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Genome-wide case-control association study is gaining popularity, thanks to the rapid

development of modern genotyping technology. In such studies, population stratification is

a potential concern especially when the number of study subjects is large as it can lead to

seriously inflated false positive rates. Current methods addressing this issue are still not

completely immune to excess false positives. A simple method that corrects for population

stratification is proposed. This method modifies a test statistic such as the Armitage trend

test by using an additive constant that measures the variation of the effect size confounded

by population stratification across genomic control markers. As a result, the original statistic

is deflated by a multiplying factor that is specific to the marker being tested for association.

This deflating multiplying factor is guaranteed to be larger than 1. These properties are in

contrast to the conventional genomic control method where the original statistic is deflated

by a common factor regardless of the marker being tested and the deflation factor may turn

out to be less than 1. The new method is introduced first for regular case-control design and

then for other situations such as quantitative traits and the presence of covariates. Extensive

simulation study indicates that this new method provides an appealing alternative for genetic

association analysis in the presence of population stratification.

Keywords: genetic association, population stratification, genomic control, variance inflation

factor, SNP
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INTRODUCTION

With the rapid development of large-scale high-throughput genotyping technology, genome-

wide association study is becoming more and more popular in the mapping of genetic variants

underlying complex human disorders. However, there are some concerns regarding regular

association methods [McCarthy et al., 2008; Lunetta, 2008]. A major one is that, in the

presence of population stratification, they tend to generate excess false positives than ex-

pected. Population stratification may be a phenomenon more prevalent than it appears to

be [Epstein et al., 2007]. This issue has been discussed extensively in the literature and

many methods have been proposed to address it [Horvath & Laird, 1998; Devlin & Roeder,

1999; Bacanu et al., 2000; Pritchard & Rosenberg, 1999; Pritchard et al., 2000; Price et al.,

2006; Kimmel et al., 2007; Zhu et al., 2008].

A popular method for handling population stratification is genomic control (GC) [Devlin

& Roeder, 1999; Bacanu et al., 2000; Devlin et al., 2001; Bacanu et al., 2002]. This method

modifies a test statistic, for instance, the Armitage test for trend [Armitage, 1955], by a

multiplying factor. This factor is estimated using markers that are believed to be not in

association with the phenotype. The structured population method tries to first infer the

subpopulation structure underlying the sample. Subsequent analyses are conducted within

each subpopulation and the results are summarized [Pritchard & Rosenberg, 1999; Pritchard

et al., 2000; Pritchard & Donnelly, 2001]. The third method is to create surrogates for

population stratification using markers that are not in association with the phenotype. For

example, the principal component method [Price et al., 2006] uses the first few principal

components based on the correlation matrix of marker genotypes as covariates in subsequent

regression analysis. Following the same idea, one can use the first few components from a

partial least-squares regression [Epstein et al., 2007].

There are some drawbacks to these methods. The genomic control intends to deflate the

test statistic in order to reduce the false positive rates due to population stratification. How-

ever, the multiplying correction factor may not be always less than 1 [Bacanu et al., 2002].

In addition, the same multiplying factor is used regardless of the testing position. The re-

sult from structured association method depends on the assumed number of subpopulations.

It is also computation intensive. Finally, despite its increasingly popularity, the principal
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component method is inherently unable to completely account for the impact of population

stratification (appendix A). It has been documented that the principal component method

can fail to control false positive rate [Kimmel et al., 2007; Epstein et al., 2007] although it

is of less concern when the number of markers used to extract principal components is large

[Lee et al., 2008]. So does the partial least-squares regression method [Lee et al., 2008].

In this study, I propose a new method for association study that corrects for the effect

of population stratification. This method is similar to GC in the sense that it also results in

a multiplying factor to a statistic such as Armitage test for trend. However, contrary to the

GC method, this multiplying factor is no longer constant. Instead, it changes as the marker

being tested at changes. In addition, this factor is guaranteed to deflate the test statistic.

In what follows, I first describe the proposed method for association study of case-control

data. This method is then generalized to situations of continuous phenotype with and with-

out covariates. The performance of this method is evaluated through extensive simulation

studies.

