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Abstract

A method is proposed for consistent information estimation in a class of
semiparametric models. The method is based on the geometric interpretation of the
efficient score function, that it is the residual of the orthogonal projection of the score
function for the finite-dimensional parameter onto the tangent space for the infinite-
dimensional parameter. The empirical version of this projection is a least-squares
nonparametric regression problem. Under appropriate conditions, the sum of squared
residuals of this regression is shown to be a consistent estimator of the efficient Fisher
information and is actually the observed information for a class of sieve maximum
likelihood estimators. Simulations studies are conducted to evaluate finite sample
performance of the estimator in two illustrating examples: Poisson proportional mean
model for panel count data and Cox model for interval-censored data. Finally the
method is applied to two real-life examples: bladder tumor study and breast cosmesis
study.

Key words and phrases. counting process, Cox model, empirical processes, information, interval
censoring, maximum (profile) likelihood, monotone polynomial splines, panel count data, proportional
hazards model, semiparametric model
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1. Introduction

In a regular parametric model, the maximum likelihood estimator (MLE) is asymptotically

normal with variance equal to the inverse of the Fisher information, and the Fisher

information can be estimated by the observed information. This result provides large

sample justification for the use of normal approximation to the distribution of MLE. An

important factor making this approximation useful in statistical inference is that the observed

information can be readily computed and is consistent. In many situations, consistency of

the observed information follows directly from the law of large numbers and consistency of

MLE.

Asymptotic normality of MLE of the regular parameters continues to hold in many

semiparametric and nonparametric models. See for example, Chen (1988, 1995), Chang

(1990), Geskus and Groeneboom (1996), Gill (1989), Groeneboom (1996), Groeneboom and

Wellner (1992), Gu and Zhang (1993), Murphy (1995), Murphy, Rossini and van der Vaart

(1997), Qin and Lawless (1993), Severini and Wong (1991), van der Laan (1993), van der

Vaart (1994, 1996), Wong and Severini (1991), Huang (1996), Huang and Rossini (1997) and

Wellner and Zhang (2007). In all these examples, the MLE or a smooth functional of the MLE

is asymptotically normal with variance equal to the inverse of the efficient Fisher information.

The asymptotic normality and efficiency results provide insight to the theoretical properties

of maximum likelihood estimators. Unfortunately, in many semiparametric models studied

in the aforementioned articles, the efficient Fisher information is either very complicated or

may not have an explicit expression and they often can not be estimated directly as in the

case of parametric MLE. Thus effort is required to estimate the asymptotic variance in order

to apply these results to statistical inference.

In this paper, we consider consistent information estimation in a class of semiparametric
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models that are parametrized in terms of a finite-dimensional parameter θ and a parameter φ

whose dimension increases with sample size. Hence φ is often called an infinite-dimensional

parameter. Two important examples are Cox’s (1972) proportional hazards model for

interval-censored data studied by Huang and Wellner (1995) and the proportional mean

model for panel count data proposed by Sun and Wei (2000) and Wellner and Zhang (2007).

In these two examples, θ is the finite-dimensional regression coefficient, φ is the log of baseline

hazard function or the log of baseline mean function.

At least two methods used in parametric models for estimating the variance have been

suggested in semiparametric models. The first method is to use the inverse observed

information based on the likelihood, correcting for the presence of the infinite-dimensional

parameter φ. However, when φ cannot be estimated at the usual root-n rate, consistency of

this estimator has not been proved in general.

The second method is to use the second derivative of the profile likelihood of θ at the

maximum likelihood estimate. For a fixed value of θ, the profile likelihood is the maximum

of the likelihood with respect to φ. Because the profile likelihood often can only be computed

numerically, discretized versions of its second derivative are proposed by Nielson, Gill,

Andersen and Sorensen (1992), and used by Huang and Wellner (1995) and Murphy and

van der Vaart (1996). Using an ingenious sandwich inequality, Murphy and van der Vaart

(2000) showed that the discretized versions of the second derivative of profile likelihood

provides consistent variance estimator in a large class of semiparametric models. Murphy

and van der Vaart (1999) also proved that the profile likelihood resembles the ordinary

likelihood in many essential aspects. When the dimension of θ is one or two, it is relatively

easy to compute and visualize the profile likelihood. For moderate to high dimensional θ,

implementation of the profile likelihood approach may be computationally demanding and
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sometimes difficult.

In a general semiparametric maximum likelihood estimation problem, the joint estimation

of (θ, φ) is often a quite challenging problem numerically. Sieve semiparametric M-estimation

using polynomial splines proposed by Lu, Zhang and Huang (2008) for panel count data is

shown numerically efficient. However, the estimation of standard error for the M-estimator

of regression parameter still remains a big task and alternatively, they used the bootstrap

standard error by taking the computation advantage in spline-based sieve M-estimation.

In this article, we propose a least-squares approach to consistent estimation of the

information matrix of the semiparametric maximum likelihood estimator of θ. The proposed

method is based on the geometric interpretation of the efficient score function, that it is the

residual of the projection of the score function for θ onto the tangent space for φ (van der

Vaart, 1991, Bickel, Klaassen, Ritov and Wellner, 1993, Chapter 3). Thus the theoretical

information calculation is a least-squares problem in a Hilbert space. When a sample from

the model is available, this theoretical information can be estimated by its empirical version.

It turns out that this empirical version is essentially a least-squares nonparametric regression

problem, due to the fact that the score function for the infinite-dimensional parameter is

a linear operator. In this nonparametric regression problem, the “response” is the score

function for the finite-dimensional parameter θ, the “covariate” is the linear score operator

for the infinite-dimensional parameter φ, and the “regression parameter” is the least favorable

direction which is used to define the efficient score. Computationally, the proposed method

can be implemented with a least-squares nonparametric regression fitting program.

In a class of sieve MLE’s using a linear approximation space, the proposed estimator of

information matrix is shown to be the same as the inverse of the observed information matrix

for the sieve MLE. This equivalence is useful from both the theoretical and the computational
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point of view. First, this equivalence enables a simple and indirect consistency proof of the

observed information matrix in the semiparametric setting. Second, it provides two ways of

computing the observed information matrix: one can either directly compute the observed

information matrix or fit a least-squares nonparametric regression. Because of its numerical

convenience and good theoretical properties, the class of sieve MLE’s using polynomial

splines is utilized in our numerical demonstration and is recommended for applications of

general semiparametric estimation.

The paper is organized as follows. Section 2 describes the motivation and the least-

squares approach. Section 3 specializes the general approach to a class of sieve MLE’s.

Section 4 applies the proposed method along with the spline-based sieve MLE to two

models, semiparametric Poisson mean model for panel count data and Cox proportional

hazards model for interval censored data, studied in Wellner and Zhang (2007) and Huang

and Wellner (1995), respectively. Section 5 renders numerical results via simulations and

applications in real-life examples for the models discussed in Section 4. Section 6 concludes

with some discussions. Some technical details are included in appendices.

2. The Least-Squares Approach

Let X1, . . . , Xn be independent random variables with a common probability measure Pθ,φ,

where (θ, φ) ∈ Θ × Φ. Here Θ is a subset of Rd and Φ is a general space. Assume that

Pθ,φ has a density p(·; θ, φ) with respect to a σ-finite measure. Denote τ = (θ, φ) and let

τ0 = (θ0, φ0) ∈ Θ × Φ be the true parameter value under which the data are generated.

The maximum likelihood estimator of τ0 is the value τ̂n ≡ (θ̂n, φ̂n) that maximizes the
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log-likelihood

ln(τ) =
n∑

i=1

log p(Xi; θ, φ)

over the parameter space T ≡ Θ× Φ. Let ‖ · ‖ be the Euclidean distance of Rd, and ‖ · ‖Φ

be an appropriate norm defined on Φ. We assume it has been shown that

‖τ̂n − τ0‖T ≡
{
‖θ̂n − θ0‖2 + ‖φ̂n − φ0‖2

Φ

}1/2

= Op(r
−1
n ),(2.1)

where rn is a sequence of numbers converging to infinity. Consistency and rate of convergence

in nonparametric and semiparametric models have been addressed by many authors, see for

example, Birgé and Massart (1993), van der Geer (1993), Shen and Wong (1995), and van

der Vaart and Wellner (1996). The results and methods developed by these authors can

often be used to verify (2.1).

