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Abstract

The motivation of the current research manuscript is to provide practitioners with a mul-

tivariate analysis tool able to detect change in the mean vector and/or covariance matrix,

as well as the epoch of a change, in an independent sequence of multivariate observations.

The work explores the multivariate change point model through generalized likelihood ra-

tio statistics applied sequentially, and adapted to repeated use. We sought an analytical

result for the exact moments of the generalized likelihood statistic. The benefit flowing

from this sequential adaptation is to be able to detect the epoch and the source of potential

changes in independent multivariate readings. Possible areas of application are: ambulatory

monitoring, disease monitoring, syndromic surveillance, and sequential dynamic control.
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Introduction and Objective

Multivariate statistical process control carries out ongoing checks to ensure that a process

is in-control. These checks are traditionally done by the T 2, multivariate cusum, and multi-

variate exponentially weighted moving average (MEWMA) control charts. These traditional

tools rely on known or assumed known in-control true parameters, and use the assumed

true values to set the control limits. The reality however is that true parameter values are

seldom, if ever, known exactly; rather they are commonly estimated from a Phase I sample.

It is increasingly being recognized that the Phase I study needs to involve large samples if

the random errors in the parameter estimates are to provide run behavior matching that

of known-parameter situation. Apart from the general undesirability of large and therefore

expensive studies preliminary to actual charting, some control settings have a paucity of

relevant data to estimate the process parameters. Zamba & Hawkins (2006) outlined the

advantage of using the unknown parameter likelihood ratio tests in multivariate control.

Although their manuscript applies specifically to mean-only change point models, the idea

can be generalized to the mean and/or covariance change point models.

In multivariate control, change in a process mean vector can be masked by unsuspected

change in covariance structure or by a sudden change in the correlation between two qual-

ity characteristics. For a deeper insight on this aspect of the relationship between quality

characteristics and their repercussion on the performance of a chart, we refer the reader to

Hotelling (1947), Mason & Young (2002). The objectives of multivariate statistical process

control do not differ much from those of univariate. They include providing a signal that

the process is out of control; an estimate of when it went out of control; and a diagnosis

of the way in which it went out of control – for example, whether some or all of the com-

ponents of the mean vector have shifted, whether the covariance matrix is perturbed and

some quality characteristics became counter-correlated, or whether both the mean vector

and covariance matrix undergo some change. The most widely setting for multivariate SPC

is the multivariate normal. This setting, which we will use, assumes that while in control,

the readings follow independent common multivariate normal distributions with some mean

2



vector µ and covariance matrix Σ. This article stresses the possibility that the mean vector

and/or covariance matrix may have changed from (µ, Σ) to (µ1, Σ1). We further focus on

an out of control state due to persistent or sustained causes, by which we mean a process

has left the state of control, remains out of control, or even goes further from control, until

some corrective action is taken. The setting in which an out of control state is transient or

isolated, by which we mean that the system goes out of control but then returns to control

even in the absence of any intervention; is not the focus of this paper.

Existing Work

The original and best known work in multivariate control chart is that of Hotelling (1947)

which is a direct multivariate equivalent of the Shewhart X̄ chart. Conventional univariate

methods that are best suited for persistent small changes, such as cumulative sum (cusum)

chart and the exponentially weighted moving average (EWMA), are by and large limited in

the multivariate arena. Multivariate versions of the cusum tend to be somewhat specialized.

See for example Healy (1987), Crosier (1988), Pignatiello and Runger (1990), Hawkins and

Olwell (1998). It may be fair to say that there is no multivariate cusum per se other than the

proposal by Crosier (1988); rather, there are proposals for a collection of univariate cusums.

For identifying shifts in mean for a known in-control value µ and a specified shift of size

δ, the optimal diagnostic was shown by Healy (1987) to be the univariate cusum of the

scalar (X − µ − δ/2)′Σ−1δ. This result though is usually of no particular use since we

do not know in what direction the mean will shift and, unlike the scalar case where mis-

designing the cusum leads to no more than the loss of some of the performance possible

with more accurate tuning, if the direction specified is wrong, the performance of the cusum

may be arbitrarily bad. There have been proposals for cusum charts of multivariate data

with a limited number of likely modes of failure (Hawkins and Olwell 1998), but except

in special circumstances these generally lack the simplicity and robust good performance

of their univariate counterparts. The multivariate version of the EWMA, due to Lowry et

al.(1992), is sensitive to small persistent mean shifts in any direction. It can also be used to
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detect larger shifts by using larger values of its tuning constant.

The cusum and the MEWMA are primarily intended to identify persistent changes in the

mean vector. Changes in the covariance matrix have traditionally received less attention.

Two recent proposals (Huwang et al 2006, Hawkins and Maboudou-Tchao 2008) have ex-

tended the MEWMA to the monitoring of the covariance matrix. In these proposals, the

process data vectors Xn are first multi-standardized to Y n = Σ−1/2(Xn − µ), which are

N(0, I) while the process is in control. A running estimated covariance matrix is then defined

by the recursion

Sn = (1− γ)Sn−1 + γY nY
′
n

with the initialization S0 = 0 (Huwang et al, 2007) or S0 = I (Hawkins and Maboudou-

Chao, 2007).

These proposals assume that the in-control process parameters are known exactly. The

T 2chart for estimated parameters has been recently studied by Champ et al.(2005) and

designed for rational groups of size 3 or more. Their performance analysis attests to the

undesirable effect of estimation on the run behavior of a chart – while standard statistical

theory allows one to set control limits with any desired probability of exceedance, the use of

the same parameter estimates in different rational groups’ T 2 creates serial dependence that

distorts the run length distribution.