METHOD

In a case-control study, the genotype counts in cases and controls at a biallelic marker

can be summarized in a 2×3 table. The notations for various genotype counts are presented

in table 1. Association to this marker can be tested using a two-degrees of freedom Pearson

chi-square test on the 2 × 3 table. An alternative popular method is the Armitage test

for trend [Armitage, 1955] that possesses one degree of freedom. The Armitage trend test

assumes that the impact of the disease allele on odds ratio is multiplicative. Due to its less

degree of freedom, the Armitage test for trend could be more powerful than the Pearson

chi-square test. Using notations in table 1, the Armitage test for trend can be expressed as

[Sasieni, 1997]

X2
G =

N{N(r1 + 2r2)−R(n1 + 2n2)}
2

R(N −R){N(n1 + 4n2)− (n1 + 2n2)2}
,

which equals

X2
G =

NT 2

R(N −R){N(n1 + 4n2)− (n1 + 2n2)2}

with T = (r1 + 2r2)S − (s1 + 2s2)R. Note that T ∝ (r1 + 2r2)/2R − (s1 + 2s2)/2S. So T

measures the difference in allele, say, A frequencies between cases and controls.
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It is well known that, in the presence of population stratification, regular methods for

testing association, such as the Pearson chi-square method and the Armitage test for trend,

can generate excess false positives compared to the nominal significance levels. As sum-

marized in the Introduction, numerous methods have been proposed to tackle this issue.

The method proposed here may be regarded as one similar to GC but its motivation and

approach are quite different.

The idea behind GC is simple. It can be illustrated using the statistic X2
G. Since X2

G

leads to excessive false positive rate, the true variance of T is inflated but is not accounted

for by X2
G. The variance inflation factor (VIF), denoted by λ, is estimated through ge-

nomic control markers as follows. By definition, these GC markers are not associated

with the affection status. The X2
G statistics computed at these markers are expected to

be random samples from the chi-square distribution with one degree of freedom. However,

their actual distribution is not because of population stratification. One modification is

to align the median of these statistics with that of the chi-square distribution with one

degree of freedom, which is about 0.456. A robust estimate of λ is [Devlin et al., 2001]

λ̂ = the median of values of statistic X2
G at GC markers divided by 0.456. At the testing

location, the statistic X2
G/λ̂, instead of X2

G, is used and is compared to the chi-square distri-

bution with one degree of freedom. As a VIF, λ is expected to be larger than one. Although

this is often the case, it is possible that λ̂ is less than 1 [Devlin & Roeder, 1999, page 999, last

line of left column]. The chance is higher when the extent of population stratification is less.

In the extreme, the probability that λ̂ is less than 1 will be 0.5 in the absence of population

stratification. It has been suggested that λ̂ is set to 1 whenever its afore-mentioned estimate

of VIF is less than 1 [Bacanu et al., 2000]. Note that in GC, the same VIF estimate is applied

regardless of testing locations.

In the Armitage trend test, the variance of T , denoted by σ2
T , is computed as

σ2
T = R(1−R/N)[N(n1 + 4n2)− (n1 + 2n2)

2].

This variance is correct in the absence of population stratification. When there is population

stratification, it is smaller than the true variance of T [Devlin & Roeder, 1999] which explains

why the test statistic is inflated. In the context of genetic association testing, this variance
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is conditional in the sense that the variance of T is for the marker being tested. On the

other hand, the variance of T for a randomly picked marker is

V ar(T ) = E[V ar(T |marker l)] + V ar[E(T |marker l)]

= E[V ar(T |marker l)] + Λ,

where Λ = V ar[E(T |marker l)]. The variance V ar(T ) is unconditional since the marker is

randomly chosen. The quantity Λ is the variance of conditional mean E(T |marker l)] across

all the markers. It can be estimated by the sample variance of {Tl}, where Tl is the quantity

T at marker l. In the next section, robust estimation of Λ will be discussed. An estimate of

Λ is denoted by Λ̂.