The motivation to study consistent information estimation is the following. In many

semiparametric models, in addition to (2.1), it can be shown that

n1/2
(
θ̂n − θ0

)
→d N

(
0, I−1(θ0)

)
,(2.2)

where I(θ0) is the efficient Fisher information for θ0, adjusting for the presence of nuisance

parameter φ. The definition of I(θ0) is given below. This holds for models cited in the

previous section and for the examples in Section 4. Thus estimation of the asymptotic

variance of θ̂n is equivalent to estimation of I(θ0) provided I(θ0) is nonsingular. Of course,

for the problem of estimating I(θ0) to be meaningful, we need to first establish (2.2).

The calculation of I(θ0) and its central role in asymptotic efficiency theory for

semiparametric models have been systematically studied by Begun, Hall, Huang and Wellner
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(1983), van der Vaart (1991), and BKRW (1993) and the references therein. In the following,

We first briefly describe how the information I(θ0) is defined in a general semiparametric

MLE setting in order to motivate the proposed information estimator.

Let l(θ, φ; x) = log p(x; θ, φ) be the log-likelihood for a sample of size one. Consider a

parametric smooth submodel with parameter (θ, φ(s)), where φ(0) = φ and

∂φ(s)

∂s

∣∣∣∣
s=0

= h.

Let H be the class of functions h defined by this equation. Usually, H is a Hilbert space.

The score operator for φ is

l̇2(τ ; x)(h) =
∂

∂s
l(θ, φ(s); x)

∣∣∣∣
s=0

.(2.3)

Observe that l̇2 is a linear operator mapping H to L2(Pθ,φ). So for constants c1, c2 and

h1, h2 ∈ H,

l̇2(τ ; x)(c1h1 + c2h2) = c1l̇2(τ ; x)(h1) + c2l̇2(τ ; x)(h2).(2.4)

The linearity of l̇2 is crucial to the proposed method. For a d-dimensional θ, l̇1(τ ; x) is the

vector of partial derivatives of l(τ ; x) with respect to θ. For each component of l̇1, a score

operator for φ is defined as in (2.3). So the score operator for φ corresponding to l̇1 is defined

as

l̇2(τ ; x)(h) ≡ (l̇2(τ ; x)(h1), . . . , l̇2(τ ; x)(hd))
′,(2.5)
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where h ≡ (h1, . . . , hd)
′ with hk ∈ H, 1 ≤ k ≤ d.

Let Ṗ2 be the closed linear span of {l̇2(h) : h ∈ H}. Then the efficient score function

for the kth component of θ is l̇1,k − Π(l̇1,k|Ṗ2), where l̇1,k is the kth component of l̇1(τ ; x)

and Π(l̇1,k|Ṗ2) is the projection of l̇1,k onto Ṗ2. Equivalently, Π(l̇1,k|Ṗ2) is the minimizer

of the squared residual P [l̇1,k(τ0; X) − η]2 over η ∈ Ṗ2. See for example, van der Vaart

(1991), Section 6, and BKRW (1993), Theorem 1, page 70. In general, η may not be a score

function for φ, that is, there may not exist a h ∈ H such that η = l̇2(h). However, in models

with regularity conditions, η either is a score function or can be approximated by a score

function. So we assume that the efficient score vector for θ is l̇1(τ ; x)− l̇2(τ ; x)(ξ0), where ξ0

is an element of Hd that minimizes

ρ(h) ≡ E‖l̇1(τ ; X)− l̇2(τ ; X)(h)‖2(2.6)

over Hd. The minimizer ξ0 = (ξ01, ξ02, . . . , ξ0d)
′ is called the least favorable direction. Denote

the efficient score by l∗(τ ; x) ≡ l̇1(τ ; x)− l̇2(τ ; x)(ξ0). Then the information for θ is

I(θ) = E‖l∗(τ ; X)‖2 = E‖l̇1(τ ; X)− l̇2(τ ; X)(ξ0)‖2.(2.7)

Therefore, to estimate I(θ), it is natural to consider minimizing an empirical version of (2.6).

In particular, with the random sample X1, . . . , Xn and the consistent estimator τ̂n, we can

estimate I(θ) by the minimum value of

ρn(h) ≡ n−1

n∑
i=1

‖l̇1(τ̂n; Xi)− l̇2(τ̂n; Xi)(h)‖2(2.8)

over Hd. That is, if ξ̂n is a minimizer of ρn over Hd, then a natural estimator of I(θ0)
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is În ≡ ρn(ξ̂n). Because l̇2 is a linear operator, this minimization problem is essentially

a least-squares nonparametric regression problem and it can be solved for each component

separately. In the next section, we show that, in a class of sieve MLE’s, the minimum value

ρn(ξ̂n) is actually the observed information based on the outer product of the first derivatives

of the log-likelihood.

In the following, we state a simple proposition which provides sufficient conditions

ensuring consistency of the estimated least favorable direction and În as an estimator of

I(θ0). This proposition appears to be useful in a large class of models and is easy to apply.

As in nonparametric regression, if the space H is too large, minimization over this space

may not yield consistent estimators of ξ0 and I(θ0). We can use an approximation space

Hn (a sieve) which is smaller than H and converges to H as n tends to infinity. Under

appropriate conditions, minimization of ρn over Hn will yield a consistent estimator of ξ0.

On the other hand, if minimizing over H does yield consistent estimators, then Hn can be

taken to be H.

For simplicity and without loss of generality, it suffices to consider the case of one-

dimensional θ. In the following and throughout, we will use the linear functional notations

for integrals. So for any probability measure Q, Qf =
∫

fdQ as long as the integral is

well defined. Below, P = Pθ0,φ0 . Pn is the empirical measure of Xi, 1 ≤ i ≤ n. So Pnf =

n−1
∑n

i=1 f(Xi).

Proposition 2.1. Denote ξ̂n = argminHn
ρn(h) and `(τ, h; x) = [l̇1(τ ; x)− l̇2(τ ; x)(h)]2.

If the class of functions = = {`(x, τ, h) : τ ∈ T , h ∈ H} is Glivenko-Cantelli and

τ̂n →p τ0, then

ρn(ξ̂n) →p I(θ0).

The proof is given is Appendix A.
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3. Observed Information in Sieve MLE

We now apply the method described in Section 2 to a class of sieve MLE’s. We show that, if

the parameter space Φ and the space H can be approximated by a common approximation

space, and if this space has a basis, then the least-squares calculation in Section 2 yields

the observed information matrix. In other words, computation of the observed information

matrix is equivalent to solving the least-squares problem of Section 2. So there is no need

to actually carry out the least-squares computation when the observed information can be

computed as in the ordinary setting of parametric estimation. This is computationally

convenient, because the observed information matrix is based on either the first derivatives

or the second derivatives of the log-likelihood function and these derivatives are often

already computed in a numerical algorithm for computing the MLE of unknown regression

parameters.

On the other hand, for problems in which direct computation of the observed information

matrix is difficult, one can instead solve the least-squares nonparametric regression problem

to obtain the observed information matrix. These nonparametric regression problems can

be solved by using standard least-squares fitting programs for linear regression.

As in finite-dimensional parametric models, some regularity conditions are required for

the MLE θ̂n to be root-n consistent and asymptotically normal. These regularity conditions

usually include certain smoothness assumptions on the infinite-dimensional parameter φ

and the underlying probability model. Consequently, the least favorable direction will be a

smooth function such as a bounded Lipschitz function. Then we can take H to be the class

of such smooth functions. From the approximation theory, many spaces designed for efficient

computation can be used to approximate any element in H with arbitrary precision under

appropriately defined distance. For example, we may use the space of polynomial spline
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functions (Schumaker, 1981). This class not only has good approximation power, but is also

computationally convenient. We will use this approximation space in the next section.

Let Φn be an approximation space for both Φ and H. Suppose it has a set of basis

functions Bn = (b1, . . . ,bqn)′, such that every φ ∈ Φn can be represented as φ =
∑qn

j=1 βjbj ≡
B′nβ, where β = (β1, . . . , βqn)′ ∈ Bn ⊂ Rqn is a vector of real numbers. So every φ ∈ Φn can

be identified with a vector β ∈ Bn. Here the dimension qn is a positive integer depending on

sample size n. To ensure consistency of τ̂n, we need qn → ∞ as n → ∞. In general, for θ̂n

to be asymptotically normal, we need to control the growth rate of qn appropriately.