A conceptually different approach to SPC in the setting of unknown in-control param-

eters is the unknown-parameter change point formulation. Hawkins Qiu and Kang (2003),

Hawkins and Zamba (2005,a,b), Zamba and Hawkins(2006) outlined reasons for using se-

quential change point methodologies in a process control where the location parameters are

unknown or not fully known (Hawkins Qiu and Kang, Zamba and Hawkins), where univari-

ate scale and/or location parameters are not fully known(Hawkins and Zamba a,b) . The

reasons can be summarized as follow:

• Avoid the problem of dependence on assumed known parameter values

• Being able to chart startup processes and low volume productions
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• Being able to monitor and learn simultaneously

• Being able to control the run behavior

In the following, we define the multivariate unknown parameter change point model, their

sequential and dynamic use.

The Unknown-Parameter Change Point Model

The working model

X i ∼




Np(µ,Σ) if i ≤ τ

Np(µ1,Σ1) if i > τ
(1)

defines the change point formulation in a p-variate normal case. The parameter τ is called

the change point (if one exists), and is unknown. The remaining parameters µ, µ1, Σ, Σ1

are the in- and out-of-control mean vectors and covariance matrices. While there are change

point formulations with some of the parameters assumed known, we will be focussing on the

unknown-parameter change point problem in which none of the parameters is assumed known

a priori. We refer the reader to Zamba & Hawkins (2006) for a literature review on the static

applications of multivariate change point methods. There are various specializations of the

general model (1). The assumption that Σ = Σ1 leads to a model where the change is in the

mean only, a model discussed in Zamba and Hawkins (2006). Sketching the development, if

in a series of n observations a change point were known a priori to be at τ = k, then T 2
k ,

the Hotelling-T 2 between pre- and post-k data, would be the likelihood ratio test statistic

for testing a change between the pre-k and post-k segment means. In case the change point

is not known ahead of time, the maximum over all possible split points

T 2
τ̂ = max T 2

k , k = 1, ..., n− 1

is the generalized likelihood ratio test statistic for change in mean vector. The maximizing

index τ̂ is the maximum likelihood estimate (MLE) of the change point.
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When the generalized likelihood ratio test statistic is used sequentially to assess a change in

mean vectors of two segments, as a new data vector Xn accrues, the algorithm follows:

• Compute T 2
max,n the maximized split statistic for the entire sequence of readings

X1,X2, ...Xn to date.

• If T 2
max,n exceeds some cutoff hn,p,α, conclude that there has been a shift. We esti-

mate the time of occurrence of the shift by the maximizing index k, and for follow-up

diagnosis conduct a two-sample study of the pre-k and post-k series to identify the

change.

• If T 2
max,n < hn,p,α, conclude that there is not enough evidence of a change, and let the

process continue without interruption.

The thresholds hn,p,α are based on a desirable property of the sequence of length n to give

a constant probability of false alarm for each n (Hawkins, Qiu and Kang (2003), Margavio

et al. (1995)). If this probability were a constant α say, then the sequence must satisfy the

equation

P [T 2
max,n > hn,p,α | T 2

max,j ≤ hj,p,α; j < n] = α. (2)

The Change point Model for Change in Mean and/or Covariances:

The Adaptation

The adaptation to a more general setting where mean and covariance matrix may undergo

a sudden change is outlined as follow. We assume the existence of a time τ when the mean

vector and/or the covariance matrix change. The change point model that encapsulates this

scenario is the general setting where

X i ∼




Np(µ , Σ) if i ≤ τ,

Np(µ1 , Σ1) if i > τ .
(3)

Under the assumption of no change, this model (3) can be summarized in terms of joint

hypothesis as follow
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H0 : µ = µ1 ; Σ = Σ1 .

This hypothesis can be split into the combination of two composite hypotheses; the first of

which is

H0,1 : µ = µ1 | Σ = Σ1 ,

and the second

H0,2 : Σ = Σ1 .

Note that in H0,1, we have knowledge that the pre and post-shift covariance matrices are

the same. This setting yields the mean-only change point model as discussed in Zamba &

Hawkins (2006). H0,2 is a covariance-only change point model. Considering the unrestricted

parameter space defined under H0, and the restricted parameter space defined under H0,1, if

an observation falls within the space defined by H0, it should primarily fall into the restricted

space defined under H0,1 given that it falls in the space defined under H0,2.

Write X̄i,j and Si,j for the mean vector and the maximum-likelihood sample covariance

matrix for the vectors X i+1,X i+2, ...Xj - that is

X̄i,j =
1

(j − i)

j∑

k=i+1

Xk, Si,j =

j∑

k=i+1

(Xk − X̄i,j)(Xk − X̄i,j)
′/(j − i).

By Lemma 10.3.1, Anderson(1984), the likelihood ratio test statistic for testing H0 assuming

a split point at observation k is

Λk,n ∝ | S0,k | k−1
2 × | Sk,n |n−k−1

2

| S0,n |n−1
2

, (4)

and the familiar doubled negative log likelihood ratio is

−2 log Λk,n = (n− 1) log |S0,n| − (k − 1) log |S0,k| − (n− k − 1) log |Sk,n|.
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A Bartlett Correction

The generalized likelihood ratio test has an asymptotic chi-squared distribution with p(p +

3)/2 degrees of freedom. This asymptotic distribution would be relevant if both k and

n − k were large. However in SPC applications, fast response is important, leading to

the conclusion that SPC procedures must be able to handle settings in which a segment or

segments is short. For this reason, it is advisable to use the Bartlett correction of normalizing

the GLR by its null expectation, a procedure that is known to dramatically improve the chi-

squared approximation.