The above consideration motivates the following modification of the Armitage trend test:

X2 :=
T 2

σ2
T + Λ̂

.

That is, σ2
T in the Armitage trend test is substituted by σ2

T + Λ̂. Compared to the Armitage

trend test statistic X2
G = T 2/σ2

T , there is

X2 = X2
G ·

σ2
T

σ2
T + Λ̂

=
X2

G

1 + Λ̂/σ2
T

.

So the proposed method deflates X2
G with a factor 1 + Λ̂/σ2

T . This factor is always larger

than one. Instead of being a constant, its size depends on σ2
T : the larger the value of σ2

T , the

smaller its value. Since σ2
T equals R(1 − R/N)[n1(N − n1) + 4n0n2], given n1, σ2

T is larger

for n0 and n2 that are closer to each other.

ROBUST ESTIMATION OF Λ

As mentioned in the previous section, a natural estimate of Λ = V ar[E(T |pl)] is the

sample variance of {Tl} across all genome control markers. However, this estimate is affected

by sampling error. Consider an extreme case where the allele frequencies are the same across

all genome control markers such that E(T |location l) is a constant. The value of Λ is 0 but

the sample variance of {Tl} is not unless Tls are the same at all genome control markers.
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Another disadvantage of using sample variance is that it is sensitive to extreme values in

{Tl}. Presence of extreme values would seriously bias Λ estimate upward and jeopardize the

power of the proposed statistic X2. For these reasons, a robust estimate of Λ is necessary.

Of particular interest are those that are smaller than the sample variance of {Tl}.

Two candidate estimates considered here are the α-trimmed variance and the α-winsorized

variance of {Tl} [Huber, 1981]. For the α-trimmed variance, the top 100α% and the lower

100α% values of {Tl} are trimmed and the α-trimmed variance is set to equal the sample

variance of the remaining values. That is,

Λ̂trim,α := sample variance of T([αL]+1), . . . , T(L−[αL]),

where T(l) is the lth ordered statistic of {Tl}, and the notation [x] means the integer part of

x. Here I did not use the version of α-trimmed variance that uses a normalizing factor in

order to avoid an estimate possibly larger than the usual sample variance.

For the α-winsorized variance, all the Tl values in the upper 100α% tail are replaced by the

next largest one and all the values in the lower 100α% tail are replaced by the next smallest

one. Specifically, the α-winsorized variance is defined as Λ̂win,α = sample variance of T(k+1),

. . . , T(k+1), T(k+2), . . . , T(L−k−1), T(L−k), . . . , T(L−k), where k = [αL]. Here the value T(k+1) is

repeated k + 1 times, so is the value T(L−k). In formula, it can be expressed as

Λ̂win,α = (L− 1)−1

[

(k + 1)(T(k+1) − T̄ )2 +
L−k−1
∑

l=k+2

(T(l) − T̄ )2 + (k + 1)(T(L−k) − T̄ )2

]

,

where T̄ is the winsorized mean which equals

T̄ = L−1

[

(k + 1)T(k+1) +
L−k−1
∑

l=k+2

T(l) + (k + 1)T(L−k)

]

.

It is not clear as to whether there exists a generally applicable level α of trimming or

winsorization. It seems to depend on the extent of changes in the difference in genotype

counts between cases and controls along the genome. It is also not clear which method is

theoretically better. In the simulation to be reported later, impact of different level of α and

the two robust variance estimation methods are investigated.
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QUANTITATIVE TRAITS AND MORE GENERAL MODELS

Let y denote a quantitative phenotype. For the ease of exposition, assume that a simple

regression analysis over genotype score is justified. Let G denote the genotype dose at a

biallelic marker being tested for association. That is, G = 0, 1 or 2 if there are 0, 1 or 2

copies of a designated reference allele. Denote the regression model by

E(y) = a + bG. (1)

In a regular association analysis, one would expect b to be 0 in the absence of association.

Association can be tested by using the regular t test:

t =
b̂

sb

,

where b̂ is the least-squares estimate of b and sb is the standard deviation of b̂. However, in

the presence of population association, this t test is liberal [Bacanu et al., 2000], similar to

the situation of case-control data.

