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SUMMARY

Differences between treatment effects between centers in a multi-center trial may be important.
These differences represent treatment by subgroup interaction. Peto (1982) defines qualitative and
quantitative interaction. Qualitative interaction occurs when the simple treatment effect in at least
one subgroup has a different sign than in other subgroups: this interaction is important and is
important to detect. Interaction which is not qualitative is called quantitative: this is common and is
often not important. In this paper, based on two motivating multi-center clinical trials with binary
responses, a hierarchical model is used, with exchangeable mean responses between subgroups to each
treatment; this reflects that the treatment responses are similar but different. The posterior probability
of qualitative interaction is calculated and the Bayes Factor, which compares this posterior probability
to the corresponding prior probability, is proposed as a diagnostic for qualitative interaction. This
Bayes Factor can be used to derive a significance test which can be compared to other frequentist
tests for qualitative interaction. The frequentist power of the Bayesian test is examined and compared
to two other commonly used approaches due to Gail and Simon (1985) and Piantadosi and Gail (1993)
for different fixed combinations of treatment effects. The impact on power of imbalance between the
sample sizes in each subgroup is examined and the test based on the Bayes Factor typically has better
power for unbalanced designs, especially for small sample sizes. An exact test based on each of the
three test statistics is also suggested and applied to two situations assuming the random effects model.
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1. INTRODUCTION

Medical researchers typically examine response to treatment for different types of subjects in
a clinical trial. For example, they may want to know whether a treatment effect is different in
older subjects versus younger subjects, or in men versus women. If, for a group of subjects,
a treatment is not beneficial or even is harmful, but it is beneficial for others, this should be
discovered. Examining only the overall treatment effect may obscure an important effect of
treatment in particular subgroups [1].

A subgrouping is a partition of patients into mutually exclusive subsets or subgroups based
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on values of one or more variables [2]. Subgroup analysis is analyzing the treatment effect in
each subgroup category.

Comparing two treatments for each subgroup category separately increases the probability of
at least one type I error [3]. If there are many categories, control of error rates with traditional
approaches is difficult. In addition, the power of the test for interaction of a particular
magnitude is lower than that of the test for an overall effect of the same magnitude. Therefore,
applying separate subgroup analysis after showing statistically significant treatment-by-
subgroup interaction may not be an effective approach [3].

Follmann provides a survey of statistical techniques for subgroup analysis and interaction [6].
He also calculates the chance of having a p-value of less than 0.05 in one of two subgroups,
when the overall p-value is not significant. This probability is surprisingly large.

Peto [7] defines qualitative interaction (QI) as arising when the sign of the true treatment
differences varies between subgroups. When the magnitude of the treatment benefit varies,
but the sign does not, then there is quantitative interaction. Quantitative interactions are
unimportant and common while qualitative interactions are important and less likely [7]. A
qualitative interaction implies that the subgroup populations should be treated differently and
the overall result does not apply to all subgroups.

1.1. Review of Frequentist Methods

The standard test of interaction does not distinguish between qualitative and quantitative
interaction. Gail and Simon (G&S) [8] proposed a likelihood ratio test (LRT) constructed to
detect qualitative interaction. To apply this test to mutually exclusive subgroups, the estimates
of treatment effects in all subgroups are assumed to be normally or approximately normally
distributed with a known, or accurate estimate of, variance. This test is widely used to detect
qualitative interaction.

Silvapulle [9] stated that the G&S test is likely to be sensitive to outliers, and that the
asymptotic critical values given by G&S might not be appropriate in small samples. He
suggested replacing the least squares estimator by a robust estimator, the M-estimator, and
derived the exact critical values. Russek-Cohen and Simon [10] generalized the procedure of
G&S [8] to the case of two correlated estimates of treatment effect.

Piantadosi and Gail (P&G) [11] proposed an alternative test of qualitative interaction based
on the range test, which involves checking the minimum and the maximum observed treatment
differences over subgroups. G&S and P&G both use LRT to test for any interaction and then to
use the test of qualitative interaction only if the LRT for any interaction is significant. When
there are only two subgroups, P&G’s test of qualitative interaction is equivalent to G&S’s
test. P&G [11] claims that the range test should be more powerful when a treatment effect is
harmful in only a few subsets and beneficial in most of the subsets or vice versa, whereas the
G&S test [8] should be more powerful when the new treatment is harmful in several subsets
and beneficial in several other subsets. This claim is examined in Section 3 for examples of
binary responses.

Li and Chan [12] extended P&G’s range test to use all observed treatment differences
rather than only the minimum and the maximum. Pan and Wolfe [13] developed a test of
qualitative interaction of clinical significance which tests whether the difference in treatments
is bigger than a pre-defined value. Yan and Su [14] presented a review of testing for qualitative
interactions. Ciminera et al. [15] proposed a different (“push-back”) procedure to test for
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qualitative treatment-by-center interaction. Boos et al. [16] also proposed a new measure called
the Interaction Magnitude. Wiens and Heyse [17] compared several tests of interaction for non-
inferiority studies.

All of these authors recommend first examining the usual treatment-by-subgroup interaction,
and if the interaction term is not significant, basing the treatment recommendation on the
overall result combining all subgroups. They also recommend that the number of subgroups
be small. In addition, if the overall treatment effect of the study is not significant, drawing
definitive conclusions from subgroup analyses should be avoided [6]. In this paper, our Bayesian
approach will be compared to the G&S and P&G tests of qualitative interaction.

1.2. Review of Bayesian Tests of Interaction

With the Bayesian approach, the multiple comparison issue is different [18, 19]. There is no
need to adjust for experimental error rate with the Bayesian approach.

In their 1991 paper Dixon and Simon (D&S) [19] proposed a new Bayesian method for
the analysis of subgroups in clinical trials with binary covariates. They used vague prior
distributions for all of the regression coefficients except the treatment-by-covariate interactions,
which were assumed to be exchangeable and from a Normal distribution with mean zero.
However they commented that, if any subset is a priori of special interest, that subgroup should
be excluded from the interaction vector, and the exchangeability assumption should not be
applied to that subgroup. Because of the exchangeability of interaction terms, shrinkage occurs
in the Bayesian posterior point and interval estimates. Their method therefore incorporates
the prior belief that qualitative interactions are not likely to happen.