Under the in-control distribution with the sequence of length n split at point k, the mean of

the log likelihood ratio statistic is given by: E(−2 log Λk,n) = gk,n, where

gk,n = p(log 2 + (n− 1) log(n− 1)− (n− k − 1) log(n− k − 1)− (k − 1) log(k − 1))

+

p∑
j=1

[(n− 1)ψ(
n− j

2
)− (k − 1)ψ(

k − j

2
)− (n− k − 1)ψ(

n− k − j

2
)],

(5)

with ψ(z) = d
dz

log Γ(z), the digamma function.

The Bartlett correction then consists of using the test statistic

Gk,n = −2 log Λk,n(p(p + 3))/gk,n (6)

which, for a fixed k, has a scaled approximate chi-squared distribution.

This result is outlined in the Appendix.

Application – Sequential Change Point Procedure

Analogous with the earlier change point proposals, we suggest the following procedure for

detection of change points in mean vector and/or covariance matrix.

• For each new observation n, compute Gk,n for each k in the feasible range p+1, ..., n−
p− 1.

• Calculate Gmax,n, the maximum of these Gk,n.
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• If Gmax,n exceeds a control limit hn,p,α, then signal a change. Diagnose the epoch of

the change as the k value yielding the maximum.

• Otherwise continue to the next observation vector.

The control limits hn,p,α are chosen to fix the probability of a false alarm at each obser-

vation to α. In other words, they are the solution to the equation:

P [Gmax,n > hn,p,α | Gmax,j ≤ hj,p,α; j < n] = α. (7)

As an analytical solution to the equations seems intractable, they were estimated by simu-

lation. This involved 5 million simulations to estimate the limits for series lengths of up to

150. We covered α values of 0.0005, 0.001, 0.002, 0.005 and 0.01 corresponding respectively

to fixed ARL of 2000, 1000, 500, 200 and 100, and examined dimensions p ={2, 3, 4, 5, 10,

15, 20}.
In a purely mathematical sense, the unknown-parameter change point formulation can be run

with n as small as 2(p+1), which is the minimum sample size required for both S0,k and Sk,n

to have a chance of being non-singular. Most practitioners though would accumulate ‘a few’

observations beyond the mathematical lower limit before starting testing. Our simulations

incorporate this belief by allowing for some number of ‘learning’ observations to accrue before

formal monitoring starts. We set the number of these learning observations to 0, 10, 20, 30,

40 in addition to the 2(p+1) required for non-singularity. Tables of estimated control limits

along with their standard error on our are available upon request. Table 1 is an extract from

these more extensive tables. It shows the cut points for ARL = 500, assuming an initial

no-test learning period totalling 2(p+ 1) + 10 process vectors: choices that we believe would

suit many practitioners.

Basic Performance study

A full-scale performance evaluation of our proposal is challenging in view of the large number

of factors affecting performance. There are the immediate factors of the dimensionality and
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the in-control ARL. Then there is the fact that the process mean can change in an arbitrary

way, and that any subset of the p(p + 1)/2 elements of the covariance matrix could change.

Finally, there is the impact of the length of time the process runs in control before the shift

– it is intuitively clear that a long in-control run leads to good estimates of the in-control

parameters, and so should to some degree speed the response to an out-of-control situation.

In order to explore the impact of some of these factors, we conducted a basic simulation

study. Various runs used initial in-control series of length 10, 20, 30, and 40 observations.

We then added shifts in mean and/or variance following the initial sequence, and applied

our procedure. Since the generalized likelihood criterion is not affected by a full-rank linear

transformation of the vectors Xj; Anderson (1984), to explore arbitrary changes in the mean

vector, it is sufficient to shift a single component of the mean. To study location shifts, we

therefore added a shift δ to the first component of each data vector following the in-control

sequence. Regarding the covariance matrix, we multiply one component of our covariance

matrix by 1 + λ. For example, assuming the component is the first, for a p× p matrix Σp =
 σ1,1 . . . σ1,p

σp,1 ( Σp−1 )


 , multiplying the first entry σ1,1 by 1 + λ to compute the determinant

translates into multiplying the determinant by (1 + λ)× | Σp−1 |. One can choose another

entry and have a change in the determinant as a function of the cofactor of the entry selected.

We chose the first component for simplicity. After these changes, we ran our chart looking

for a signal. We recorded the n at which the chart signaled a shift and the estimate of the

change point. A false alarm occurs when a series signals before the end of its in-control

readings. For δ = 0, and λ = 0 all alarms are false, and are expected to occur at rate α

giving the chart an ARL of 1/α. In our simulation, the charts were all tuned to in control

ARL of 500, corresponding to a false alarm rate α = 0.002. We ran 10,000 replications of

length n = 2000 each, using dimensions 2, 5 and 10. We consider various combinations of δ

and λ ; δ =( 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4) and λ = (0, 0.5, 1, 1.5, 2, 3). We report

the results for p = 2 for warmup series (10, 20, 30, 40). The results can be summarized as

follow:

– The effect of warmup series:
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They seem to matter most when the shift in mean is of small magnitude; the results suggest

that longer warmup series yield faster responses to small shifts. For big shifts in mean (i.e.

in the magnitude of δ ≥ 3,) the system has a fast response to shift regardless of the warmup

series sizes

(4 ≤ OOC.ARL <10 for all δ ≥ 3 at all combinations of λ and warmup series lengths).