To correct for population stratification, one can compute b̂ at GC markers and obtain

the sample variance of these b̂s. Denote this sample variance by Λ̂. At the marker being

tested for association, the modified t statistic would be

b̂

(s2
b + Λ̂)1/2

.

For moderate or large sample size, refer this statistic to the standard normal distribution.

The robust variance estimation methods discussed in the previous section apply to Λ̂.

Covariates can be easily incorporated into regression model (1) as well.

SIMULATION

The data are simulated in almost the same way as in [Devlin & Roeder, 1999], which

is often used in simulation studies [Price et al., 2006; Devlin et al., 2001]. Specifically, an

ancestral allele frequency p is randomly sampled from interval [0.1, 0.9]. Denote the Wright’s

coefficient of inbreeding Fst in cases by F1 and in controls by F2. The allele frequency p1 in

cases is sampled from a beta distribution with parameters p(1−F1)/F1 and (1−p)(1−F1)/F1

and the allele frequency p2 in controls is sampled from a beta distribution with parameters
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p(1−F2)/F2 and (1− p)(1−F2)/F2. Instead of assuming HWE [Price et al., 2006; Devlin &

Roeder, 1999; Devlin et al., 2001], the genotype frequencies in the case population are taken

to be F1(1−p1)+(1−F1)(1−p1)
2, 2(1−F1)p1(1−p1), F1p1 +(1−F1)p

2
1 for having 0, 1 and

2 copies of the disease allele. Genotype frequencies in the control population are determined

in the same manner for the values of F2 and p2. Particularly, HWE is not assumed. This

process is repeated for every SNP except the disease SNP.

The genotypes of the disease SNP in the control population are simulated in the same

manner as described in the previous paragraph. It is possible that the controls carry the

disease allele. In the cases, the disease genotype is simulated in the following manner. Let

γ be the relative risk of carrying one copy of the disease allele to carrying 0 copy. Under a

multiplicative model, the relative risk for carrying two copies of the disease allele to carrying

0 copy of the disease allele would be γ2. The frequencies of the genotypes at the disease locus

in cases are taken to be proportional to F1(1− p1) + (1−F1)(1− p1)
2, 2(1−F1)p1(1− p1)γ,

and F1p1 + (1− F1)p
2
1γ

2, respectively, for carrying 0, 1 and 2 copies of the disease allele.

In the simulation study, the number of GC SNPs is taken to be 1000. The number of cases

is set to 100 and so is the number of controls. Simulations are conducted with varying inbreed-

ing coefficient Fsts ( F1 in cases and F2 in controls) and genotype relative risk γ. For each pa-

rameter configuration, 1000 genomic control SNPs are simulated first from which the VIF for

the genomic control method, the variance estimate Λ̂ for the proposed method, and the prin-

cipal components for the principal components (PC) method are computed. Another 1000

SNPs are then generated under the specified parameter configuration for which the following

statistics are computed: X2
trim,α=0.01, X

2
trim,α=0.05, X

2
trim,α=0.1, X

2
win,α=0.01, X

2
win,α=0.05, X

2
win,α=0.1,

the GC method, the Armitage test for trend, and the PC method as implemented in com-

puter program EIGENSTRAT [Price et al., 2006]. The first two principal components are

used as covariates in the PC method. Type I error rates are reported in table 2 and the

power is reported in table 3.

It is obvious from table 2 that the Armitage trend test has inflated type I error rate in

all situations considered. So is the PC method, although not as severe. Statistics X2
win,0.1

and X2
trim,0.1 are also liberal for large values of F1 and F2. For α = 0.01 or 0.05, statistics

X2
win,α and X2

trim,α seem to have size close to the nominal level. So is the GC method. More
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detailed comparison of these methods under the null hypothesis will be provided later.

After looking at the type I error rates of these statistics, it is of particular interest

to compare their power. It can be seen from table 3 that increasing Wright’s coefficient of

inbreeding tends to decrease their power. However, the pattern of power is different for these

statistics. The GC method and the PC method are more powerful than X2
win,α, X2

trim,α, α =

0.01, 0.05, 0.1, when F1 and F2 are small. But it is less powerful when F1 and F2 are in the

upper range of their values considered here.