In a later paper, Simon [3] proposed a Bayesian approach for subgroup analysis under
the assumption of no qualitative interactions, and used informative prior distributions for
interaction effects. White et al. [20] used a questionnaire to elicit expert beliefs regarding
treatment and covariate effects in clinical trials. Similar to Simon [3] they use non-informative
prior distributions for main effects of treatment and prior distributions based on expert beliefs
for interaction terms.

The new approach developed here incorporates exchangeable mean responses to treatment
between subgroup categories. This represents a prior belief that responses in different subgroup
categories will be similar, as well as a belief that qualitative interaction is unlikely.

2. The MODEL and DEFINITIONS

The treatment effect in subgroup j is represented by φj , j = 1, ..., N . Since qualitative
interaction occurs when at least one subgroup’s treatment effect is in the opposite direction
to that in other subgroups, to test for a qualitative interaction the hypothesis to be tested is:

H0 : φj > 0 for all j or φj < 0 for all j,

H1 : There exists at least one pair j 6= j′ such that φj > 0 and φj′ < 0.

Define θij to be either the mean or a function of the mean of the response yijk, as in a
generalized linear model (GLM), of subject k assigned to treatment i in subgroup j. Then
φj = θ2j − θ1j . If φj > 0, the new treatment is superior to the standard therapy in subgroup
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j. Assume that

φj | µ, ω2 ind∼ Normal(µ, ω2). (1)

This represents the treatment effects, φj , being exchangeable between subgroups and being a
sample from a normal distribution with mean µ and standard deviation ω.

A prior distribution for µ and ω is required. The prior probability of qualitative interaction,
Pr(QI), is as follows:

Pr(QI) = 1− [Pr(φ1 > 0, ..., φN > 0) + Pr(φ1 < 0, ..., φN < 0)] (2)

= 1−
∫ ∫

[
N∏

j=1

Pr(φj | µ, ω) > 0 +
N∏

j=1

Pr(φj | µ, ω) < 0]dp(µ, ω)

=

∫ ∫
{1− [Φ(

µ

ω
)]N − [1− Φ(

µ

ω
)]N}dp(µ, ω)

After specification of a prior distribution for µ and ω, the double integral in Equation 2 may be
approximated by Monte Carlo integration. The posterior probability of qualitative interaction
based on data y, Pr(QI | y), will also be computed numerically, typically by Markov Chain
Monte Carlo.

Our Bayesian test quantifies the evidence for qualitative interaction through the Bayes
Factor, BF01, which can be used to conduct a hypothesis test. The BF01 is the ratio of the
posterior odds in favor of the null to the prior odds of the null. This terminology comes from
Good [21](page 36), and he attributed the method to Turing and Jeffreys [22].

BF01 =
[1− P (QI | y)]P (QI)

P (QI | y)[1− P (QI)]
(3)

Table I. Interpretation of Bayes Factor (Jeffreys)

Bayes Factor Strength of Evidence in favor of H1

BF01 > 1 Null hypothesis supported

10−1/2 < BF01 < 1 Not worth more than a bare mention

10−1 < BF01 < 10−1/2 Substantial evidence

10−3/2 < BF01 < 10−1 Strong evidence

10−2 < BF01 < 10−3/2 Very strong evidence
BF01 < 10−2 Decisive evidence

Jeffreys [23](page 432) provided a scale for interpreting the value of the BF01 as given
in Table I. Jeffreys suggested interpreting BF01 in half-units on the log

10
scale [22]. Thus

BF01 < 10−1, < 10−3/2 and < 10−2 are interpreted respectively as strong, very strong

and decisive evidence against the null hypothesis with Jeffreys’ scale. Kass and Raftery [22]
suggested using the more conservative version of Jeffreys’ interpretation, see Table II. They
suggested twice the natural log of BF01 which is on the same scale as the deviance and LRT
statistics.
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Table II. Interpretation of Bayes Factor (Kass and Raftery)

Bayes Factor Strength of Evidence in favor of H1

BF01 > 1 Null hypothesis supported
1/3 < BF01 < 1 Not worth more than a bare mention

1/20 < BF01 < 1/3 Positive evidence
1/150 < BF01 < 1/20 Strong evidence

BF01 < 1/150 Very strong evidence

A new Bayesian test is proposed in which the null hypothesis of no qualitative interaction
is rejected when BF01 is less than some bound m.

Alternatively a test for clinically meaningful qualitative interaction can be defined similarly,
for example, by calculating the Bayes Factor for

H0 : cb ≤ φj ≤ ch for all j = 1, . . . , N ,
H1 : There exist at least one pair j 6= j′ such that φj > cb and φ′j < ch.
The values cb and ch are chosen to represent clinically meaningful differences: benefit and

harm respectively. Different null and alternative hypotheses could also be examined.

2.1. Motivating Example with Binary Responses

This method was motivated by the design of a multi-center trial for cell transplantation. The
cells are processed locally at each center and variability between centers was a concern. In
addition, the processed cells were to be considered for licensing at the completion of the study,
and each center was to apply for a separate license. The trial was originally designed as a
randomized multi-center trial with 7 centers and subjects randomized to either a transplant or
usual care. The response was a binary outcome at 12 months after randomization. The sample
size of 65 subjects per treatment assignment was chosen based on frequentist power calculations
assuming no between center variability. A Bayesian subgroup analysis was proposed to examine
the treatment effect in each center separately using a model in which treatment effects were
exchangeable between centers. This study is used as a framework to study the properties of
procedures for detecting qualitative interaction.

Let yij denote the observed number of successes out of nij subjects in the ith treatment group
(i = 1, 2) in subgroup j (center j, j = 1, . . . , N). Also let pij denote the true underlying success
probability for treatment i, center j. It is assumed that given the success probability, pij , the
observed number of successes for each center, yij , is a draw from a Binomial distribution.

yij | pij ∼ Bin(nij , pij). (4)

For the logit link, θij = logit(pij) = log(pij/(1−pij)), and assume that, the θij ’s are draws from
a Normal distribution with mean µi and common variance σ2 in each treatment independently
for i = 1, 2. That is,

θij | µi, σ
2 ∼ Normal(µi, σ

2). (5)

θij represents the log odds for treatment i at center j and φj represents the log odds ratio for
center j. Treatment effects φj are
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φj | µ1, µ2, σ
2

∼ Normal(µ2 − µ1, 2σ2) (6)

and therefore define µ = µ2 − µ1 and ω = σ
√

2 in equation 1.
The prior distribution was constructed with the aid of existing data from the 7 centers.