– The effect of mean shift:

The bigger the shift in mean vector, the faster the response. There was a relative robustness

to location parameter detection under basic performance study.

– The effect of shift in covariance matrix:

Under basic performance study, there was an overall faster response in the presence of a

sudden change in the sum of squares; the breaking points, in dimension 2, comes when

λ > 1.5.

– Small shifts in mean vector coupled with small shift in variance do not have a fast detection.

Not a surprise; they are the closest to in-control state. Figure 1 below give a clearer picture

on the performance.
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Figure 1: Basic performance study: δ =( 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4) and λ = (1.5(left) , 3(right))

warmup series are 10, 20, 30, 40. Each dotted line represents a specific mean shift; starting with 0 at the

top and 4 at the bottom. The vertical axes are the log(ARL).
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When examining the spread of the OOC runs though, performances were more erratic in the

presence of unreasonably small size data gathering. The spread of the runs stabilizes around

warmup series of size 20 when p = 2.

Performance under More General Covariance Changes

The covariance matrix contains p(p+1)/2 elements, so a full exploration of all possible shifts

is a daunting task. It is though not quite as daunting as it looks initially. The methods of this

paper are affine equivariant – they depend on the covariance matrices Σ,Σ1 only through

the eigenvalues of Σ1Σ
−1, or, with the standardization Σ = I, those of the shifted covariance

matrix Σ1. Multiplying σ1,1 by 1 + λ replaces the eigenvalues 1, . . . , 1 with 1 + λ, 1, . . . , 1,

and in fact captures the effect of any rank-1 update to Σ. This rank-1 update is equivalent

to the basic performance discussed previously, in which no correlation has been introduced

between quality characteristics. A more general form of all rank-1 updates can be written as

changing the covariance matrix from identity to a matrix with first entry σ2
1,1 6= 1; in which

case proportional reduction in variance can be explored by constraining 0 < σ2
1,1 < 1; which

in turn can be mapped on λ ∈ (−1, 0). Note though, that this scenario is not necessarily

restricted to a single component update; it can also be viewed as all changes that correspond

to a rank-1 update from I.

Introducing a non-zero correlation % between two elements of X changes the eigenvalues

to 1 + %, 1− %, 1, . . . , 1. This is a rank-2 update, though of a rather special form.

The reason for exploring more general covariances is that, in multivariate settings, it is

customary to study changes from I to a covariance matrix with some particular structure

with regard to their eigenvalues. This full exploration will require more space than the

current manuscript and would probably detract from the objective of the paper. We consider

three different settings of rank–2 updates, where the performance of the chart following

a loss of control is inextricably linked to changes in eigenvalues of the covariance matrix

following the change point. We carried out a study in dimension p = 2; although the idea
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is generalizable to higher dimensions. We consider three different settings called settings 1.,

2., 3., and coupled them with a constant change in mean. The various covariance structures

are:
 1− % 0

0 1− %


 ,


 1 %

% 1


 , and


 1 + %2 %

% 1 + %2


 . We ran these three

scenarios following 10, 20, 30, and 40 learning series for a system tuned to ARL = 500. We

chose % = {.1, .2, .4, .6, .8 }; and various contaminations of the mean δ = {0, .25, .5, 1, 2,

3, 4 }. For each setting, we ran 10,000 replications of series of length 3000 each and looked

for signal. The results are included on Tables 2, 3, 4, and on Figures 2 & 3.

1.


 1− % 0

0 1− %


 explores a system switching from I2 to a system with equal reduction

(or equal % reduction) in variance. In dimension 2 this yields a change in eigenvalues from

1, 1 to 1- %, 1- %. In dimension p, this change can define a rank-2 update from I to Σ1, when

two of the entries have equally affected the overall variability; consequently changing the

eigenvalues to 1−%, 1−%, 1, . . . , 1 . The results of this setting (Figures 2, 3, & Table 2) show

that our system responds faster to moderate-to-large decreases in the variance component.

When this decrease is tiny (% ≤ 0.2; nearly identical curves across the range of δ), the system

can go undetected for a long time (out of control(OOC) ARL ∼ 430 when δ = 0); unless

a large shift in mean comes to its rescue (OOC.ARL ∼ 4 when δ = 4). As the shift in

mean increases and the decrease in variance becomes apparent, the change point method is

more likely to flag changes at a faster pace. For large shifts in mean vector (δ ≥ 2), the

method has a fast detection and seems to behave so with the startup series having little

effect (OOC.ARL decreasing from 11.1 (n0 = 10, δ = 0 , % = .1 ) to 3.9 (n0 = 40, δ = 4 ,

% = .8)).

(On a side note, this scenario and a rank-1 update with decrease in variance in view can be

obtained from each other and interchangeably. This is not difficult to see; in one case the

determinant is the square power of the other. So, it would be redundant to add an additional

simulation study on rank-1 variance decrease to the paper.)
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2.