To have a more detailed comparison of the GC method, the PC method, and the proposed

method, the distribution of each method under the null hypothesis of no association is

compared to the chi-square distribution with 1 degree of freedom via quantile versus quantile

plot (Q-Q plot). The data are generated in exactly the same manner as in the study of type

I error rate except that there are 500 cases and 500 controls. This plot is produced for

different values of F1 and F2 and are shown in figures 1, 2, and 3. In all these figures, it is

not surprising that the Q-Q plot for Armitage trend test is very far from the 45 degree line

y = x. The PC method performs better but still demonstrate inflated type I error rate. The

GC method tends to be conservative in the tail of its distribution, the part arguably most

relevant to testing for association. The Q-Q plot curves seem to be bending downwards

and away from the 45 degree line in the tail, indicating that the assumption the VIF is

constant across the genome is questionable. This phenomenon tends to be more severe for

larger F1 and F2 values. One the other hand, plots for the proposed method seem to be

on a straight line, regardless of the level of winsorization or trimming and the values of F1

and F2 but their slopes are dependent on the level of winsorization or trimming used in the

robust variance estimation. Overall, 0.01-winsorized variance and the 0.01-trimmed variance

appear to outperform variances at other winsorized or trimmed levels. In addition, the plot

is less sensitive to the level of winsorization than to the level of trimming, suggesting that

the α-winsorized variance is preferred to the α-trimmed variance.

DISCUSSION

Current genetic association methods adjusting for the effect of population stratification

are not very successful in controlling excessive type I error rates. The method proposed in
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this report adopts a different approach. It modifies the variance of the estimated effect size

by adding to it a constant that measures the variation of the expected effect size across the

genome. Unlike the GC method, such a modification of a test statistic results in a VIF that

is no longer constant across the genome. Since the proposed method and the GC method

both adjust a regular test statistic by applying a VIF, the following discussion is focused on

comparison between these two methods.

The VIF in the GC method depends on Wright’s coefficient of inbreeding Fst. It was

argued that it is roughly a constant across the genome as long as Fst is so [Devlin & Roeder,

1999]. However, this assumption is not true at least in theory. For the situation where the

number of cases and the number of controls are the same, it has been shown that the VIF

depends not only on Fst within cases and within controls but also on allele frequencies as

well as the composition of sub-populations in cases and in controls [Devlin & Roeder, 1999].

The impact of allele frequencies and population structure on the VIF is larger when Fst in

cases or in controls gets larger. This explains why in my simulation study the GC method

performs worse as Fst gets larger. Another problem with the GC method is that the estimate

of the VIF can be less than 1, especially when the number of GC loci is not large or the

degree of inbreeding is small in both cases and controls [Bacanu et al., 2000; Pritchard &

Donnelly, 2001]. For instance, in the absence of population structure, the distribution of

the Armitage test for trend should follow a chi-square distribution with degree of freedom

1. By definition, 50% of the test statistic at GC markers will be less than the median of the

chi-square distribution with degree of freedom 1. That is, the chance for the VIF estimate to

be less than 1 is 50%. Whenever the VIF is less than 1, the GC method will not provide any

improvement over the original statistic. A remedy is to set the VIF estimate to 1 whenever

its initial estimate is less than 1 [Bacanu et al., 2000]. Simulation studies [Bacanu et al.,

2000; Pritchard & Donnelly, 2001] suggest that the such a practice generates roughly correct

type I error rates but it is not clear theoretically why this is the case.