The sieve MLE of τ0 = (θ0, φ0) is defined to be the (θ̂n, φ̂n) that maximizes the log-

likelihood ln(θ, φ) over Θ×Φn. Equivalently, one can find (θ̂n, β̂n) that maximizes ln(θ,B′nβ)

over Θ×Bn. Then φ̂n = B′nβ̂n.

Now consider estimation of I(θ0). First we introduce some convenient notations. Denote

l̇2(τ̂n; x)(Bn) = (l̇2(τ̂n; x)(b1), . . . , l̇2(τ̂n; x)(bqn))T ,

and

A11 = Pn

(
l̇1(τ̂n; X)

)⊗2

, A12 = Pnl̇1(τ̂n; X)l̇T2 (τ̂n; X)(Bn),

A21 = AT
12, A22 = Pn

(
l̇2(τ̂n; X)(Bn)

)⊗2

,

where a⊗2 = aaT . The outer product version of the observed information for θ is given by

Ôn = A11 − A12A
−
22A21.(3.1)

Here for any matrix A, A− denotes its generalized inverse. Although A−
22 may not be

unique, A12A
−
22A21 is unique by the results on the generalized inverse, see for example,
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Rao (1973), Chapter 1, result 1b.5 (vii), page 26. The use of the generalized inverse in

(3.1) is for generality of these formulas. When the nonparametric component φ is a smooth

function, then for any fixed sample size, the sieve MLE is obtained over a finite-dimensional

approximation space whose (theoretical) dimension is O(nν), where ν is typically less than

1/2, A22 is usually invertible.

We now show that Ôn equals În, which is the minimum value of

ρn(h) = Pn‖l̇1(τ̂n; X)− l̇2(τ̂n; X)(h)‖2

over h ∈ Φn for h = (h1, h2, · · · , hd)
′. Write hj = B′ncj for j = 1, 2, · · · , d. Let Yi,j =

l̇1,j(τ̂n; Xi), the jth component of Yi = l̇1(τ̂n; Xi) and Zi = l̇2(τ̂n; Xi)(Bn). This minimization

problem becomes a least-squares problem of finding ĉn = (ĉ′n,1, ĉ
′
n,2, · · · , ĉ′n,d)

′ that minimizes

Pn

[
d∑

j=1

(Yi,j − Z ′
icj)

2

]
.

By standard least-squares calculation,

ĉn,j =

(
n∑

i=1

ZiZ
′
i

)− (
n∑

i=1

ZiYi,j

)
for j = 1, 2, · · · , n.

Hence, we have

În = ρn(ξ̂n) = Pn

[
l̇1(τ̂n; X)− l̇2(τ̂n; X)(ξ̂n)

]⊗2

= Pn

[
l̇1(τ̂n; X)− (ĉn,1, ĉn,2, ·, ĉn,d)

′ l̇2(τ̂n; X)(Bn)
]⊗2

= Pn

[
l̇1(τ̂n; X)−

(
n∑

i=1

YiZ
′
i

)(
n∑

i=1

ZiZ
′
i

)
l̇2(τ̂n; X)(Bn)

]⊗2
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= Pn

[
l̇1(τ̂n; X)− A12A

−
22l̇2(τ̂n; X)(Bn)

]⊗2

= A11 − A12A
−
22A21 − A12A

−
22A21 + A12A

−
22A22A

−
22A21

= A11 − A12A
−
22A21 = Ôn

We summarize the above calculation in the following proposition.

Proposition 3.1. Assume that there exist β∗n ∈ Bn and c∗n,j ∈ Rqn for j = 1, 2, · · · , d
such that

‖B′nβ∗n − φ0‖Φ = O(k−1
1n ), and ‖B′nc∗n,j − ξ0,j‖Φ = O(k−1

2n ), j = 1, 2 · · · , d,(3.2)

where k1n and k2n are two sequences of numbers satisfying k1n →∞ and k2n →∞ as n →∞.

Suppose that the conditions of Proposition 2.1 are satisfied. Then the observed information

matrix Ôn defined in (3.1) is a consistent estimator of I(θ0).

4. Examples

In this section, we illustrate the proposed method in two semiparametric regression models,

including Poisson proportional mean model for panel count data studied in Wellner and

Zhang (2007) and Cox model (1972) for interval-censored data studied in Huang and Wellner

(1995). In these examples, the parameter space Φ will be the space of smooth functions

defined below. The sieve Φn is the space of polynomial splines. The polynomial splines have

been used in many fully nonparametric regression models, see for example, Stone (1985,

1986).
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Let a = d0 < d1 < · · · < dKn < dKn+1 = b be a partition of [a, b] into Kn subintervals

IKt = [dt, dt+1), t = 0, . . . , K − 1 and IKK = [dK , dK+1], where K ≡ Kn ≈ nv is a positive

integer such that max1≤k≤K+1 |dk − dk−1| = O(n−v). Denote the set of partition points by

Dn = {d1, . . . , dKn}. Let Sn(Dn, Kn,m) be the space of polynomial splines of order m ≥ 1

consisting of functions s satisfying: (i) the restriction of s to IKt is a polynomial of order m for

m ≤ K; (ii) for m ≥ 2 and 0 ≤ m′ ≤ m−2, s is m′ times continuously differentiable on [a, b].

This definition is phrased after Stone (1985), which is a descriptive version of Schumaker

(1981), page 108, Definition 4.1. According to Schumaker (1981), page 117, Corollary 4.10,

there exists a local basis Bn ≡ {bt, 1 ≤ t ≤ qn}, so called B-splines, for Sn(Dn, Kn,m), where

qn ≡ Kn + m. These basis functions are nonnegative and sum up to one at each point in

[a, b], and each bt is zero outside the interval [dt, dt+m].

4.1. Poisson Proportional Mean Model for Panel Count Data

Let {N(t) : t ≥ 0} be a univariate counting process. K is the total number of observations

on the counting process and T = (TK,1, · · · , TK,K) is a sequence of random observation times

with 0 < TK,1 < · · · < TK,K . The counting process is only observed at those times with the

cumulative events denoted by N = {N(TK,1), · · · ,N(TK,K)}. This type of data is referred

to to panel count data by Sun and Kalbfleish (1995). In this manuscript, we assume that

(K, T ) is conditionally independent of N given a vector of covariates Z and we denote the

observed data consisting of independent and identically distributed X1, · · · , Xn, where Xi =

(Ki, T
(i),N(i), Zi) with T (i) = (T

(i)
Ki,1

, · · · , T (i)
Ki,Ki

) and N(i) = (N(i)(T
(i)
Ki,1

), · · · ,N(i)(T
(i)
Ki,Ki

)), for

i = 1, · · · , n.

Panel count data are often seen in clinical trials, social demographic and industrial

reliability studies. Sun and Wei (2000) and Zhang (2002) proposed the proportional mean
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model

Λ(t|Z) = Λ0(t) exp(θ′0Z)(4.1)

to analyze panel count data semiparametrically, where Λ(t|Z) = E(N(t)|Z) is the expected

cumulative events observed at time t, conditional on Z with the true baseline mean function

given by Λ0(t). Wellner and Zhang (2007) proposed a nonhomogeneous Poisson process with

the conditional mean function given by (4.1) to study the MLE of τ0 = (θ0, Λ0(t)). The log

likelihood for (θ, Λ(t)) under the Poisson proportional mean model is given by

ln(θ, Λ) =
n∑

i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log ∆ΛKi,j + ∆N(i)

Ki,j
θ′Zi − exp(θ′Zi)∆ΛKi,j

]
,

where

∆N(i)
Ki,j

= N(i)(T
(i)
Ki,j

)− N(i)(T
(i)
Ki,j−1)

and

∆ΛKi,j = Λ(T
(i)
Ki,j

)− Λ(T
(i)
Ki,j−1),

for j = 1, 2, · · · , K.

To study the asymptotic properties of the MLE, Wellner and Zhang (2007) defined the

following L2-norm,

d(τ1, τ2) =

{
|θ1 − θ2|2 +

∫
|Λ1(t)− Λ2(t)|2dµ1(t)

}1/2

with

µ1(t) =

∫

Rd

∞∑

k=1

P (K = k|Z = z)
k∑

j=1

P (TK,j ≤ t|K = k, Z = z)dF (z).
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They showed that the semiparametric MLE, τ̂n = (θ̂n, Λ̂n) converges to the true parameters

τ0 = (θ0, Λ0) (under some mild regularity conditions) in a rate lower than n1/2, i.e. d(τ̂n, τ0) =

Op(n
−1/3), however, the MLE of θ0 is still semiparametric efficient, that is

√
n(θ̂n − θ0) →d N

(
0, I−1(θ0)

)

with the Fisher information matrix given by

I(θ0) = E

{
∆Λ0(TK,j)e

θ′0Z

[
Z − E(Zeθ′0Z |K, TK,j−1, TK,j)

E(eθ′0Z |K, TK,j−1, TK,j)

]⊗}
.