The between center variance σ2 has an inverse gamma distribution with parameters α = 2
and β = 1.5, so that the mean of σ−2 is α

β = 4

3
. The population parameters (σ2, µ1, µ2), are

assumed independent and both µ1 and µ1 have a uniform distribution on (-4.595, 4.595). The
range for the uniform distribution was chosen so that the prior conditional distribution of θij

given µi had a specified range. This prior distribution is reasonably uninformative, and this
choice was examined in a sensitivity analysis and found to be reasonably robust.

2.2. IHAST Example

IHAST is a multi-center, prospective, randomized, partially blinded clinical trial, designed to
determine whether mild intraoperative hypothermia results in improved neurologic outcome
in patients with an acute subarachnoid hemorrhage (SAH) undergoing an open craniotomy to
clip their aneurysms [24]. The outcome is binary: a favorable outcome is defined as Glasgow
Outcome Score (GOS) equal to 1 ninety days after surgery. A subject with GOS score of 1
has “a capacity to resume normal occupational and social activities with minor physical or
mental deficits or symptoms” [24]. A total of 1001 subjects were followed postoperatively and
GOS evaluated on or about ninety days after surgery. Randomized treatment assignment was
stratified by center (30 centers) and by time from SAH to surgery (0 to 7 days or 8 to 14
days). The primary result of the study was that intraoperative hypothermia did not improve
the neurological outcome after craniotomy among good-grade patients with aneurysmal SAH
(66% favorable outcome on hypothermia vs 63 % favorable outcome on normothermia, odds
ratio = 1.14, 95% confidence interval: 0.88 to 1.48).

Although the overall result of the trial was not significant at the 0.05 level, the interaction
between gender and treatment was significant. In the hypothermia group, 69% of males
(120/174) were classified as having a good outcome, as compared to 57% (97/171) in the
normothermia group. Among women, 64% (209/325) in the hypothermia group had a GOS
score of 1, as compared to 66% (217/330) in the normothermia group (Table III).

Similarly, as shown in Table III, the interaction between time to surgery and treatment was
also significant [24]. Among the subgroup with time from SAH to surgery of 0 to 7 days there
was little difference: 64% (289/452) vs 63% (287/455) for hypothermia vs normothermia; in
the subgroup with 8 to 14 days after SAH, the comparison is 83% (39 of 47) vs 61% (28 of 46)
for the hypothemia to normothermia comparison. These results suggest that perhaps males
benefit from intraoperative hypothermia during surgery, whereas females do not and those
getting surgery 8 to 14 days after SAH benefit and other do not.

First consider gender. The null hypothesis of interaction of any kind is rejected (p = 0.03 by
the likelihood ratio test), and so the G&S and P&G tests are applied. Neither of these tests
detect qualitative difference between genders (p > 0.20). The prior distribution of (σ2, µ1, µ2)
is as in Section 2.1. To apply the Bayesian procedure, the prior probability of qualitative
interaction from Equation 2 is 0.160 and the posterior probability of qualitative interaction
is calculated as 0.637. The posterior probability of qualitative interaction is larger than the
prior probability. The BF01 is 0.108, indicating ‘substantial’ evidence with Jeffreys’ scale and
‘positive’ evidence with Kass and Raftery’s scales. The Bayes factor suggests a possibility of
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Table III. Comparison of Bayesian and frequentist tests with IHAST example

% favor. outcome p - values Prior Posterior

Normo. Hypo. %diff. LRT G&S P&G Pr(QI) Pr(QI | y) BF

Gender

Male 57% 69% 12% 0.03 p > 0.2 p > 0.2 0.16 0.64 0.11

Female 66% 64% −2%

Time from SAH to surgery (days)

0 - 7 63% 64% 1% 0.03 p > 0.2 p > 0.2 0.16 0.32 0.40

8 - 14 61% 83% 21%

qualitative interaction and adds additional information over the significance test. It quantifies
the evidence concisely and accurately. In addition, as described later in Section 3.5, assuming
that the prior distribution generates the value of φ, an exact test of size 0.05 using the Bayes
Factor gives a p-value of 0.01, and corresponding exact tests using the test statistics of G&S
and P&G give p-values of 0.01 and 0.39 respectively, indicating that this interaction may be
important.

Similar calculations are done for the subgroup defined by time from SAH to surgery and
the data are also given in Table III. For this subgroup, the posterior probability of qualitative
interaction is 0.32 giving BF01 = 0.404 which indicates ’not worth more than a bare mention’
by both Jeffreys’ and Kass and Raftery’s scales. Even though the LRT for any interaction is
significant (p = 0.03), neither G&S nor P&G test results are significant. These results are all
consistent: there is no compelling evidence of qualitative interaction.

2.3. IHAST Example with Clinically Meaningful Qualitative Interaction

Table IV. Joint prior probabilities for φ1 (treatment effect for females) and φ2 (treatment effect for
males) lying in different regions of R

2 in IHAST trial

Males

Females φ2 < −c −c < φ2 < c φ2 > c

φ1 < −c 0.38 0.04 0.04

−c < φ1 < c 0.04 0.02 0.04

φ1 > c 0.04 0.04 0.38

The qualitative interaction for gender in the IHAST trial is inconclusive and so the possibility
of a clinically meaningful qualitative interaction was examined. A 10% absolute difference (65%
vs 75%) in good outcomes is deemed clinically meaningful, given the additional complications
from hypothermia. This corresponds to a difference of c = 0.48 on the log odds scale. A
clinically meaningful qualitative interaction is therefore defined as occuring if φj < −c and
φj′ > c for two subgroups j and j′. Joint prior probabilities for treatment effect of females
and males lying in different regions of R

2 are given in Table IV. For example, the joint prior
probability of both φ1 and φ2 being less than c is 0.38 which is also the joint probability
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that both φ1 and φ2 being larger than c. This reflects the positive prior correlation making
qualitative interaction unlikely. The prior probability of clinically meaningful qualitative
interaction is 0.08 (0.04 + 0.04) and the posterior probability of qualitative interaction is
effectively zero. Almost all of the posterior probability is concentrated on two possibilities:
one where the effect of hypothermia is not clinically meaningful for either males or females
(posterior probability 0.52) and the second where the effect of hypothermia is clinically
meaningful for males, but not for females (posterior probability 0.48). The possibility that
hypothermia is clinically harmful in one subgroup has been ruled out.