In contrast, the proposed method always deflates the original test statistic since it adds

a non-negative term to its denominator. The extent of modification depends on the variance

of the estimated size of the genetic effect – the larger the variance, the smaller the extent of

modification.
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The proposed method is motivated by a consideration of the unconditional variance of

estimated genetic effect size. Instead of focusing on its variance at a particular locus, this

method considers the variance at an arbitrary locus. There are two advantages of this

approach. First, it provides a natural way of modifying the variance of the estimated genetic

effect as delineated in this report. The second advantage that has not been discussed yet

is it implicitly treats the mean genetic effect size across the genome is 0, an assumption

less stringent than assuming the locus-wise mean genetic effect is 0. Because of population

stratification, the locus-wise mean genetic effect size is unlikely to be 0. It is argued for

the GC method that the locus-wise mean genetic effect size is 0 and is thus ignored. The

unconditional variance of the estimated genetic effect size has also been discussed in the

context of GC [Devlin et al., 2001] but it is used to justify the GC method.

Ideally, the additive constant Λ in the proposed method reflects the variation in effect

size purely due to population stratification. If it is estimated by its sample counterpart, the

estimate will also include sampling variation. The α-trimmed variance and the α-winsorized

variance are used to not only remove outliers but also reduce sampling variation. In the

simulation study, the 0.01-winsorized variance seems to perform best.

In summary, a new approach to correcting for population stratification in genetic associ-

ation study is proposed. It appears to be advantageous over the GC method. This method is

very easy to implement. A code for the R statistical computing environment [R Development

Core Team, 2008] is provided in Appendix B.
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APPENDIX A INHERENT INABILITY FOR THE PRINCIPAL

COMPONENT METHOD TO COMPLETELY ACCOUNT FOR THE

IMPACT OF POPULATION STRATIFICATION ON ASSOCIATION STUDY

The essence of the principal component method is to use the top principal components

extracted from the correlation or the covariance matrix of genotype scores as surrogates of

the underlying population structure. Let S denote population stratum. Let g1 and g2 be

genotype scores at two markers that are not associated with phenotype y. That is, they

are not correlated with y within each subpopulation. g1 and g2 are centered around their

individual mean. The covariance σyg1
between y and g1 is

σyg1
= Cov(y, g1)

= Cov[E(y|S), E(g1|S)] + E[Cov(y, g1|S)]

= Cov[E(y|S), E(g1|S)].

Similarly, the covariance σyg2
between g2 and y is σyg2

= Cov[E(y|S), E(g2|S)]. If these two

markers are used for a principal components method, only the largest principal component

will be of interest. Denote it by P . That is, P = a1g1 + a2g2 with (a1, a2)
t the largest

eigenvector of the covariance matrix of g1 and g2. Here it is assumed that the principal

component is covariance matrix based.

In the principal components method, it is expected that, if P is used as a covariate,

the partial correlation between the phenotype y and any unassociated marker is 0. If this

conjecture is true, it must be the case that the partial correlation between y and g2 is 0.

However, this is generally not the case. What follows explains why.

This partial correlation can be expressed

Corr(y, g2|P ) =
ryg2

− ryP rg2P

[(1− r2
yP )(1− r2

g2P )]1/2
,

where rx,y denotes the correlation coefficient between variables x and y. The numerator of

this fraction is proportional to

σyg2
V ar(P )− σyP σg2P ,

15



which equals

σyg2
(a2

1σ
2
g1

+ 2a1a2σg1g2
+ a2

2σ
2
g2

)− (a1σyg1
+ a2σyg2

)(a1σg1g2
+ a2σ

2
g2

)

= a1[σyg2
(a1σ

2
g1

+ a2σg1g2
)− σyg1

(a1σg1g2
+ a2σ

2
g2

)]

= λa1(a1σyg2
− a2σyg1

),

where λ is the eigenvalue associated with (a1, a2)
t. For it to be 0, there must be a1σyg2

−

a2σyg1
= 0. This relationship seldom holds as a1 and a2 depends only on the covariance

between markers g1 and g2 while σyg1
and σyg2

are covariances that depend in addition on

phenotype y.

As a numerical example, consider a cohort study with two subpopulations, each subpop-

ulation has 0.5 probability. The probability of being affected is 0.1 in population 1 and 0.2 in

population 2. At SNP 1, the A allele frequency is 0.2 in population 1 and 0.4 in population

2. At SNP 2, the A allele frequency is 0.1 in population 1 and 0.4 in population 2. Both

SNPs are in HWE within each population and are in linkage equilibrium with each other.