The computation of the semiparametric MLE is very time consuming as it requires the

joint estimation of θ0 and the infinite dimensional parameter Λ0. Although the Fisher

information has a nice explicit form, there is no easy method available to calculate the

observed information.

Lu (2007) studied the sieve MLE for the above semiparametric Poisson model using

monotone polynomial splines. Let Bn = (b1, . . . ,bqn) be the basis of B-splines defined

earlier. The monotone polynomial spline space is defined to be

Mn(Dn, Kn,m) =

{
φn : φn(t) =

qn∑
j=1

βjbj(t) ∈ Sn(Dn, Kn,m), β ∈ Bn, t ∈ [a, b]

}
.

where Bn = {β : β1 ≤ β2 ≤ · · · ≤ βqn}. Each element of Mn(Dn, Kn,m) is a nondecreasing

function because of the monotonicity constraints on β1, . . . , βqn . This fact is a consequence

of the variation diminishing properties of B-splines. See for instance, Schumaker (1981),

Example 4.75 and Theorem 4.76, pages 177-178. Replaying Λ(t) by the exp(
∑qn

l=1 βlbj(t)) in

the likelihood above, Lu (2007) solved the constraint optimization problem over the space
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Θ × Bn. It turns out that, compared to Wellner and Zhang’s method, the B-splines sieve

MLE is much less computational demanding (Lu, Zhang and Huang, 2008) with a better

overall convergence rate. In addition, the sieve MLE of θ is still semiparametric efficient

with the same Fisher information matrix, I(θ0). The bootstrap procedure was implemented

to estimate I(θ0) consistently by Lu, Huang and Zhang (2008) due to the computation

advantage of the B-splines sieve MLE method.

A straightforward algebra leads that

l̇1(τ ; x)− l̇2(τ ; x)(h) =
K∑

j=1

(
∆NK,j − exp(βT Z)∆ΛKj

) (
Z − ∆hKj

∆ΛKj

)

Under the regularity conditions given in Wellner and Zhang (2007), following the empirical

process arguments used in Lu (2007) for monotone B-splines estimation, it can be easily

shown that the class {l̇1(τ ; x)− l̇2(τ ; x)(h) : τ ∈ T , h ∈ H} is Glivenko-Canteli, by showing

the bracketing number with L1(P ) norm of this class is bounded. This will imply that

{(l̇1(τ ; x) − l̇2(τ ; x)(h))2 : τ ∈ T , h ∈ H} is Glivenko-Canteli as well, based on the given

regularity conditions. Moreover, using monotone cubic B-splines in the sieve estimation

automatically gives

‖B′nβ∗n − φ0‖Φ = O(n−pν) and ‖B′nc∗n − ξ0‖Φ = O(n−pν)

due to Corollary 6.20 of Schumaker (1981). Hence the Fisher information I(θ0) in

semiparametric proportional mean model for panel count data can be consistently estimated

using the proposed least-squares approach.
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4.2. Cox Model for Interval-Censored Data

Interval-censored data occur very frequently in long-term follow-up study for an event time

of interest. The exact event time T is not observable; it is only known with certainty that

T is bracketed between two adjacent examination times, or occurs before the first or after

the last follow-up examination. Let (L,R) be the pair of examination times bracketing the

event time T . That is, L is the last examination time before and R is the first examination

time after the event. If 0 < L < R < ∞, then T is interval-censored. If the event occurs

before the first examination, then T is left-censored. If the event has not occurred after

last examination, then T is right-censored. Such data is called “case 2” interval-censored

data. Nonparametric estimation of a distribution function and its smooth functionals with

interval-censored data have been studied by Groeneboom and Wellner (1992), Groeneboom

(1996), and Geskus and Groeneboom (1996).

In this example, we consider the B-splines sieve MLE of the Cox proportional hazards

model for the interval-censored data. With the proportional hazards model, the conditional

hazard of T given a covariate vector Z ∈ Rd is proportional to the baseline hazard. In terms

of cumulative hazard functions, this model is

Λ(t|z) = Λ0(t)e
θ′0z,(4.2)

where θ0 is a d-dimensional regression parameter and Λ0 is the unspecified baseline

cumulative hazard function.

Denote the two censoring variables by U and V , where P (U ≤ V ) = 1. Let G be the

joint distribution function of (U, V ). Let δ1 = 1[T≤U ], δ2 = 1[U<T≤V ] and δ3 = 1 − δ1 − δ2.

Assume that conditional on Z, T is independent of (U, V ), and that the joint distribution of
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(U, V ) and Z does not depend on the parameters of interest. Then the density function of

X ≡ (δ1, δ2, U, V, Z) with respect to the product of the counting measure on {0, 1} × {0, 1}
and the probability measure induced by the distribution of (Z,U, V ), is

p(x; θ, Λ) = (1− exp(−Λ(u)eθ′z))δ1(exp(−Λ(u)eθ′z)− exp(−Λ(v)eθ′z))δ2(exp(−Λ(v)eθ′z)δ3 .

Let φ = log Λ. we reparametrize this log-likelihood in terms of (θ, φ). The resulting log-

likelihood for a sample of size one is, up to an additive term not dependent on (θ, φ) is

l(θ, φ; x) = log p(x, θ, φ)

= δ1 log(1− exp(−ez′θ+φ(u))) + δ2 log(exp(−ez′θ+φ(u))− exp(−ez′θ+φ(v)))

−δ3e
z′θ+φ(v).

Let X = (X1, X2, · · · , Xn) with Xi = (δ1i, δ2i, Ui, Vi, Zi), for 1 ≤ i ≤ n being a random sample

with the same distribution as X = (δ1, δ2, U, V, Z). The log-likelihood for this random sample

is

ln(θ, φ) =
n∑

i=1

l(θ, φ; Xi).

Because φ is a nondecreasing function, it is desirable to restrict its estimator to be also

nondecreasing. Therefore, we seek an estimate of φ in the space of Mn. (The abbreviation of

Mn(Dn, Kn, m)) The B-splines sieve MLE of τ0 = (θ0, φ0) is the τ̂n = (θ̂n, φ̂n) that maximizes

ln(θ, φ) over Θ×Mn. This is equivalent to maximizing ln(θ,B′nβ) over Θ×Bn. No restriction

will be placed on Θ. Thus Θ can be taken to be Rd.

As the same as in the model for panel count data, the B-splines sieve MLE is much

easy to compute than the semiparametric MLE studied in Huang and Wellner (1995). In

19



addition, we can show that under some mild regularity conditions, the sieve MLE of θ, θ̂n,

achieves the semiparametric efficiency as well, with the information given by

I(θ0) = P (l∗(θ0, φ0; X)⊗2 = P
(
l̇1(θ0, φ0; X)− l̇2(θ0, φ0; X)(ξ0)

)⊗2

,

where ξ0(t) is the solution of a Fredholm integral equation of the second kind,

ξ0(t)−
∫

K(t, x)ξ0(x)dx = d(t)

with two complicate functions K(t, x) and d(t) described in Huang and Wellner (1995). It

is obvious that a direct estimation of the information matrix is impossible for this model.

However, with the B-splines sieve MLE approach, variance of θ̂n can be readily estimated

using the observed information matrix defined in (3.1) due to Propositions 2.1 and 3.1.

For the asymptotic normality of θ̂n and consistency of the inverse observed information

matrices, the following conditions are assumed.

(C1) (a) E(ZZ ′) is nonsingular; (b) Z is bounded, that is, there exists z0 > 0 such that

P (‖Z‖ ≤ z0) = 1.

(C2) (a) There exists a positive number η such that P (V − U ≥ η) = 1; (b) the union of

the supports of U and V is contained in an interval [a, b], where 0 < a < b < ∞, and

0 < Λ0(a) < Λ0(b) < ∞.

(C3) Λ0 belongs to Φ, a class of functions with bounded pth derivative in [a, b] for p ≥ 1

and the first derivative of Λ0 is strictly positive and continuous on [a, b].