 1 %

% 1


 explores a system switching from I2 to a correlated system. In dimension

2, this yields a change in eigenvalues from 1, 1 to 1 - % , 1 + %. In dimension p, this change can

define a rank-2 update from I to Σ1 when one update increases the overall variability while

the other decreases it. This changes the eigenvalues to 1 - % , 1 + %, 1, . . . , 1. Figures 2, 3, &

Table 3 show the performance of the change point model under this scenario in dimension

2. When a correlation creeps into the system, its magnitude plays a key role in it being

detected. The change point method is fast to detect a process changing from uncorrelated to

highly correlated. We experience a slow response when % ≤ 0.4 and δ ≤ .5. The OOC.ARL

ranges from around 400 (% = .1, δ = 0; n0 = 10) to 112 (% = .4, δ = .5; n0 = 40). When

a change in correlation is coupled with a relatively large shift in the mean (δ ≥ 2), the size

of the learning observations appears to have little to no importance. The OOC.ARL ranges

from 11.8 ( % = .1, δ = 2; n0 = 10) to 4.0 ( % = .8, δ = 4; n0 = 40).

3.


 1 + %2 %

% 1 + %2


 explores a more general scenario where both variance and correlation

are subject to changes. In dimension 2, this yields a change in eigenvalues from 1, 1 to 1 +

%2 +%, 1 + %2−%. The system switched from the uncorrelated I2 to a correlated system with

slight augmentation in variance. In dimension p, this generalizes to a rank-2 update in which

eigenvalues change to 1 + %2 + %, 1 + %2 − %, 1, . . . 1– representing a target intermediate

between variance and correlation shifts. Figures 2, 3 & Table 4 show the performance of the

change point model under this scenario in dimension 2. This setting has the slowest responses

across the range of % when δ is tiny, and the fastest responses when δ ≥ 2, regardless of the

startup observations. The figures show little separation between between the various % at

a small shift in mean, a sharp decrease in OOC.ARL (δ ≥ 2) with no separation across %.

For large δ, the OOC.ARL ranges from 12 ( % = .1, δ = 2; n0 = 10) to 4.1 ( % = .8, δ = 4;

n0 = 40).

Overall, all three settings are nearly equivalent when % → 0 and δ → 0, and are expected

to draw close to their nominal ARL = 500. The farther % and δ get from 0, the faster the

charts respond to shifts. In setting 2., when a correlation creeps into the process and n0
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is small, the change can go undetected for some time; unless the correlation is significantly

high or a shift in the mean comes to its rescue. The detection gets a little faster when n0 is

large. Finally, when the system goes out of control as specified in 3., we observe the slowest

responses compared to 2.; especially when drifts in variance and correlation are of very

small magnitude and the mean shift negligible. By and large, the system is more sensitive

to moderate to large increases in mean (1 < δ ≤ 4), couple with a significant changes in

correlation (% ≥ .4).

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

0 1 2 3 4

2
3

4
5

6

Change in Mean

Lo
g(

A
R

L)

 .1 
 .2
 .4
 .6
 .8

Figure 2: Performance under more general covariance changes. From left to right: settings (1. ; 2. ; 3.),

First row : Startup 10, Second row : Startup 20; % = (.1, .2, .4, .6, .8) on legend.
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Figure 3: Performance under more general covariance changes. From left to right: settings (1. ; 2. ; 3.),

First row : Startup 30, Second row : Startup 40; % = (.1, .2, .4, .6, .8) on legend.

Computational Issues

In an era of advanced computational technology, one may be tempted to implement our

methodology in a crude or ‘brute-force’ way. However, direct implementation of the formulas

involved in the generalized likelihood ratio criterion, and their sequential computation can

lead to much more severe computational load than is necessary. The criterion depends on

the computation of many determinants | Si,j | of the covariance matrices of subsequences

of the data. These determinants can be found using a numerically stable reasonably fast

method based on Cholesky factorizations.
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Append a 1 to each data vector Xh, writing

Zh = (1,X ′
h)
′ (8)

Define

V i,j =

j∑

h=i+1

ZhZ
′
h (9)

and form the lower triangular Cholesky factorization

V i,j = Ri,jR
′
i,j ; (10)

where the Cholesky factor matrix Ri,j is of dimension p+1. Standard results then show (see

for example Chambers 1971) that

|V i,j| =
p+1∏

h=2

r2
h,h,i,j ; (11)

where rh,h,i,j is the h, h element of Ri,j.

The attraction of the Cholesky factorization is that adding a new data vector Xj+1,

the corresponding Ri,j+1 can be computed from Ri,j and Zj+1 with a fast, stable update

(see Chambers 1971). Starting off for each i = 1, . . . with Ri,i = 0 and then using updates

to calculate the successive Ri,j, all the log determinants needed for the analysis can be

calculated. These can be computed “on the fly” as needed, which involves minimal storage

requirement but at the cost of much repetitive computation. A more efficient approach

though is to keep a record of all determinants Q(i, j) = log |V i,j|, (it is better to work with

the logs of the determinants than the determinants, as the latter are at risk of overflow and

underflow in high dimensions.) If all Q(i, j) for 0 ≤ i < j ≤ n have been computed, then

when case n + 1 accrues, initialize a temporary working Cholesky factor Rn+1,n+1 = 0, and

starting from i = n + 1 and going down to i = 0 use the updates to successively compute

each Ri−1,n+1, and from this, Q(i, n + 1).

There are notionally n(n−1)/2 elements of Q, though those for which j < i+p are necessarily

−∞ and can be ignored.
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Application: Detection of signs of ‘Isolated Systolic Hy-

pertension’(ISH)

This problem was the motivation that has partly driven the research work. It also reem-

phasizes the call in the U.S. and around the globe to apply advanced quality methodologies

to health science, in order to advance symptoms recognition and to improve health care

systems; (Quality and Productivity Research Conference(QPRC), 2005, Minneapolis, MN).