3. SIMULATION STUDIES for MOTIVATING EXAMPLE

3.1. Design of Simulations

For ease of notation, let φ = (φ1, . . . , φN ) denote the odds ratios of the N centers. Assume that
there is equal allocation within centers: n1j = n2j for all j = 1, . . . , N . Denote nj = n1j + n2j ,

n = (n1, . . . , nN ) and n. =
∑N

j=1
ni. The simulation studies are based on the motivating

example of Section 2.1 with N = 7, and binary responses. The simulation study examines
the ability of BF01 to detect qualitative interaction, if present, compared to the power of the
methods of P&G and G&S. The type I error probability is also examined. Before starting
the simulations, the prior probability of qualitative interaction, given in (2), is estimated by
Monte Carlo. This prior probability depends only on the prior distribution and the number of
centers. Recall that the prior distribution in the example was that µ1 and µ2 are independent
and uniform on [−4.595, 4.595], and σ2 is independently distributed as an inverse gamma
distribution. Multiple sets of values of µ1, µ2 and σ2 are sampled from the prior distribution
giving a sample of µ = µ1 − µ2 and and ω = σ

√
2. For each value of µ and ω, the integrand

in (2) is calculated for N = 7 and then all are averaged. The average of these values, 0.3744,
is an estimate of the prior probability of qualitative interaction for this case. Note that, the
larger N is, the larger the prior probability of qualitative interaction.

Factors considered in the simulations are the degree of balance of the subjects in subgroups,
the magnitude of qualitative interaction and the sample size.

For each specified value of φ, corresponding success probabilities pij are derived: it is
arbitrarily assumed that the sum of the success probabilities in each group is 1. For example
a log odds ratio of 2.0, is given by p1 = 0.269 and p2 = 0.731. For each combination of φ
and n, the type I error probabilities and power are estimated empirically for G&S and P&G
tests as well as two Bayes test that compares BF01 to m for each of m = 1

32
and m = 1

150
.

These values of m correspond to “very strong evidence” with Jeffreys’ scale and with Kass and
Raftery’s scale respectively. All of the four tests, the two based on BF01 as well as the G&S
and P&G tests, are applied to each data set. The empirical type I error probability and power
for different tests are compared to each other. In practice, the exact value of the BF01 should
be reported to quantify the evidence for qualitative interaction, but to make a comparison
with the G&S and P&G tests a cut-off value is used. The impact of different combinations
of φ and n is examined in the simulations. The impact of balance was a concern among the
investigators in our motivating example and is also examined.

Because the data are simulated from a model with the pij fixed these are power and size
calculations in the frequentist framework: and the power of the BF01 test is the frequentist
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power of the Bayesian procedure.

For each of 5000 simulated data sets at each combination of φ and n, the LRT is used to
test for any interaction by fitting two fixed effects generalized linear models (GLM’s), one with
main effects only and the second with interaction and comparing the difference in deviance
to a χ2

6
distribution. The G&S and P&G are both recommended to be used protected by the

LRT: that is they are only declared significant if both the qualitative interaction test and the
LRT is significant at 0.05. Both the protected and the unprotected tests were examined in the
simulations. The posterior probability of qualitative interaction was calculated irrespectively
of the result of the LRT. The data sets are generated in R [25], and G&S and P&G tests are
applied in R. The data set is passed passed to WinBUGS [26] using R2WinBUGS [27] for the
posterior calculations and the results returned to R where equation (3) is used to calculate
BF01.

3.2. Type I error Rate

To examine the type I error probability, data are generated under several settings corresponding
to the absence of qualitative interaction. In the motivating example, it was anticipated that
there would be no between center variability: φj is constant for j = 1, . . . , 7. Seven different
sets of values for the φj for j = 1, . . . , N , and corresponding pij , were chosen which satisfy the
null hypothesis of no qualitative interaction. The total sample size was assumed to be either
65, 130, or 260. Results are given in the first part of Table V in section I.1 of Appendix and
also in Figure 1 for a total sample size of 260, and the approximately balanced allocation. In
these cases, as in all other cases, both the protected G&S and P&G tests were run on the same
simulated data sets. The protected procedure gave almost identical results to the unprotected
tests and so only the protected results are shown. The BF01 tests were not protected by the
LRT. Figure 1 shows that in all cases except the first, the Type I error rates are almost zero.
The first case corresponds to φ = (3.0, 3.0, 0.5, 0.5, 0.5, 0.5, 0.5) and BF01 was less than 1

32
in

just under 2% of cases. Of the seven values chosen to evaluate the null hypothesis, the first
case is closest to the boundary of the region where the null hypothesis is satisfied.

Additional simulations where some of the φj were set to zero were done, and in some cases
the Type I error rate of the Bayesian test was very large, close to 50%. Results of these
simulations can be found in Tables VI, VII and VIII in section I.1 of the Appendix. Because
of the large Type I error rate in some cases, additional simulations were run protecting the
Bayesian test with the test for a main effect of the treatment, using a fixed effects GLM.
These results can be found in Table IX in section I.2 of the Appendix. In some, but not all
cases, this protection led to more conservative Type I error rates, below the nominal 5% of the
frequentist tests. For example if φ = (φ, φ, 0, 0, 0, 0, 0), then the unprotected Type I error rate

for the BF01 < 1

32
is 0.61 and 0.51 for φ = 1 and φ = 2.5 respectively: when φ is smaller the

null hypothesis is more likely to be rejected. Using the corresponding protected test the Type
I error rate is reduced to 0.08 for φ = 1 but 0.49 for φ = 2.5: when φ is larger the test for
main effects is almost always rejected and so there is not much difference between protected
and unprotected procedures in the Type I error rate.

As might be expected the Type I error rate is large near the boundary of the region in the
parameter space of no qualitative interaction. This is the primary difference between the tests
based on the BF01 and the tests of P&G and G&S: the Type I error probability is large on or
near the boundary. Protecting the test based on BF01 does not satisfactorily address the large
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Figure 1. Type I error rates under different scenarios for the most balanced design

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679,
p2 = 0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818,
p2 = 0.182, for negative φ’s p1 and p2 are reversed.

Type I error rate in these cases. Section 3.5 shows how this can be addressed by constructing
a test with exact expected Type I error probability, where the expectation is over the prior
distribution restricted to the space of no qualitative interaction. A similar approach can be
used for any test and is done in Section 3.5 for the P&G and G&S tests.