(C4) The conditional density g(u, v|z) of (U, V ) given Z has bounded partial derivatives with

respect to (u, v). The bounds of these partial derivatives do not depend on (u, v, z).
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(C5) For some κ ∈ (0, 1), aT var(Z|U)a ≥ κaT E(ZZT |U)a and aT var(Z|V )a ≥
κaT E(ZZT |V )a a.s. for all a ∈ Rd.

It should be noted that in applications, implementation of the proposed estimation

method does not require these conditions to be satisfied. These conditions are sufficient

but may not be necessary to prove the following asymptotic theorem. Some conditions may

be weakened but will make the proof considerably more difficulty. However, from a view

point of practice, these conditions are usually satisfied.

To study the asymptotic properties, we facilitate a metric defined as follows: for any

φ1, φ2 ∈ Φ, define

‖φ1 − φ2‖2
Φ = E[φ1(U)− φ2(U)]2 + E[φ1(V )− φ2(V )]2.

and for any τ1 = (θ1, φ1) and τ2 = (θ2, φ2) in the space of T = Θ× Φ, define

d(τ1, τ2) = ‖τ1 − τ2‖T =
{‖θ1 − θ2‖2 + ‖φ1 − φ2‖2

Φ

}1/2
.

Theorem 4.1. Let Kn = O(nν), where ν satisfies the restriction 1
2(1+p)

< ν < 1
2p

.

Suppose that T and (U, V ) are conditionally independent given Z and that the distribution

of (U, V, Z) does not involve (θ, Λ). Furthermore, suppose that conditions (C1)–(C5) hold.

Then

(i) d (τ̂n, τ0) →p 0.

(ii) d (τ̂n, τ0) = Op

(
n−min(pν,(1−ν)/2)

)
. Thus if ν = 1/(1 + 2p), d(τ̂n, τ0) = Op(n

−p/(1+2p)).

This is the optimal rate of convergence in nonparametric regression with comparable

smoothness assumptions.
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(iii) n1/2(θ̂n − θ0) = n−1/2I−1(θ0)
∑n

i=1 l∗(θ0, φ0; Xi) + op(1) →d N(0, I−1(θ0)). Thus θ̂n is

asymptotically normal and efficient.

(iv) The inverse observed information matrix is a consistent estimator of I−1(θ0), the

asymptotic variance of n1/2(θ̂n − θ0).

The proof of this theorem is considerably long, we will provide a sketch of the proof in

Appendix A.

5. Numerical Results

5.1. Simulations Studies

In this section, we conduct simulation studies for the examples discussed in the preceding

section to evaluate the finite sample performance of the proposed estimator. In each example,

we estimate the unknown parameters using the cubic B-splines sieve maximum likelihood

estimation and estimate the standard error of the regression parameter estimates using the

proposed least-squares method based on the cubic B-splines as well. For the B-splines sieve,

the number of knots is chosen as Kn = [N1/3], the largest integer below N1/3, where N is

the number of distinct observation time points in the data, and the knots are evenly placed

between (0, 1) in the first example and (0, 5) in the second example.

Simulation 1: Panel Count Data. We generate the data with the setting given

in Wellner and Zhang (2007). For each subject, we independently generate Xi =

(Zi, Ki, T
(i)
Ki

,N(i)
Ki

), for i = 1, 2, · · · , n, where Zi = (Zi,1, Zi,2, Zi,3) with Zi,1 ∼ Unif(0, 1),

Zi,2 ∼ N(0, 1), and Zi,3 ∼ Bernoulli(0.5); Ki is sampled randomly from the discrete

set, {1, 2, 3, 4, 5, 6}; Given Ki, T
(i)
Ki

= (T
(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

) are the order statistics of
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Table 1: Monte-Carlo simulations results of the B-splines sieve MLE of θ0 with
1000 repetitions for semiparametric analysis of panel count data

n=50 n=100 n=200

θ0,1 θ0,2 θ0,3 θ0,1 θ0,2 θ0,3 θ0,1 θ0,2 θ0,3

Bias 0.0001 -0.0003 0.0014 0.0003 0.0005 0.0001 -0.0012 0.0003 -0.0002
M-C sd 0.1029 0.0286 0.0712 0.0685 0.0188 0.0488 0.0474 0.0141 0.0337
ASE 0.1365 0.0418 0.0865 0.0805 0.0239 0.0542 0.0519 0.0152 0.0359
95%-CP 98.4% 98.5% 97.5% 97.6% 97.9% 96.5% 96.2% 95.1% 96.6%

Ki random draws from Unif(0, 1); The panel counts N(i)
Ki

= (N(i)
Ki,1

,N(i)
Ki,2

, · · · ,N(i)
Ki,Ki

) are

generated from the Poisson process with the conditional mean function given by Λ(t|Zi) =

2t exp(θT
0 Zi) with θ0 = (−1.0, 0.5, 1.5)T .

We conduct the simulation study for n =50, 100 and 200, respectively. In each case,

we perform Monte-Carlo study with 1000 repetitions. Table 1 displays the estimation

bias(Bias), Monte-Carlo standard deviation(M-C s.d.), the average of standard errors using

the proposed method(ASE), and the coverage probability of 95% Wald-confidence interval

using the proposed estimator of standard error(95%-PC).

The results show that the B-splines sieve MLE performs quite well. It has very little bias

with seemingly decrease of estimation variability as sample size increases. The proposed

method tends to overestimate the standard error slightly but the overestimation lessens

as sample size increases. As the result of overestimation, the coverage probability of 95%

confidence interval exceeds the nominal value when sample size is 50 or 100 but gets closer

to 95% with sample size increasing to 200.

Simulation 2: Interval-Censored Data. We generate the data in a way similar to
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Table 2: Monte-Carlo simulations results for B-splines sieve MLE of θ0 with 1000
repetitions for semiparametric analysis of interval-censored data

n=50 n=100 n=200

Bias 0.1194 0.0572 0.0196
M-C sd 0.7850 0.4966 0.3422
ASE 0.8649 0.5212 0.3506
95%-CP 97.4% 96.4% 95.6%

what was used in Huang and Rossini (1997). For each subject, we independently generate

Xi = (Ui, Vi, δi,1δi,2, Zi), for i = 1, 2, · · · , n, where Zi ∼ Bernoulli(0.5); we simulate a series

of examination times by the partial sum of interarrival times that are independently and

identically distributed according to exp(1), then Ui is the last examination time within 5 at

which the event has not occurred yet and Vi is the first observation time within 5 at which the

event has occurred; the event time is generated according to Cox proportional hazards model

Λ(t) = t exp(Z) for which the true parameters are: θ0 = 1 and Λ0(t) = t. Similarly, Monte-

Carlo study with 1000 repetition is performed and the corresponding results are displayed

in Table 2.

The results show that both bias and Monte-Carlo standard deviation decrease as sample

size increases. As observed earlier, the proposed least square estimate of the standard error

may overestimate the true value but the overestimation lessens as sample size increasing to

200. With sample size 200, the Wald 95% confidence-interval achieves the desired coverage

probability.
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5.2. Applications

This section illustrates the method in two real life examples: the bladder tumor randomized

clinical trial conducted by Byar, Blackard and VACURG (1977) and the breast cosmesis

trial described by Finkelstein and Wolfe (1985). We adopt the cubic B-splines sieve

semiparametric MLE method and we estimate the asymptotic standard error of the estimates

of regression parameter using the least-squares approach with cubic B-splines as well. The

inference is made based on asymptotic theorem developed in this paper.

Example 1: Bladder Tumor Study. The data set of the bladder tumor randomized

clinical trial conducted by the Veterans Administration Cooperative Urological Research

Group (Byar, Blackard and VACURG, 1977) is extracted from Andrews and Herzberg (1985,

p. 253-260). In this study, a randomized clinical trial of three treatments : placebo,

pyridoxine pill and thiotepa instillation into bladder, was conducted for patients with

superficial bladder tumor (a total of 116 subjects: 40 were randomized to placebo, 31 to

pyridoxine pill and 38 to thiotepa instillation) when entering the trial. At each follow-up

visit, tumors were counted, measured and then removed after being found. The treatments

as originally assigned will continue after each visit. The number of follow-up visits and

follow-up times varied greatly from patient to patient and hence the observation of bladder

tumor counts in this study falls in the framework of panel count data as described in Section

4.