Authors such as Woodall (2006), Winkel & Zhang(2007), have responded favorably to the

call to apply quality control methods in health and in medicine. In fact, Woodall(2006) has

conducted works that pertain to applying industrial quality control methods to health sci-

ence. The current application of our methodology falls within the same line of thoughts–with

hope that many authors will continue to respond to this urgent call.

In chronobiology and medical ambulatory monitoring, investigators are interested in the

behavior of subjects measured over time, on some specific biological characteristics, in order

to assess risks. As an example, monitoring systolic and diastolic blood pressures can tell

whether a person is at risk for stroke, death, or other medical complications and disabilities

associated with heart diseases. As individuals age their systolic blood pressure has a tendency

to rise, while the diastolic pressure falls. This combination can result in one of the dominant

disease processes in people aged 50 years or older called ‘Isolated Systolic Hypertension

(ISH)’. This comes about when the systolic blood pressure is high (usually between 120–140

mm Hg), while the diastolic blood pressure remains below 90 mm Hg. This is in contrast

to traditional definitions of hypertension in which high blood pressure is defined as both the

systolic and diastolic components crossing their hypothetically specified thresholds. With

ISH the pressure in the arteries may become very low when the heart relaxes; resulting

in lower diastolic blood pressure. The latest medical researches have suggested that both

systolic and diastolic measures be taken into account before classifying patients as high

blood pressure individuals, or as high/low risk for heart disease. ISH is, in and of itself,

considered a risk for heart disease, and warrants medical attention; though it may be further
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complicated by other co-morbidities. It has also been recognized that in normal subjects,

systolic and diastolic blood pressures are highly correlated. Thus, monitoring these biological

characteristics separately without accounting for the correlation between them would be

discordant with process control realities. In the following study, we have data set on a

subject over 50 years of age, oscillometrically measured over time. The goal is to identify, as

soon as possible, signs of ISH using single observations/vectors obtained sequentially and

periodically. The setting can be viewed as a bivariate sequential/dynamic control problem

with correlated characteristics. Some may argue that in two dimension settings such as this

one, only five parameters are in play (2 means, 2 variances and one covariance); and that

life is easier using univariate methods on these parameters. We do not choose this ‘comfort

zone’ alternative; since we are more concerned with a joint charting methodology as opposed

to separate univariate charts. We apply the multivariate change point control methodology

to these data to pinpoint the major time of change; bearing in mind that change can occur

in both the mean and/or the covariance matrix.

Result of change point method

Figure 4 shows the results of applying the change point methodology to our data using two

different settings. The first setting accumulates 10 observations as initial sample then starts

testing from observation 16, while the second uses 20 initial samples and starts testing at

observation 26. On the left-hand panel, the ‘nearly horizontal’ lines on the figures are the

control limits hn,0.002,2, corresponding to an ARL of 500 (Table 5), and the curves are the

test statistics. The right-hand panel of each figure shows the maximum likelihood estimate

of the epoch of change (τ̂). The message conveyed by the figures is essentially identical,

except the short-warmup sequence’s flirtation with the control limit around observation 30.

In all, the test statistic punches through the control limit after adding the 55th observation,

remains above the limit for the rest of the sequence. From observation 55 on, the estimate

of the change point remains fixed and consistent at observation 48.
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Figure 4: Test statistics, Control Limits & Change point Estimates

Diagnosis after Signal

In multivariate control setting, it is important to carry a diagnosis after signal to see what

characteristics of the process have gone out-of-control. Unlike the univariate setting, this

investigation may be quite complex. In our case, since the MLE estimate τ̂ suggested a

major split at time point 48, a closer look at the pre and post-shift data revealed the

following summaries:

µ1...τ̂ =


 125.16

78.77


 Σ1...τ̂ =


 8.54 3.32

3.32 8.46


 Corr1...τ̂ =


 1.00 0.39

0.39 1.00


 ;
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µτ̂+1...55 =


 129.03

76.94


 Στ̂+1...55 =


 7.23 4.83

4.83 3.26


 Corrτ̂+1...55 =


 1.00 0.99

0.99 1.00


 .

The first component of each mean vector represents the mean of systolic measurements. As

a matter of interest, we may also compare the post-shift parameter estimates obtained at the

time of the signal, observation 55, with the estimates given at the end of the data sequence;

the two sets of estimates are encouragingly similar.

µτ̂+1...n =


 128.25

77.75


 Στ̂+1...n =


 9.40 5.32

5.32 4.17


 Corrτ̂+1...n =


 1.00 0.84

0.84 1.00


 .

These summaries suggest that the signal may have resulted from a shift in the systolic blood

pressure and a distortion in the correlation structure from weak to highly correlated variables,

coupled with a mean and/or variance reduction in the diastolic blood pressure measurements.

In order to justify this claim, we use the step-down analysis for change as outlined in Sullivan

et al.(2007), although there are other proposals for the diagnosis following signals such as

Hawkins and Maboudou-Tchao (2008).

Step-down Method

The reasoning behind the step-down method consists of using the difference in estimated

parameter vectors as diagnosis tool to infer which elements of the difference are not zero.