3.3. Power when Treatment is Harmful in One Center

To examine the empirical power, first, the treatment effects are all assumed to be identical
in magnitude with exactly one having a negative sign. This reflects a concern that if any one
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Figure 2. Power of qualitative interaction tests, treatment effect is harmful in the first center, Bayesian
unprotected, frequentist protected by LRT

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679,
p2 = 0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818,
p2 = 0.182, for negative φ’s p1 and p2 are reversed.

center’s laboratory was not effective in isolating the cells for transplantation, the poor results
for that center on the experimental arm might adversely impact the trial. Table X provides the
results for a total sample size of 260 and 4 designs ranging from most balanced to extremely
unbalanced. These results are plotted in Figure 2. This figure shows that when the G&S and
P&G tests have power over 80% (in the more balanced cases) the BF01 tests have slightly
higher power. When the G&S and P&G tests have low power (in the most unbalanced cases)
the BF01 tests have high power.

In Figure 3 the effect of change from balanced to unbalanced designs is inspected. This figure
shows the power for all four combinations of n.130/520 and balance / imbalance. The tests
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BF01 < 1/150
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Piant−Gail

1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3

BALANCEDn. = 130

20, 20, 18, 18, 18, 18, 18

   −,    +,    +,    +,    +,    +,    +

n. = 520

80, 80, 72, 72, 72, 72, 72

   −,     +,    +,    +,    +,    +,    +

UNBALANCEDn. = 130

38, 38, 38,  4,  4,   4,   4

   −,    +,    +,    +,   +,    +,    +

n. = 520

152, 152, 152, 16, 16, 16, 16

    −,       +,      +,      +,    +,    +,    +

Figure 3. The effect of total sample size on the power of qualitative interaction tests for the
balanced and unbalanced designs, treatment effect is harmful in the first center, Bayesian unprotected,

frequentist protected

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679,
p2 = 0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818,
p2 = 0.182, for negative φ’s p1 and p2 are reversed.

based on BF01 have more power than other tests when the design is unbalanced. This finding
is consistently observed in other cases. Simulation results used in this figure can be found in
Table XI.
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40, 40, 36, 36, 36, 36, 36

  −,    −,    −,   +,    +,    +,   +

60, 60, 60, 20, 20, 20, 20

  −,   +,    +,    −,    −,    +,    +

76, 76, 76,  8,  8,   8,   8

  −,    +,    −,    +,   −,    +,    +

212,  8,   8,   8,   8,   8,   8

   −,     −,     +,    −,    +,    +,   +

Figure 4. Power of qualitative interaction tests, treatment effect is harmful in three centers

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679,
p2 = 0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818,
p2 = 0.182, for negative φ’s p1 and p2 are reversed.

3.4. Power when Treatment is Harmful in Three Centers

Table XII and Figure 4 provide corresponding results when the treatment is beneficial in four
centers and harmful in three. The pattern is similar, but with higher power overall. Simulations
show that tests based on BF01 have higher power than tests of G&S and P&G in this case.

The P&G test is powerful for balanced designs, but as balance declines, the power of this
test decreases dramatically. P&G [11] claimed that the P&G test is more powerful when the
treatment effect is harmful in only a few subsets and beneficial in most of the subsets. This
claim is confirmed for the balanced designs, but not for the unbalanced ones.
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3.5. Bayes Test with Exact Size, Three Centers

In this section an example is given of how, for a specified design and prior distribution, a test
of significance with exact Type I error probability can be constructed. The example assumes
40 subjects in each treatment in each of three centers. The prior distribution is assumed to
be that from the example of Section 2.1: the between center variance has an inverse gamma
distribution with parameters α = 2 and β = 1.5 and both µ1 and µ2 have a uniform distribution
on the interval [-4.595, 4.595], and all three hyperparameters are independent. Define π as the
value of the prior probability defined in Equation (2): for this design and prior distribution
π = 0.24. From the prior distribution, 105 sets of values of pij , for i = 1, 2 and j = 1, 2, 3, are
generated to give 105 sets φ = (φ1, φ2, φ3)

T . QI occurs when there is at least one negative φj

and at least one positive φj′ , where j 6= j′: a proportion π of the 105 values φ are expected to
correspond to this alternative hypothesis.

For each of the 105 sets of pij , data are generated and the posterior BF01 is calculated.
Similarly, G&S and P&G statistics are calculated for each data set. For the data sets
corresponding to φ in the null hypothesis region, each of the three sets of simulated test
statistics are ranked and the critical values that give exact tests of size 0.05 are estimated.
The simulated test statistics that correspond to φ lying in the alternative space, are also ranked
and the estimated power is the proportion of them that exceed the critical value.

The three critical values for this example are such that, for a test of size 0.05, the null
hypothesis of no qualitative interaction is rejected if BF01 is less than 0.23, the test statistic
of G&S is greater than 1.9 × 10−7, and the test statistic of P&G is greater than 0.0004.
The power of each exact test is 74%, 62% and 73% for the BF01, G&S and P&G methods
respectively. This simulation procedure has therefore led to exact tests for QI. The simulations
were repeated for an unbalanced design (60, 40 and 20 subjects in each subgroup in each trial)
and corresponding cut-off values are recalculated. The estimated power is very similar to the
power for balanced design for all three tests: 73%, 60%, 70% respectively.

4. CONCLUSIONS and DISCUSSION

This paper has developed an approach to quantifying the evidence for QI, where QI can be
defined from the context (for example as clinically meaningful QI, as in the IHAST example).
In the frequentist framework, significance testing forces a decision to reject or not reject the
null hypothesis, but quantifying the evidence may be more important as subgroup findings
are typically viewed with scepticism and are typically required to be verified [6]. In addition,
a frequentist test procedure can be based on the Bayes Factor, and often has better power in
the examples examined than the existing tests of G&S and P&G, particularly in unbalanced
cases, or when some subgroups have a small sample size. In general, in the examples simulated,
if qualitative interaction is big enough to detect with the frequentist test, it does not matter
much which test to use.

The Bayesian approach developed here requires the specification of a prior distribution. The
prior distribution used in this paper assumes that the treatment responses in each subgroup are
exhangeable: this reflects the belief that response to treatment in each subgroup is potentially
different, but probably similar and therefore QI is unlikely. Alternative prior distributions
could be used, in particular one where treatment effects were exchangeable between subgroups
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might be appropriate in some situations. The G&S and P&G statistics are based on a fixed
effect model and do not incorporate a prior belief that QI is unlikely.

Note also, a claim of P&G that their test should be more powerful than the test of G&S
when a treatment effect is of opposite sign from most in only a few of the subgroup categories,
was not verified in the simulations examined here. The test based on G&S typically has more
power than or similar power to the power of the test of P&G in the examples examined here
with binary responses.