For this trial, the treatment effects, particularly the thiotepa instillation method, on

reducing the bladder tumor recurrent have been the focal point of interest in many studies,

see for example, Wei, Lin and Weissfeld (1989), Sun and Wei (2000), Zhang (2002) and

Wellner and Zhang (2007). In this paper, we study the proportional mean model as proposed

by Wellner and Zhang (2007),
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E{N(t)|Z} = Λ0(t) exp(θ0,1Z1 + θ0,2Z2 + θ0,3Z3 + θ0,4Z4),(5.1)

where Z1 and Z2 are the baseline tumor count and size, measured when subjects entered the

study, and Z3 and Z4 define the indicators of the pyridoxine pill and instillation treatments,

respectively. Lu, Zhang and Huang (2008) has used the cubic B-splines sieve semiparametric

MLE method for this model and estimated the asymptotic standard error of the estimate

of θ0 based on the bootstrap approach. In this paper, we reanalyze the data using the

same method but estimate the asymptotic standard error using the least-squares approach.

The semiparametric sieve MLE of θ0 is θ̂n = (0.2076,−0.0356, 0.0647,−0.7949) with the

asymptotic standard errors given by (0.0066, 0.0101, 0.0338, 0.0534) and the corresponding p-

values=(0.0000,0.0004,0.0553,0.0000) based on the asymptotic theorem developed in Wellner

and Zhang (2007). We note that the result of this analysis is very different from that of Lu,

Zhang and Huang (2008). The conflict of the results indirectly indicates that the working

assumption of Poisson process model to form the likelihood may not be valid as Lu-Zhang-

Huang’s inference procedure is shown to be robust against the underlying counting process.

Example 2: Breast Cosmesis Study. The breast cosmesis study is the clinical trial

for comparing radiotherapy alone with primary radiotherapy with adjuvant chemotherapy in

terms of subsequent cosmetic deterioration of the breast following tumorectomy. Subjects (46

assigned to radiotherapy alone and 48 to radiotherapy plus chemotherapy) were followed for

up to 60 months, with pre-scheduled follow-up visits for every 4-6 months. In this paper, we

propose Cox proportional hazards model to analyze the difference in time until appearance
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of breast retraction,

Λ(t|Z) = Λ0(t) exp(θ0Z),(5.2)

where Λ0 is the baseline hazard (the hazard of the time to appearance of breast retraction)

for radiotherapy alone) and Z is the indicator for the treatment of radiotherapy plus

chemotherapy. Using the method proposed in this paper, the cubic B-splines sieve

semiparametric MLE of θ0 is θ̂n = 0.8948 with asymptotic standard error given by 0.2926.

The Wald test statistic is Z = 3.0582 with the associated p-value=0.0011. This indicates

that the treatment of radiotherapy with adjuvant chemotherapy significantly increases the

risk of the breast retraction and the result is comparable with what has been concluded in

Finkelstein and Wolfe (1985).

6. Conclusion and Discussion

When the infinite dimensional parameter as nuisance parameter can not be eliminated in

estimating the finite dimensional parameter, a general semiparametric maximum likelihood

estimation is often a challenging task. Sieve MLE method, proposed originally by

Geman and Hwang (1982), renders a practical approach for alleviating the difficulty in

semiparametric estimation problem. Particularly, the spline-based sieve semiparametric

method, as exemplified by Lu, Zhang and Huang (2008) has many attractions in practice.

Not only it reduces the numerical difficulty in computing the semiparametric MLE, it

also achieves the semiparametric asymptotic estimation efficiency for the finite dimensional

parameter. However, the estimation of the information matrix remains a difficult task in

general. In this paper, we propose an easy-to-implement least-squares approach to estimate
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the semiparametric information matrix. We show that the estimator is asymptotic consistent,

as often a byproduct of the establishment of asymptotic normality for sieve semiparametric

MLE. Interestingly, this estimator is exactly the observed information matrix if we treat

the semiparametric sieve MLE as a parametric MLE problem. Although the estimator of

asymptotic error overestimates the true value slightly in finite sample situation as shown

in our simulation studies, the overestimation issue is generally alleviated as sample size

increases, say to 200.

In addition to the expression of information matrix given in (2.7), we note that

it can be expressed through the second derivatives. Denote l̈11(τ ; x) = ∂
∂θ

l̇1(τ ; x),

l̈12(τ ; x) = ∂
∂s

l̇1(θ, φ(s); x)|s=0, l̈21(τ ; x)(h) = ∂
∂θ

l̇2(τ ; x)(h), and letting (∂/∂s) φ1(s)|s=0 = h1,

l̈22(τ ; x)(h, h1) = ∂
∂s

l̇2(θ, φ1(s); x)(h). Then the information matrix can be written as

I(θ0) = −E
[
l̈11(τ0; X)− 2l̈12(τ0; X)(ξ0) + l̈22(τ0; X)(ξ0, ξ0)

]
.

This expression leads to an alternative estimator of I(θ0), given by

ρ̃n(ξ̃n) = −n−1

n∑
i=1

[
l̈11(τ̂n; Xi)− 2l̈12(τ̂n; Xi)(ξ̃n) + l̈22(τ̂n; Xi)(ξ̃n, ξ̃n)

]
,(6.1)

where ξ̃n is the minimizer of ρ̃n(h) over Hn. The consistency of ρ̃n(ξ̃n) can be similarly shown

and it would be interesting to investigate how this estimator behaves compared to the one

proposed in this paper.

As implied in Example 1, this semiparametric inference procedure is not robust against

the underlying probability model. If the true model is not the working model for forming

the likelihood, the inference may be invalid. Wellner and Zhang (2007) developed a general

theorem for making robust semiparametric inference and Lu, Zhang and Huang (2007) extend
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the robust semiparametric inference to the spline-based sieve semiparametric estimation. It

remains an open research problem on how to generalize the proposed least-squares method

to estimate the asymptotic error of the regression parameter estimates in order to make

robust semiparametric inference.

7. Appendix A

This section contains the sketch of the proofs for Proposition 2.1 and Theorem 4.1. In the

following, C represents a constant that may varies from place to place.

The proof for Proposition 2.1:

For the least favorable direction ξ0, we define Hn(ε) = {h : h ∈ Hn and ‖h− ξ0‖H ≥ ε}
for ε ↓ 0. Note that for any h ∈ H,

ρn(h)− ρn(ξ0) = (Pn − P )`(τ̂n, h; X)− (Pn − P )`(τ̂n, ξ0; X)

+P {`(τ̂n, h; X)− `(τ0, h; X)} − P {`(τ̂n, ξ0; X)− `(τ0, ξ0; X)}

+P {`(τ0, h; X)− `(τ0, ξ0; X)}

Because the class = = {`(τ, h; X) : τ ∈ T and h ∈ H} is Glivenko-Cantelli and

τ̂n ∈ Hn ⊂ H, we have that

(Pn − P )`(τ̂n, h; X) = oP (1) and (Pn − P )`(τ̂n, ξ0; X) = op(1).

In addition, by the weak consistency of τ̂n →p τ0, Continuous Mapping Theorem and
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Dominate Convergence Theorem, we can conclude that

P {`(τ̂n, h; X)− `(τ0, h; X)} →p 0 and P {`(τ̂n, ξ0; X)− `(τ0, ξ0; X)} →p 0.

Hence for any h ∈ H,

ρn(h)− ρn(ξ0) = ρ(h)− ρ(ξ0) + op(1) > 0 in probability as n →∞

by the characteristics of the least favorable direction. This implies that

P

(
inf

h∈Hn(ε)
ρn(h) > ρn(ξ0)

)
→p 1

and hence let ε → 0 we can conclude that ‖ξ̂n − ξ0‖H →p 0.

Subsequently, we can conclude

ρn(ξ̂n) = Pn`(τ̂n, ξ̂n; X)

= (Pn − P )`(τ̂n, ξ̂n; X) + P`(τ̂n, ξ̂n; X) →p P`(τ0, ξ0; X) = I(θ0),

by the consistency of τ̂n and ξ̂n and = being a Glivenko-Cantelli.

The proof for Theorem 4.1:

To prove Part (i) of Theorem 4.1, we verify the conditions of Theorem 5.7 in van der Vaart

(1998). Let M(τ) = Pl(τ ; X) = Pl(θ, φ; X) and Mn(τ) = Pnl(τ ; X) = Pnl(θ, φ; X). Hence

for any τ = Tn = Θ×Mn, Mn(τ)−M(τ) = (Pn − P )l(τ ; X).