If the parameter vector is labeled θ = (µsys, µdia, σsys, ρ(sys,dia), σdia), the idea is to partition

the difference in parameter vectors ∆ = (θpre − θpos) into a test subset and its complement

(i.e. [∆in = (θpre − θpos)in | ∆out = (θpre − θpos)out]). The test subset (in) consists of the

parameters (or combination of parameters) we wish to test for homogeneity between the

pre− and post− shift series. If we wish to test for homogeneity of the systolic component

regardless of the other four parameters of the space, the design vector (1, 0, 0, 0, 0) instructs

that the systolic parameter µsys is in the test subset ∆in while the other four are not; thus,

they are in ∆out. The design matrix of Table 6, explains all there is to be known about

partitioning ∆ into ∆in

⊔
∆out. The design vector (1, 0, 1, 0, 0) tests for the mean and the

variance of the systolic measures; the other components of the bivariate measures, i.e., the
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diastolic parameters and the correlation between the two characteristics will be in the ∆out

set. The test of homogeneity, for a parameter in the test subset, is testing the null of no

difference between pre-change and post-change measurements. By varying the test subset,

one can cover all potential combination of parameter changes and find the best subset of

parameters that explains the change we have flagged earlier. The technicality partitions the

estimated covariance matrix of the difference into

Σ̂∆̂ =


 Σ̂in Σ̂1,2

Σ̂
′
1,2 Σ̂out


 , (12)

and decomposes the overall quadratic χ2 = ∆̂
′
Σ̂−1

∆̂
∆̂ into χ2 = χ2

in + χ2
out|in, where χ2

in =

∆̂
′
inΣ̂−1

in ∆̂in; χ2
out|in = ∆̂

′
out|inΣ̂−1

out|in∆̂out|in; ∆̂out|in = ∆̂out − Σ̂
′
1,2Σ̂

−1
in ∆̂in; and Σ̂out|in = Σ̂out −

Σ̂
′
1,2Σ̂

−1
in Σ̂1,2.

χ2
in is asymptotically central chi-squared distributed, and χ2

out|in is asymptotically non-central

chi-squared distributed. The asymptotic covariance estimate for the blood pressure problem

under the parameterization (µsyst, µdias, σsyst, ρ(syst,dias), σdias) is

Σ̂∆̂ = (1 + 48
8
)




0.17791670 0.06906174 0.0 0.0 0.0

0.06906174 0.17625000 0.0 0.0 0.0

0.0 0.0 0.08895833 0.01006623 0.01346704

0.0 0.0 0.01006623 0.01497780 0.01001897

0.0 0.0 0.01346704 0.01001897 0.08812500




.

The pre and post-shift estimated parameters are

θ̂pre = (125.16, 78.77, 2.922328, 0.39, 2.908608)′

θ̂pos = (129.03, 76.94, 2.688866, 0.99, 1.805547)′.

Table 6. shows the step-down method for all possible parameter tests. In the table, np

refers to the number of parameters tested. The ones stand for parameters included in the test
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set while the zeroes are the parameters excluded from the set. The final decision as to which

parameters have changed individually or jointly depends on a pre-specified decision making

threshold. The choice of the decision threshold (p∗) has sensitivity implications. It is chosen

to neither identify too many changes nor too few. In other words, it is chosen to have a good

sensitivity to identify the correct number of parameter change. Any observed significance

that falls below p∗ gives a convincing evidence that the combination of parameters tested

has changed. If in a given np, the maximum observed significance across all combinations is

below p∗, we would have evidence that the ideal number of parameter change is np. Following

a reasoning similar to Sullivan et al.(2008), we set p∗ = 0.20 as decision making threshold.

When np = 1, the parameter most consistent with the assumption of ‘no change’ is σsys.

There is a convincing evidence that the rest of the parameters might have changed.

When np = 3 or 4, all subsets are statistically inconsistent with the assumption of no change.

Identifying the smallest np for which all p-values are less than p∗ is key to identifying the

ideal number of parameters violating the assumption of no change. We identify the smallest

value of np to be 3; although one can reasonably have the same argument about np = 4.

The conclusions from the change point detection algorithm and the step-down method have

led us to partitioning the readings as displayed in Figure 5. From the figure, we see a weak

association between SBP and DBP up to τ̂ ; after which the association becomes significantly

strong. In addition, the time series plot suggested some irregular behavior between these

measurements up till around time point 48 (one characteristic increasing in variance while

the other decreases). By and large, our conclusion based on the step down algorithm is not

far from this visual inspection that the change is a by-product of a highly significant increase

in systolic blood pressure after time point 48 (which is a 1.32 standard deviation increase), an

increase in the correlation between the two blood pressures (correlation increases by a factor

of more than 2.5), a .63 standard deviation decrease in diastolic blood pressure–although

one can also argue about a deflation in variance of the diastolic blood pressure. Statistically,

we have identified the epoch of change and the possible direction of the change. In medical
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Figure 5: Blood pressure problems: Joint relationship and marginal time assessments.

fields, statistical significance does not necessarily translate into clinical importance. In our

setting though, the statistical diagnoses have a two-fold implication to medical doctors and

ambulatory monitors. The first implication is to identify whether a regimen is having a

stabilizing factor on the main biological variables, while the second identifies when an ISH

patient should be placed on a blood pressure stabilizing regimen. These indeed have direct

repercussions on assessing risk for heart diseases within this population.
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Comparative Study

In advancing a new methodology, one wishes to compare it to an existing standard. The

existing standard in our case is lacking due to the fact that standard control techniques

rely on known parameters. Reynolds & Cho (2006) comes to mind as a possible compara-

tor; their method, however, cannot accommodate variance decreases or correlation changes,

limiting its relevance. The closest benchmark for comparison is to use a heuristic approach

by designing univariate self-starting cusums of regression recursive residuals. Hawkins &