For balanced designs in the cases examined, the G&S and P&G tests perform very similarly,
but for unbalanced designs, the G&S test has higher power. The test based on BF01 appears
to be particularly powerful in unbalanced cases, although in some cases this is at the expense
of increased Type I error probability. In the case when the log odds ratio in each subgroup,
φj , are identical and there is no treatment by subgroup interaction, all four tests are highly
conservative. These two issues can be adressed through constructing an exact test based on the
BF01, and an example is provided in Section 3.5, but for each combination of prior distribution
and design simulations are required and this procedure has not been explored further.

A limitation of the examples studied in this paper is that they are specific to the choice of
prior distribution and design. For any one clinical trial, however, properties of the procedures,
and the different tests, can be examined before the results of the trial are available.
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APPENDIX

Simulation Results for Section 3

I.1. Type I Error Rates

Table V. Type I error rates for test of qualitative interaction for different designs

Test φ1 φ2 φ3 φ4 φ5 φ6 φ7

nij: 40, 40, 36, 36, 36, 36, 36
BF01 < 1/32 0.02 0.00 0.00 0.00 0.00 0.00 0.00

BF01 < 1/150 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G&S Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Any Int LRT 1.00 1.00 0.83 0.97 0.91 0.06 0.07
G&S Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nij: 60, 60, 60, 20, 20, 20, 20
BF01 < 1/32 0.02 0.00 0.00 0.00 0.00 0.00 0.00

BF01 < 1/150 0.01 0.00 0.00 0.00 0.00 0.00 0.00
G&S Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Any Int LRT 1.00 1.00 0.89 0.85 0.93 0.06 0.08
G&S Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nij: 76, 76, 76, 8, 8, 8, 8
BF01 < 1/32 0.02 0.00 0.00 0.00 0.00 0.00 0.00

BF01 < 1/150 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G&S Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Any Int LRT 1.00 1.00 0.91 0.60 0.74 0.09 0.11
G&S Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nij: 212, 8, 8, 8, 8, 8, 8
BF01 < 1/32 0.04 0.00 0.00 0.00 0.00 0.01 0.00

BF01 < 1/150 0.01 0.00 0.00 0.00 0.00 0.00 0.00
G&S Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Any Int LRT 0.95 0.98 0.67 0.62 0.83 0.10 0.13
G&S Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
φ1 = 3, 3, 0.5, ..., 0.5, φ2 = 0.5, 0.5, 3, ..., 3, φ3 = 0.5, 0.5, 2, ..., 2, φ4 = 0.5, 1, 1, 2, 2, 3, 3, φ5 = 1, 1, 1, 2, 2, 3, 3,
φ6 = 1, ..., 1, φ7 = 3, ..., 3.
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Table VI. Type I error rates for tests of qualitative interaction for balanced designs

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3
nij: 40,40,36,36,36,36,36

φ, φ, 0, 0, 0, 0, 0
BF01 < 1/32 0.61 0.54 0.51 0.51 0.52

BF01 < 1/150 0.27 0.24 0.22 0.22 0.24
G&S Unprot 0.02 0.03 0.03 0.03 0.03
P&G Unprot 0.02 0.03 0.03 0.03 0.03
Any Int LRT 0.47 0.84 0.99 1.00 1.00
G&S Prot 0.02 0.03 0.03 0.03 0.03
P&G Prot 0.02 0.03 0.03 0.03 0.03

nij: 40,40,36,36,36,36,36
0, 0, φ, φ, φ, φ, φ

BF01 < 1/32 0.09 0.05 0.04 0.04 0.04
BF01 < 1/150 0.02 0.01 0.01 0.01 0.01
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.02 0.02 0.02 0.02 0.02
Any Int LRT 0.48 0.86 0.99 1.00 1.00
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.02 0.02 0.00 0.02 0.02

nij: 60,60,60,20,20,20,20
φ, φ, 0, 0, 0, 0, 0

BF01 < 1/32 0.52 0.46 0.44 0.44 0.45
BF01 < 1/150 0.22 0.19 0.17 0.18 0.19
G&S Unprot 0.02 0.03 0.03 0.03 0.03
P&G Unprot 0.03 0.04 0.04 0.04 0.04
Any Int LRT 0.53 0.90 0.99 1.00 1.00
G&S Prot 0.02 0.03 0.03 0.03 0.03
P&G Prot 0.03 0.04 0.04 0.04 0.04

nij: 60,60,60,20,20,20,20
0, 0, φ, φ, φ, φ, φ

BF01 < 1/32 0.14 0.08 0.06 0.06 0.06
BF01 < 1/150 0.03 0.01 0.01 0.01 0.01
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.01 0.01 0.01 0.00 0.01
Any Int LRT 0.54 0.91 1.00 1.00 1.00
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.01 0.01 0.01 0.00 0.01

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
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Table VII. Type I error rates for tests of qualitative interaction for unbalanced designs

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3
nij: 76,76,76,8,8,8,8

φ, φ, 0, 0, 0, 0, 0
BF01 < 1/32 0.39 0.32 0.29 0.29 0.30

BF01 < 1/150 0.13 0.10 0.09 0.09 0.10
G&S Unprot 0.01 0.01 0.01 0.01 0.01
P&G Unprot 0.01 0.01 0.01 0.01 0.01
Any Int LRT 0.54 0.90 0.99 1.00 1.00
G&S Prot 0.01 0.01 0.01 0.01 0.01
P&G Prot 0.01 0.01 0.01 0.01 0.01

nij: 76,76,76,8,8,8,8
0, 0, φ, φ, φ, φ, φ

BF01 < 1/32 0.25 0.14 0.11 0.09 0.09
BF01 < 1/150 0.07 0.04 0.03 0.02 0.02
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.01 0.02 0.02 0.02 0.02
Any Int LRT 0.57 0.91 0.99 1.00 1.00
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.02 0.02 0.02 0.02

nij: 212,8,8,8,8,8,8
φ, φ, 0, 0, 0, 0, 0

BF01 < 1/32 0.39 0.31 0.27 0.24 0.25
BF01 < 1/150 0.15 0.10 0.08 0.07 0.08
G&S Unprot 0.01 0.01 0.01 0.01 0.01
P&G Unprot 0.00 0.01 0.00 0.01 0.01
Any Int LRT 0.32 0.62 0.85 0.97 1.00
G&S Prot 0.01 0.01 0.01 0.01 0.01
P&G Prot 0.00 0.01 0.00 0.01 0.01

nij: 212,8,8,8,8,8,8
0, 0, φ, φ, φ, φ, φ

BF01 < 1/32 0.26 0.13 0.08 0.06 0.05
BF01 < 1/150 0.04 0.03 0.02 0.01 0.01
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.01 0.00
Any Int LRT 0.37 0.68 0.90 0.98 1.00
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.01 0.00