Let L1 = {l(τ ; X) : τ ∈ Tn}. By the calculation of Shen and Wong (1994), page 597,

∀ε > 0, the bracketing number of Mn computed with L1(P )-norm is bounded by (1/ε)Cqn .
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Since Θ ⊂ Rd is compact, Θ can be covered by C(1/ε)d balls with radius ε. Then by

Conditions (C1)-(C3), we can easily construct ε-brackets for L1 with the bracketing number

with L1(P )-norm bounded by C(1/ε)Cqn+d. Hence L1 is Glivenko-Cantelli by Theorem 2.4.1

of van der Vaart and Wellner (1996). Therefore, supτ∈Tn
|Mn(τ)−M(τ)| →p 0.

Let g(z, t) = exp(θ′z + φ(t)) and g0(z, t) = exp(θ′0z + φ0(t)). A straightforward algebra

yields that

M(τ0)−M(τ) = E

{
[1− exp(−g0(Z, U))] log

1− exp(−g0(Z,U))

1− exp(−g(Z,U))

+[exp(−g0(Z, U))− exp(−g0(Z, V ))] log
exp(−g0(Z, U))− exp(−g0(Z, V ))

exp(−g(Z, U))− exp(−g(Z, V ))

+ exp(−g0(Z, V )) log
exp(−g0(Z, V ))

exp(−g(Z, V ))

}

= E

{
[1− exp(−g(Z, U))]m

(
1− exp(−g0(Z, U))

1− exp(−g(Z, U))

)

+[exp(−g(Z,U))− exp(−g(Z, V ))]m

(
exp(−g0(Z,U))− exp(−g0(Z, V ))

exp(−g(Z,U))− exp(−g(Z, V ))

)

+ exp(−g(Z, V ))m

(
exp(−g0(Z, V ))

exp(−g(Z, V ))

)}
,

where m(x) = x log x − x + 1 ≥ (x − 1)2/4 for 0 ≤ x ≤ 5. Further analysis using Taylor

expansion and Conditions (C1)-(C3) leads to

M(τ0)−M(τ) ≥ CE

{
1

1− exp(−g(Z, U))
[exp(−g0(Z,U))− exp(−g(Z,U))]2

+
1

exp(−g(Z, V ))
[exp(−g0(Z, U))− exp(−g(Z, U))]2

}

≥ CE
{

[(θ0 − θ)′Z + (φ0 − φ)(U)]
2
+ [(θ0 − θ)′Z + (φ0 − φ)(V )]

2
}

.

With Conditions (C1)-(C5), using the same arguments as those in Wellner and Zhang (2007),
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page 2126-2127 leads to

M(τ0)−M(τ) ≥ C
(‖θ − θ0‖2 + ‖φ− φ0‖2

Φ

)
= Cd2(τ0, τ).

Then it implies that supτ :d(τ,τ0)≥εM(τ) ≤M(τ0)− Cε2 < M(τ0).

For φ0 ∈ Φ, Lu (2007) has shown that there exists a φ0,n ∈Mn of order m ≥ p + 2 such

that

‖φ0,n − φ0‖∞ ≤ Cq−p
n = O

(
n−pν

)
.

This also implies that ‖φ0,n − φ0‖Φ ≤ Cq−p
n = O (n−pν). Now let τ0,n = (θ0, φ0,n), we have

Mn(τ̂n)−Mn(τ0) = Mn(τ̂n)−Mn(τ0,n) +Mn(τ0,n)−Mn(τ0)

≥ Pnl(τ0,n; X)− Pnl(τ0; X)

= (Pn − P ) {l(τ0,n; X)− l(τ0; X)}+M(τ0,n)−M(τ0).

We can easily show that the class L2 = {l(θ0, φ; x)− l(θ0, φ0; x) : φ ∈Mn and ‖φ−φ0‖Φ ≤
Cn−pν} is a P -Donsker by calculating the bracketing number with L2(P )-norm. It is obvious

that in this class P (l(θ0, φ; X)− l(θ0, φ0; X))2 → 0 as n →∞. Hence

(Pn − P ) {l(θ0, φ0,n; X)− l(θ0, φ0; X)} = op(n
−1/2)

by the relationship between P-Donsker and asymptotic equicontinuity given by Corollary

2.3.12 of van der Vaart and Wellner (1996). By the Dominated Convergence Theorem, it is

easy to see that M(τ0,n)−M(τ0) > −o(1). Therefore,

Mn(τ̂n)−Mn(τ0) ≥ op(n
−1/2)− o(1) = −op(1).

32



This completes the proof of d(τ̂n, τ0) →p 0.

To prove Part (ii), we verify the conditions of Theorem 3.2.5 of van der Vaart and Wellner

(1996). First, we have already shown in the proof of consistency that M(τ0) − M(τ) ≥
Cd2(τ0, τ).

Next, we further explore Mn(τ̂n) − Mn(τ0). In the proof of Part (i), we know that

Mn(τ̂n) − Mn(τ0) ≥ I1,n + I2,n, where I1,n = (Pn − P ) {l(θ0, φ0,n; X)− l(θ0, φ0; X)} and

I2,n = P {l(θ0, φ0,n; X)− l(θ0, φ0; X)}. By Taylor expansion, we have

I1,n = (Pn − P )
{

l̇2(θ0, φ̃; X)(φ0,n − φ0)
}

= n−pν+ε(Pn − P )

{
l̇2(θ0, φ̃; X)

φ0,n − φ0

n−pν+ε

}

for any 0 < ε < 1/2−pν. Because ‖φ0,n−φ0‖∞ = O(n−pν), using Corollary 2.3.12 of van der

Vaart and Wellner (1996), we can show that (Pn−P )
{

l̇2(θ0, φ̃; X)φ0,n−φ0

n−pν+ε

}
= op(n

−1/2). Hence

I1,n = op(n
−pν+εn−1/2) = op(n

−2pν). Using the fact that the function m(x) = x log x−x+1 ≤
(x − 1)2 in the neighborhood of x = 1, it can be easily argued that M(τ0) − M(τ0,n) ≤
C‖φ0,n − φ0‖2

Φ = O(n−2pν), which implies that I2,n = M(τ0,n) −M(τ0) ≥ −O(n−2pν). Thus

we conclude that Mn(τ̂n)−Mn(τ0) ≥ −Op(n
−2pν) = −Op

(
n−2min(pν,(1−ν)/2)

)
.

Let L3(η) = {l(τ ; x) − l(τ0; x) : φ ∈ Mn and d(τ, τ0) ≤ η}. Using the same

argument as that in the proof of consistency, we obtain that the logarithm of the ε-

bracketing number of L3(η), log N[ ](ε,L3(η), L2(P )) is bounded by Cqn log(η/ε). This leads

to J[ ](η,L3(η), L2(P )) =
∫ η

0

√
1 + log N[ ](ε,L3(η), L2(P ))dε ≤ Cq

1/2
n η. Because Conditions

(C1) and (C2) guarantee the uniform boundedness of l(τ ; x), using Theorem 3.4.1 of van der

Vaart and Wellner (1996), the key function φn(η) in Theorem 3.2.5 of van der Vaart and
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Wellner (1996) is given by φn(η) = q
1/2
n η + qn/n1/2. Note that

n2pνφn(1/npν) = npνnν/2 + n2pνnν + n2pνnν/n1/2 = n1/2
{
npν−(1−ν)/2 + n2pν−(1−ν)

}
.

Therefore, if pν ≤ (1 − ν)/2, n2pνφn(1/npν) ≤ n1/2. This implies that if we choose rn =

min(pν, (1 − ν)/2), it follows that r2
nφn(1/rn) ≤ n1/2 and Mn(τ̂n) − Mn(τ0) ≥ −Op(r

−2
n ).

Hence rnd(τ̂n, τ0) = Op(1).

To derive the asymptotic normality for θ̂n, we just need to verify the conditions of the

general theorem given in Appendix B. For Condition (B1), we only need to verify that

Pnl̂2(θ̂n, φ̂n; X)(ξ0) = op(n
−1/2) since Pnl̇1(θ̂n, φ̂n; X) ≡ 0. Because ξ0 has a bounded

derivative, it is also a function with bounded variation. Then it can be easily shown using

the argument in Bilingsley (1986, page 435-436) that there exist a ξ0,n ∈ Sn(Dn, Kn,m)

such that ‖ξ0,n − ξ0‖Φ = O(q−1
n ) = O(n−ν) and Pnl̇2(τ̂n; X)(ξ0,n) = 0. Therefore we

can write Pnl̇2(τ̂n; X)(ξ0) = I3,n + I4,n, where I3,n = (Pn − P )l̇2(τ̂n; X)(ξ0 − ξ0,n) and

I4,n = P
{

l̇2(τ̂n; X)(ξ0 − ξ0,n)− l̇2(τ0; X)(ξ0 − ξ0,n)
}

.