None of them is associated with the phenotype y in each population. Each SNP is scored

by the number of A alleles. It turns out that the variance matrix for the vector of genotype

scores (g1, g2) is
(

0.44 0.06
0.06 0.42

)

,

for which the largest eigenvector is (a1, a2)
t = (−0.76302,−0.6463749)t. In addition, σyg1

=

0.01 and σyg2
= 0.015. It is easy to verify that a1σyg2

− a2σyg1
= −0.01790905 6= 0.

16



APPENDIX B R CODE FOR THE PROPOSED METHOD

Var.Est = function(null.cases, null.ctrls, alpha, method = "win")

# null.cases, null.ctrls:

# n x 3 matrices of genotype counts at n genomic control SNPs.

# Column 1, 2 and 3 are counts of subjects that have 0, 1 and 2

# copies of, say, A allele.

# alpha: level for alpha-trimmed variance or alpha-winsorized variance

# method: method used in the robust variance estimation.

# method = "win" for the alpha-winsorized method and

# method = "trim" for the alpha-trimmed method.

#

{

RR = apply(null.cases, 1, sum)

NN = RR + apply(null.ctrls, 1, sum)

T = (NN*null.cases - RR*(null.ctrls+null.cases)) %*% c(0,1,2)

y = sort(as.vector(T))

L = length(y)

k = floor(L*a)

if (var.method == "win")

Lambda = var(c(rep(y[k+1], k+1), y[(k+2):(L-k-1)], rep(y[L-k], k+1)))

if (var.method == "trim")

Lambda = var(y[(k+1):(L-k)])

Lambda

}

new.stat = function(rs, ss, Lambda)

# rs: a vector of length 3. It contains genotype counts of 0, 1 and 2 copies

17



# of, say, A allele, respectively, in cases.

# ss: the same as rs but is for controls

#

# Lambda: an estimate of Lambda. Obtained from function Var.Est(...).

# See the text for further explanation.

{

r1 = rs[2] # number of 1’s in cases

r2 = rs[3] # number of 2’s in cases

R = sum(rs)

n0 = rs[1]+ss[1]

n1 = rs[2]+ss[2]

n2 = rs[3]+ss[3]

N = n0+n1+n2

sigma2T = R*(1-R/N)*(N*(n1+4*n2)-(n1+2*n2)^2)

(N*(r1+2*r2)-R*(n1+2*n2))^2/(sigma2T + Lambda)

}

18



Table 1: Genotype counts for a case-conrol study

# of A allele
0 1 2 Total

Case r0 r1 r2 R
Control s0 s1 s2 S
Total n0 n1 n2 N
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Figure 1: Q-Q plot of the distributions of test statistics when there is no association. From
left to right, top to bottom: X2

win,0.01, X
2
win,0.05, X

2
win,0.1, X

2
trim,0.01, X

2
trim,0.05, X

2
trim,0.1, the ge-

nomic control method, the Armitage trend test, and the principal component method. The
Wright’s coefficient of inbreeding is 0.01 for cases and 0.001 for controls. The reference line
is y = x, the 45 degree line.
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Figure 2: Q-Q plot of the distributions of test statistics when there is no association. From
left to right, top to bottom: X2

win,0.01, X
2
win,0.05, X

2
win,0.1, X

2
trim,0.01, X

2
trim,0.05, X

2
trim,0.1, the ge-

nomic control method, the Armitage trend test, and the principal component method. The
Wright’s coefficient of inbreeding is 0.03 for cases and 0.003 for controls. The reference line
is y = x, the 45 degree line.
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Figure 3: Q-Q plot of the distributions of test statistics when there is no association. From
left to right, top to bottom: X2

win,0.01, X
2
win,0.05, X

2
win,0.1, X

2
trim,0.01, X

2
trim,0.05, X

2
trim,0.1, the ge-

nomic control method, the Armitage trend test, and the principal component method. The
Wright’s coefficient of inbreeding is 0.1 for cases and 0.03 for controls. The reference line is
y = x, the 45 degree line.
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