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
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Table VIII. Type I error rates for tests of qualitative interaction

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3
nij: 40,40,36,36,36,36,36

φ, φ, φ, φ, 0, 0, 0
BF01 < 1/32 0.20 0.13 0.12 0.12 0.13

BF01 < 1/150 0.05 0.03 0.03 0.03 0.03
G&S Unprot 0.01 0.01 0.01 0.01 0.01
P&G Unprot 0.01 0.02 0.02 0.02 0.02
Any Int LRT 0.53 0.90 0.99 1.00 1.00
G&S Prot 0.01 0.01 0.01 0.01 0.01
P&G Prot 0.01 0.02 0.02 0.02 0.02

nij: 60,60,60,20,20,20,20
φ, φ, φ, φ, 0, 0, 0

BF01 < 1/32 0.13 0.08 0.07 0.07 0.07
BF01 < 1/150 0.03 0.01 0.01 0.01 0.01
G&S Unprot 0.01 0.01 0.01 0.01 0.01
P&G Unprot 0.02 0.02 0.02 0.02 0.02
Any Int LRT 0.40 0.76 0.96 1.00 1.00
G&S Prot 0.01 0.01 0.01 0.01 0.01
P&G Prot 0.02 0.02 0.02 0.02 0.02

nij: 76,76,76,8,8,8,8
φ, φ, φ, φ, 0, 0, 0

BF01 < 1/32 0.06 0.02 0.02 0.01 0.02
BF01 < 1/150 0.01 0.00 0.00 0.00 0.00
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00
Any Int LRT 0.21 0.42 0.66 0.85 0.95
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00

nij: 212,8,8,8,8,8,8
φ, φ, φ, φ, 0, 0, 0

BF01 < 1/32 0.17 0.08 0.05 0.04 0.04
BF01 < 1/150 0.04 0.02 0.01 0.01 0.01
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.00 0.00 0.00 0.00 0.00
Any Int LRT 0.24 0.45 0.68 0.87 0.96
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.00 0.00 0.00 0.00 0.00

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
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I.2. Type I Error Rates when Bayesian Test is Protected by the Overall Test

Table IX. Type I error rates when Bayesian test is protected with the overall test: GLM trt effect
p-val < 0.05

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3

nij: 40,40,36,36,36,36,36
φ, φ, 0, 0, 0, 0, 0

BF01 < 1/32 0.08 0.26 0.43 0.49 0.53
BF01 < 1/150 0.01 0.05 0.15 0.21 0.24
G&S Unprot 0.02 0.03 0.03 0.03 0.03
P&G Unprot 0.02 0.03 0.03 0.03 0.04
Any Int LRT 0.46 0.84 0.98 1.00 1.00
G&S Prot 0.02 0.03 0.03 0.03 0.03
P&G Prot 0.02 0.03 0.03 0.03 0.04

nij: 40,40,36,36,36,36,36
0, 0, φ, φ, φ, φ, φ

BF01 < 1/32 0.07 0.05 0.04 0.04 0.04
BF01 < 1/150 0.01 0.01 0.01 0.01 0.01
G&S Unprot 0.00 0.00 0.00 0.00 0.00
P&G Unprot 0.02 0.02 0.02 0.02 0.02
Any Int LRT 0.47 0.86 0.99 1.00 1.00
G&S Prot 0.00 0.00 0.00 0.00 0.00
P&G Prot 0.02 0.02 0.02 0.02 0.02

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
φ1 = 3, 3, 0.5, ..., 0.5, φ2 = 0.5, 0.5, 3, ..., 3, φ3 = 0.5, 0.5, 2, ..., 2, φ4 = 0.5, 1, 1, 2, 2, 3, 3, φ5 = 1, 1, 1, 2, 2, 3, 3,
φ6 = 1, ..., 1, φ7 = 3, ..., 3.
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I.3. Difference in One Center

Table X. Power results for test of qualitative interaction where treatment effect is harmful in the first
center and beneficial in the rest of the centers

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3

nij: 40,40,36,36,36,36,36
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.51 0.78 0.96 1.00 1.00
BF01 < 1/150 0.24 0.54 0.85 0.98 1.00
G&S Unprot 0.21 0.59 0.90 0.99 1.00
P&G Unprot 0.42 0.82 0.98 1.00 1.00
Any Int LRT 0.90 1.00 1.00 1.00 1.00
G&S Prot 0.21 0.59 0.90 0.99 1.00
P&G Prot 0.42 0.82 0.98 1.00 1.00

nij: 60,60,60,20,20,20,20
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.76 0.96 1.00 1.00 1.00
BF01 < 1/150 0.51 0.86 0.99 1.00 1.00
G&S Unprot 0.39 0.84 0.99 1.00 1.00
P&G Unprot 0.56 0.94 1.00 1.00 1.00
Any Int LRT 0.97 1.00 1.00 1.00 1.00
G&S Prot 0.39 0.84 0.99 1.00 1.00
P&G Prot 0.56 0.94 1.00 1.00 1.00

nij: 76,76,76,8,8,8,8
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.91 1.00 1.00 1.00 1.00
BF01 < 1/150 0.73 0.97 1.00 1.00 1.00
G&S Unprot 0.56 0.95 1.00 1.00 1.00
P&G Unprot 0.71 0.99 1.00 1.00 1.00
Any Int LRT 0.99 1.00 1.00 1.00 1.00
G&S Prot 0.56 0.95 1.00 1.00 1.00
P&G Prot 0.71 0.99 1.00 1.00 1.00

nij: 212,8,8,8,8,8,8
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.93 1.00 1.00 1.00 1.00
BF01 < 1/150 0.91 1.00 1.00 1.00 1.00
G&S Unprot 0.01 0.46 0.90 0.97 0.97
P&G Unprot 0.07 0.17 0.32 0.46 0.57
Any Int LRT 0.94 1.00 1.00 1.00 1.00
G&S Prot 0.01 0.46 0.90 0.97 0.97
P&G Prot 0.07 0.17 0.32 0.46 0.57