Let L4 = {l̇2(τ ; x)(ξ0 − ξ) : τ ∈ Tn, ξ ∈ Sn(Dn, Kn,m) and ‖ξ0 − ξ‖Φ ≤ n−ν}. It

can be similarly shown that L4 is a P -Donsker and for any r(τ, ξ; x) ∈ L4, Pr2 →p 0 as

n → ∞. Hence I3,n = op(n
−1/2) by Corollary 2.3.12 of van der Vaart and Wellner (1996).

By Cauchy-Schwatz inequality, it can be easily shown that

I4,n ≤ Cd(τ̂n, τ0)‖ξ0 − ξ0,n‖Φ = Op

(
n−min(pν,(1−ν)/2)n−ν

)
= Op

(
n−min(ν(p+1),(1+ν)/2)

)

= op(n
−1/2).

So (B1) holds. (B2) holds by showing that the class L5(η) = {l∗(τ ; x) − l∗(τ0; x) : τ ∈
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Tn and d(τ, τ0) ≤ η} is P -Donsker and for any r(τ ; x) ∈ L5(η), Pr2 →p 0 as η → 0. (B3)

can be easily established using Taylor expansion and the rate of convergence derived in Part

(ii). Hence the proof is complete.

For Part (iv), based on what we have shown in Parts (i) and (ii), it can be easily argued that

the bracket number with L1(P )-norm of the class = defined in Proposition 2.1 is bounded.

So = is Glivenko-Cantelli by Theorem 2.4.1. of van der Vaart and Wellner (1996). Hence the

result follows given the consistency of (τ̂n, ξ̂n) and the approximation properties of B-splines.

8. Appendix B: A General Theorem for Asymptotic

Normality

This section presents a general theorem for asymptotic normality of the MLE of final-

dimensional parameter in the setting of semiparametric maximum likelihood estimation when

the infinite-dimensional parameter is treated as a nuisance parameter. This theorem is the

simplified version of the general theorem given in Huang (1996). The following conditions

will be assumed.

(B1): Pnl̇1(θ̂n, φ̂n; X) = op(n
−1/2) and Pnl̇2(θ̂n, φ̂n; X)(ξ0) = op(n

−1/2)

(B2): (Pn − P )
{

l∗(θ̂n, φ̂n; X)− l∗(θ0, φ0; X)
}

= op(n
−1/2)

(B3): P
{

l∗(θ̂n, φ̂n; X)− l∗(θ0, φ0; X)
}

= −I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n
−1/2)

Theorem 8.1. Suppose (B1)-(B3) are satisfied, and suppose that I(θ0) is nonsingular.

Then

n1/2(θ̂n − θ0) = n1/2I−1(θ0)
n∑

i=1

l∗(θ0, φ0; Xi) + op(1) →d N
(
0, I−1(θ0)

)
.
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Proof: Combining (B2) and (B3), we have

Pn

{
l∗(θ̂n, φ̂n; X)− l∗(θ0, φ0; X)

}
= −I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n

−1/2).

By (B1), it follows that

Pnl∗(θ0, φ0; X) = I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n
−1/2)

Because I(θ0) is nonsingular, and Pnl∗(θ0, φ0; X) = Op(n
−1/2), this implies that ‖θ̂n − θ0‖ =

Op(n
−1/2). Thus op(‖θ̂n − θ0‖) = op(n

−1/2) and therefore

Pnl∗(θ0, φ0; X) = I(θ0)(θ̂n − θ0) + op(n
−1/2).

The result follows.

REFERENCES

Andrews, D. F, and Herzberg, A. M. (1985). Data; A Collection of Problems from Many

Fields for the Students and Research Works. New York: Springer-Verlag.

Begun, J. M., Hall, W. J., Huang, W. M. and Wellner, J. A. (1983). Information and

asymptotic efficiency in parametric-nonparametric models. The Annals of Statistics,

11, 432-452.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive

Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore.

Billingsley, P. (1986). Probability and Measure. John Wiley, New York.

36
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Gu, M. G. and Zhang, C.-H. (1993). Asymptotic Properties of self-consistent estimation

based on doubly censored data. Annals of Statistics, 21, 611-624.

Huang, J. (1996). Efficient Estimation for the Cox Model with Interval Censoring. Annals

of Statistics, 24, 540-568.

Huang, J. (1997). Limit distribution of a LS-estimator for the parametric component in the

partly linear additive model. Preprint, Dept. of Statistics and Actuarial Sci., Univ. of

Iowa.

Huang, J. and Rossini, A. J. (1997). Sieve Estimation for the Proportional Odds Failure-

time Regression Model with Interval Censoring. Journal of the American Statistical

Association, 92, 960-967.

Huang, J. and Wellner (1995). Efficient Estimation For The Proportional Hazards Model

With ”Case 2” Interval Censoring. Technical Report, 289, Department of Statistics,

University of Washington. (http://www.stat.washington.edu/tech.reports/).

Lu, M.(2007). Analysis of Panel Count Data Using Monotone Polynomial Splines. (Doctoral

Dissertation), University of Iowa.

Lu, M., Zhang, Y. and Huang, J.(2008). Semiparametric Estimation Methods

for Panel Count Data Using Monotone Polynomial Splines. Technical Report,

2008-1, Department of Biostatistics, University of Iowa. (http://www.public-

health.uiowa.edu/biostat/research/documents).

38



Murphy, S. (1995). Asymptotic theory for the frailty model. Annals of Statistics, 23, 182-198.

Murphy, S., Rossini, A. J., and van der Vaart, A. W. (1997). Maximum likelihood estimation

in proportional odds model. J. Amer. Statist. Assoc., 92, 968-976.

Murphy, S. and van der Vaart, A. W. (1999). Observed information in semiparametric

models. Bernoulli, 5, 381-412.

Murphy, S. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc.,

95, 449-465.

Nielsen, G. G., Gill, R. D., Andersen, P. K. and Sorensen, T. I. (1992). A counting process

approach to maximum likelihood estimation in frailty models. Scandinavia Journal of

Statistics, 19, 25-44.

Pettitt, A. N. (1984). Proportional odds models for survival data and estimates using ranks.

Applied Statistics 33, 169-175.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations.

Annals of Statistics, 22, 300-325.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. John Wiley, New York.

Schumaker, L. (1981). Spline Functions: Basic Theory. Wiley, New York.

Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditional parametric

models. Annals of Statistics, 20, 1768-1802.

Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates. Annals of Statistics,

22, 580-615.

39



Stone, C. J. (1985). Additive regression and other nonparametric models. Annals of

Statistics, 13, 689-705.

Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models.

Annals of Statistics, 14, 590-606.

Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the Mean Function of Point Processes

Based on Panel Count Data. Statistical Sinica, 5, 279-190.

Sun, J., and Wei, L. J. (2000). Regression Analysis of Panel Count Data with Covariate-

Dependent Observation and Censoring Times. Journal of the Royal Statistical Society,

Ser. B, 62, 293-302.

van de Geer, S. (1993). Hellinger-consistency of certain nonparametric maximum likelihood

estimators. Annals of Statistics, 21, 14-44.

van der Laan, M. J. (1993). Efficient and Inefficient Estimation in Semiparametric Models

(Doctoral Dissertation). University of Utrecht, The Netherlands.

van der Vaart, A. W. (1991). On differentiable functionals. Annals of Statistics, 19, 178-204.

van der Vaart, A. W. (1994). Maximum likelihood estimation with partially censored

observations. Annals of Statistics, 22, 1896-1916.

van der Vaart, A. W. (1996). Efficient estimation in semiparametric mixture models. Annals

of Statistics, 24, 862-878.

van der Vaart, A. W.(1998). Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer Verlag, New York.

40



Wellner, A.J. and Zhang, Y.(2007). Likelihood-Based Semiparametric Estimation Methods

for Panel Count Data with Covariates. The Annals of Statistics, 35, 2106-2142.

Wong, W. H. and Severini, T. A. (1991) On maximum likelihood estimation in infinite

dimensional parameter space. Annals of Statistics, 16, 603-632.

Zhang, Y. (2002). A Semiparametric Pseudo-Likelihood Method for Panel Count Data.

Biometrika, 89, 39-48.

41


