12 (0.27) 0.19 (0.46) 0.25 (0.62)
RAND 0.10 (0.03) 0.10 (0.16) 0.15 (0.51) 0.22 (0.77)
MI 0.08 (0.02) 0.08 (0.14) 0.12 (0.50) 0.19 (0.75)

Coverage Probability of 95% EBCI
RIGHT 0.0 (0.0) 0.0 (0.1) 0.1 (0.9) 1.2 (5.1)
MID 91.7 (22.8) 94.7 (0.1) 92.3 (0.0) 90.7 (0.0)
MEAN 97.8 (70.2) 96.3 (62.3) 93.6 (47.8) 90.2 (45.4)
MEDIAN 99.2 (94.6) 97.6 (86.2) 94.0 (76.1) 90.6 (72.0)
MODE 96.3 (99.7) 99.0 (99.8) 98.0 (99.2) 93.3 (98.5)
RAND 89.7 (98.9) 97.3 (85.2) 95.3 (56.5) 88.3 (38.6)
MI 74.3 (93.8) 94.6 (81.8) 92.2 (51.4) 84.4 (33.1)

Note: Numbers not in parenthesis are based on GA setting; numbers in parenthesis are based on GB setting.
Sample size n = 200, 1000 simulated data sets, and 1000 bootstraps per simulated dataset.
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Table 3
Comparison of imputation methods for power and size of two-sample tests with heavy

interval censoring.

Imputation Methods
Distribution of T Test EXACT RIGHT MID MEAN MEDIAN MODE RAND MI

Power

W (2, 10) vs W (2, 12.84) Logrank 0.895 0.872 0.871 0.868 0.865 0.851 0.845 0.877
ELR – 0.871 0.866 0.871 0.860 0.844 0.862 0.874

Logrank (0.911) (0.892) (0.809) (0.893) (0.899) (0.845) (0.836) (0.894)
ELR ( – ) (0.892) (0.814) (0.892) (0.894) (0.858) (0.856) (0.892)

LN(2.2, 0.4) vs LN(2.4, 0.4) Logrank 0.882 0.800 0.828 0.833 0.823 0.776 0.778 0.821
ELR – 0.804 0.828 0.825 0.807 0.754 0.783 0.820

Logrank (0.889) (0.844) (0.727) (0.851) (0.862) (0.784) (0.760) (0.836)
ELR ( – ) (0.849) (0.722) (0.850) (0.847) (0.791) (0.784) (0.847)

Size

W (2, 10) vs W (2, 10) Logrank 0.048 0.043 0.054 0.054 0.054 0.061 0.050 0.055
ELR – 0.048 0.052 0.056 0.047 0.041 0.043 0.053

Logrank (0.054) (0.052) (0.037) (0.052) (0.053) (0.057) (0.058) (0.053)
ELR ( – ) (0.050) (0.036) (0.054) (0.052) (0.041) (0.035) (0.056)

LN(2.2, 0.4) vs LN(2.2, 0.4) Logrank 0.043 0.056 0.055 0.056 0.051 0.054 0.057 0.052
ELR – 0.063 0.060 0.059 0.048 0.039 0.039 0.057

Logrank (0.042) (0.047) (0.026) (0.040) (0.038) (0.047) (0.036) (0.042)
ELR ( – ) (0.050) (0.023) (0.036) (0.031) (0.029) (0.023) (0.037)

Note: Numbers not in parenthesis are based on GA setting; numbers in parenthesis are based on GB setting.
Sample size n = 200, 1000 simulated data sets, and 1000 bootstraps per simulated dataset.

Table 4
Comparison of imputation methods for power and size of two-sample tests with light

interval censoring.

Imputation Methods
Distribution of T Test EXACT RIGHT MID MEAN MEDIAN MODE RAND MI

Power
W (2, 10) vs W (2, 12.84) Logrank 0.916 0.894 0.901 0.897 0.892 0.893 0.895 0.902

ELR – 0.898 0.902 0.897 0.892 0.896 0.898 0.900
Size

W (2, 10) vs W (2, 10) Logrank 0.061 0.060 0.063 0.060 0.063 0.067 0.062 0.060
ELR – 0.061 0.065 0.060 0.058 0.057 0.059 0.063

Note: GA setting, mean interval width w = 2.1 years, n = 200, 1000 simulated datasets, and 1000 bootstraps
per simulated dataset.
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Table 5
Comparison of imputation methods for β = (−0.5, 0.1) under the Cox model with heavy

interval censoring.