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
φ1 = 3, 3, 0.5, ..., 0.5, φ2 = 0.5, 0.5, 3, ..., 3, φ3 = 0.5, 0.5, 2, ..., 2, φ4 = 0.5, 1, 1, 2, 2, 3, 3, φ5 = 1, 1, 1, 2, 2, 3, 3,
φ6 = 1, ..., 1, φ7 = 3, ..., 3.
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Table XI. Power results for test of qualitative interaction where treatment effect is harmful in the first
center and beneficial in the rest of the centers, the effect of sample size on power

Design Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3

nij: 20,20,18,18,18,18,18
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.29 0.39 0.61 0.82 0.95
BF01 < 1/150 0.09 0.15 0.33 0.59 0.81
G&S Unprot 0.07 0.22 0.47 0.72 0.87
P&G Unprot 0.13 0.44 0.73 0.90 0.95
Any Int LRT 0.59 0.93 1.00 1.00 1.00
G&S Prot 0.07 0.22 0.47 0.72 0.87
P&G Prot 0.13 0.44 0.73 0.90 0.95

nij: 80, 80, 72, 72, 72, 72, 72
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.83 0.99 1.00 1.00 1.00
BF01 < 1/150 0.61 0.95 1.00 1.00 1.00
G&S Unprot 0.58 0.96 1.00 1.00 1.00
P&G Unprot 0.75 0.99 1.00 1.00 1.00
Any Int LRT 1.00 1.00 1.00 1.00 1.00
G&S Prot 0.58 0.96 1.00 1.00 1.00
P&G Prot 0.75 0.99 1.00 1.00 1.00

nij: 38, 38, 38, 4, 4, 4, 4
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 0.69 0.88 0.98 1.00 1.00
BF01 < 1/150 0.41 0.68 0.91 0.99 1.00
G&S Unprot 0.24 0.62 0.91 0.99 1.00
P&G Unprot 0.26 0.74 0.96 1.00 1.00
Any Int LRT 0.85 0.99 1.00 1.00 1.00
G&S Prot 0.24 0.62 0.91 0.99 1.00
P&G Prot 0.26 0.74 0.96 1.00 1.00

nij: 152, 152, 152, 16, 16, 16, 16
−φ, φ, φ, φ, φ, φ, φ

BF01 < 1/32 1.00 1.00 1.00 1.00 1.00
BF01 < 1/150 0.96 1.00 1.00 1.00 1.00
G&S Unprot 0.92 1.00 1.00 1.00 1.00
P&G Unprot 0.98 1.00 1.00 1.00 1.00
Any Int LRT 1.00 1.00 1.00 1.00 1.00
G&S Prot 0.92 1.00 1.00 1.00 1.00
P&G Prot 0.98 1.00 1.00 1.00 1.00

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
φ1 = 3, 3, 0.5, ..., 0.5, φ2 = 0.5, 0.5, 3, ..., 3, φ3 = 0.5, 0.5, 2, ..., 2, φ4 = 0.5, 1, 1, 2, 2, 3, 3, φ5 = 1, 1, 1, 2, 2, 3, 3,
φ6 = 1, ..., 1, φ7 = 3, ..., 3.
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I.4. Difference in Three Centers

Table XII. Power results for test of qualitative interaction where treatment effect is harmful in three
centers and beneficial in the rest of the centers

Test φ = 1 φ = 1.5 φ = 2 φ = 2.5 φ = 3

nij: 40,40,36,36,36,36,36
−φ,−φ,−φ, φ, φ, φ, φ

BF01 < 1/32 1.00 1.00 1.00 1.00 1.00
BF01 < 1/150 1.00 1.00 1.00 1.00 1.00
G&S Unprot 0.69 0.95 1.00 1.00 1.00
P&G Unprot 0.65 0.99 1.00 1.00 1.00
Any Int LRT 1.00 1.00 1.00 1.00 1.00
G&S Prot 0.68 0.95 1.00 1.00 1.00
P&G Prot 0.65 0.99 1.00 1.00 1.00

nij: 60,60,60,20,20,20,20
−φ, φ, φ,−φ,−φ, φ, φ

BF01 < 1/32 0.99 1.00 1.00 1.00 1.00
BF01 < 1/150 0.95 1.00 1.00 1.00 1.00
G&S Unprot 0.73 0.99 1.00 1.00 1.00
P&G Unprot 0.67 0.98 1.00 1.00 1.00
Any Int LRT 0.99 1.00 1.00 1.00 1.00
G&S Prot 0.73 0.98 1.00 1.00 1.00
P&G Prot 0.67 0.98 1.00 1.00 1.00

nij: 76,76,76,8,8,8,8
−φ, φ,−φ, φ,−φ, φ, φ

BF01 < 1/32 1.00 1.00 1.00 1.00 1.00
BF01 < 1/150 0.97 1.00 1.00 1.00 1.00
G&S Unprot 0.66 0.96 1.00 1.00 1.00
P&G Unprot 0.73 0.99 1.00 1.00 1.00
Any Int LRT 1.00 1.00 1.00 1.00 1.00
G&S Prot 0.66 0.96 1.00 1.00 1.00
P&G Prot 0.73 0.99 1.00 1.00 1.00

nij: 212,8,8,8,8,8,8
−φ,−φ, φ,−φ, φ, φ, φ

BF01 < 1/32 0.88 0.97 1.00 1.00 1.00
BF01 < 1/150 0.66 0.85 0.96 1.00 1.00
G&S Unprot 0.00 0.13 0.59 0.81 0.83
P&G Unprot 0.05 0.12 0.21 0.32 0.41
Any Int LRT 0.83 1.00 1.00 1.00 1.00
G&S Prot 0.00 0.13 0.59 0.81 0.83
P&G Prot 0.05 0.12 0.21 0.32 0.41

Note: In the simulations success probabilities for φ = 1 : p1 = 0.622, p2 = 0.378, for φ = 1.5 : p1 = 0.679, p2 =
0.321, for φ = 2 : p1 = 0.731, p2 = 0.269, for φ = 2.5 : p1 = 0.777, p2 = 0.223, for φ = 3 : p1 = 0.818, p2 = 0.182.
φ1 = 3, 3, 0.5, ..., 0.5, φ2 = 0.5, 0.5, 3, ..., 3, φ3 = 0.5, 0.5, 2, ..., 2, φ4 = 0.5, 1, 1, 2, 2, 3, 3, φ5 = 1, 1, 1, 2, 2, 3, 3,
φ6 = 1, ..., 1, φ7 = 3, ..., 3.