Imputation Methods
EXACT RIGHT MID MEAN MEDIAN MODE RAND MI

Mean of β̂1 -0.5036 -0.4832 -0.4938 -0.4829 -0.4813 -0.4823 -0.4792 -0.4786

(-0.5021) (-0.4897) (-0.4764) (-0.4919) (-0.4920) (-0.4838) (-0.4845) (-0.4849)

SD(β̂1) 0.1569 0.1578 0.1600 0.1569 0.1561 0.1590 0.1585 0.1554

(0.1606) (0.1589) (0.1614) (0.1596) (0.1597) (0.1610) (0.1619) (0.1568)

Mean ASE(β̂1) 0.1554 0.1552 0.1553 0.1551 0.1551 0.1552 0.1551 0.1585

(0.1553) (0.1552) (0.1553) (0.1553) (0.1553) (0.1553) (0.1553) (0.1605)

MSE 0.0246 0.0252 0.0256 0.0249 0.0247 0.0256 0.0255 0.0246

(0.0258) (0.0253) (0.0266) (0.0255) (0.0256) (0.0262) (0.0264) (0.0248)

Coverage of 95% CI (ASE) 0.949 0.943 0.946 0.952 0.953 0.940 0.948 0.957
Coverage of 95% EBCI – 0.938 0.944 0.948 0.949 0.955 0.953 0.942

Coverage of 95% CI (ASE) (0.942) (0.947) (0.944) (0.945) (0.945) (0.949) (0.935) (0.956)
Coverage of 95% EBCI ( – ) (0.947) (0.943) (0.945) (0.947) (0.949) (0.949) (0.940)

Power (ASE) 0.904 0.881 0.882 0.876 0.878 0.882 0.864 0.861
Power (EBCI) – 0.890 0.887 0.884 0.880 0.875 0.877 0.885

Power (ASE) (0.912) (0.903) (0.870) (0.901) (0.903) (0.890) (0.887) (0.883)
Power (EBCI) ( – ) (0.912) (0.872) (0.908) (0.906) (0.898) (0.899) (0.909)

Size (ASE) 0.044 0.048 0.052 0.052 0.052 0.056 0.048 0.040
Size (EBCI) – 0.059 0.060 0.057 0.055 0.052 0.054 0.059

Size (ASE) (0.060) (0.062) (0.053) (0.064) (0.064) (0.055) (0.061) (0.042)
Size (EBCI) ( – ) (0.065) (0.053) (0.062) (0.066) (0.051) (0.055) (0.060)

Note: Numbers not in parenthesis are from GA setting; numbers in parenthesis are from GB setting. Sample
size n = 200, 1000 simulated data sets, and 1000 bootstraps per simulated dataset.
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Table 6
Comparison of imputation methods for β = (−0.5, 0.1) under the Cox model with light

interval censoring.

Imputation Methods
EXACT RIGHT MID MEAN MEDIAN MODE RAND MI

Mean of bβ -0.4967 -0.4939 -0.4951 -0.4911 -0.4907 -0.4907 -0.4904 -0.4900

SD(bβ) 0.1599 0.1607 0.1606 0.1601 0.1596 0.1605 0.1603 0.1592

Mean ASE(bβ) 0.1554 0.1554 0.1554 0.1553 0.1554 0.1553 0.1553 0.1561
MSE 0.0255 0.0258 0.0258 0.0257 0.0255 0.0258 0.0258 0.0254

Coverage of 95% CI (ASE) 0.939 0.939 0.939 0.939 0.940 0.943 0.939 0.941
Coverage of 95% EBCI – 0.937 0.938 0.939 0.940 0.939 0.939 0.938

Power (ASE) 0.887 0.895 0.892 0.888 0.890 0.890 0.888 0.887
Power (EBCI) – 0.895 0.894 0.893 0.892 0.890 0.893 0.900

Size (ASE) 0.049 0.055 0.052 0.051 0.049 0.052 0.047 0.046
Size (EBCI) – 0.060 0.053 0.054 0.048 0.050 0.053 0.053

Note: GA setting, mean interval width w = 2.1 years, n = 200, 1000 simulated datasets, and 1000 bootstraps
per simulated dataset.

Table 7
Comparison of imputation methods for β = (−0.5, 0.1) under the Cox model with light

interval censoring.

Imputation Methods
EXACT RIGHT MID MEAN MEDIAN MODE RAND MI

Mean of β̂ -0.5009 -0.4973 -0.4786 -0.4950 -0.4959 -0.4884 -0.4901 -0.4907

SD(β̂) 0.1586 0.1603 0.1603 0.1599 0.1594 0.1597 0.1602 0.1574

Mean ASE(β̂) 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1606
MSE 0.0251 0.0257 0.0261 0.0256 0.0254 0.0256 0.0257 0.0248

Coverage of 95% CI (ASE) 0.943 0.937 0.936 0.940 0.939 0.941 0.937 0.948
Coverage of 95% EBCI – 0.934 0.937 0.937 0.935 0.944 0.945 0.935

Power (ASE) 0.904 0.900 0.869 0.900 0.902 0.880 0.884 0.886
Power (EBCI) – 0.901 0.864 0.902 0.902 0.888 0.898 0.900

Note: GB setting, mean interval width w = 2.1 years for half subjects, n = 200, 1000 simulated datasets,
and 1000 bootstraps per simulated dataset.
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Figure 1. True distribution for HIV infection time X in two simulation
settings.
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Figure 2. Estimate of Cox regression coefficient for the Xiang study by seven
imputation methods.
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Figure 3. Bias percentage for the estimator of β1 based on seven imputation
methods for data with n = 200 and w = 5.3 years.
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