Maboudou-Tchao (2007) points to the transformation to self-starting regression-adjusted

variables as creating a stream of quantities that one can use for any charting purposes. The

method transforms an original unknown parameter vector X into recursive residuals R, then

transforms R into known parameter multivariate standard normal vector U so that changes

in X are reflected upon U . Thus, our approach is to set up p univariate streams on these re-

cursive residuals which, in control, are iid N(0, 1), and maintain a pair of cusums for location

(one upward and one downward) and a pair for scale on each stream, for a total of 4p cusums

that are run until one of them crosses its decision interval, so that the run length(RL) is

the min(OOC.RLi)
4p
i=1. We compare this first-signal-based cusum to the performance of the

change point (CP) methodology. As you can see, these comparisons can become burdensome

in high dimension. We demonstrate this for p = 3 only. In order to obtain a joint in-control

ARL of 500, we must tune each individual self-starting cusum to a nominal ARL of 6000.

We consider change in the covariance structure on the form Σ =




σ2
1,1 0 0

0 σ2
2,2 0

0 0 σ2
3,3


 . The

reference value and the decision intervals for the cusums depend on the shift we anticipate to

detect. In this simplistic demonstration, we operate under the assumption that each of the

parameters (µ1, µ2, µ3, σ1,1, σ2,2, σ3,3) can increase, decrease, or remain stable. This clearly

presents a combinatorial explosion of comparisons if we were to study them individually. We

proceeded randomly; since, in the real world, we would not know exactly where a shift may

be coming from. In addition, what we need to prioritize is the fast response to shifts rather
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than response to specific shifts. Each random selection of these combinations is run through

the change point method and through the 12 cusums. At least one shift was introduced after

25 in-control readings. The table below (Table 7.) gives us a design scheme for the specific

shifts to be detected by the cusums. The OOC.ARL of the table are the out of control ARL

of the cusum design schemes. We measure performance by the number of series signaling

within a caliper defined by 100 observations after the in-control readings. So, any series that

did not signal after 100 contaminations is considered degenerate and is censored. This is a

heuristic approach in which we are comparing truncated out of control ARL. The OOC.ARL

for the comparison are based on 10,000 replications. The results are a little surprising. The

OOC.ARL(Cusum) = 20.09, and the OOC.ARL(CP)= 9.39; giving a clear advantage to the

CP method, for fast detection, over multiple cusums. Note too, that out of 10,000 randomly

generated series, 2.7% were degenerate for the change point whereas 2.5% were degenerate

for the cusums. One surprise from our simulation though, is that only a few upward scale

cusums signaled (9.68%); and that location cusums dominated the signals (61%). Even

though this looks at first blush a little unrealistic, it confirms the fact that one needs to

be very careful when using univariate charts to monitor multivariate characteristics. The

reality is, when using startup cusums, shifts in scale parameter can easily reflect upon the

location parameter cusum and the running mean can easily get caught up with newly shifted

parameters. Figure 6 shows the side-by-side histograms for these comparisons.

Table 7.

Shift h k ARL OOC.ARL

1σ Increase 6.852 0.50 6004.80 14.1

Location

1σ Decrease 6.852 0.50 6004.80 14.1

0.5σ Increase 20.868 1.460 6000.40 27.3

Scale

0.5σ Decrease 4.683 0.462 6002.10 22.0
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Figure 6: Comparison of the change point method to univariate startup cusums. The comparison was carried in dimension

3 and 4×3 cusums were used. Means and variances are allowed to shift according to the design table 7, or remain stable.

Discussion & Conclusion

Traditional charting systems are calibrated under the assumption that the in-control process

parameters are known exactly. To the extent that this assumption became violated, the

in-control run behavior of the resulting chart will differ from what the user expected. In

addition, under traditional control settings, it is necessary to gather large Phase I data sets

in order to set the process parameters. Cusum and MEWMA have a further challenge in that

their best performance requires ‘tuning’ to the size of the shift. Our unknown-parameter

change point formulation removes the need for a large Phase I exercise. While it is probably
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a good idea to gather some Phase-I-type familiarization data before starting formal process

monitoring, it is not necessary for this initial set to be large, and in the extreme case of

short-run processes where prior information indicated a likely normal distribution for the

process readings, it could be skipped entirely, and monitoring started with the 2(p + 1)th

process reading. Apart from the potential for greatly reducing the amount of effort put into

gathering Phase I data, we see a large benefit of the change point formulation in that it

removes much of the distinction between Phase I and Phase II, allowing process learning to

continue beyond the usual Phase I boundary in an automated, seamless way.

Unknown-parameter methods such as this one can be viewed either as a complete package,

or as a stop-gap en route to the known-parameter setting. In line with this, some users might

want to use the change point formulation until enough in-control data had been gathered to

effectively remove all estimation error from the parameters, at which point they would go

over to their favorite known-parameter charting method – for example a cusum or MEWMA.

Other users would continue to use the change point method indefinitely, an approach that has

the virtue of not involving some sharp break where we switch from one monitoring approach

to another. We are inclined toward the latter approach.

Finally, there is the matter of the Phase I / Phase II dichotomy. We believe the change point

approach allows one to blur the normally-sharp line between these two, allowing monitoring

during the early part of data gathering, along with continuous improvement in parameter

estimates during the ongoing data gathering. The main task for the Phase-I-like portion of

the exercise is not to estimate the parameters, but to get a feeling for the distribution of the

process vectors.

Appendix

Assuming a split point at time k, the generalized likelihood ratio test statistics for a series

of n observations from a p-variate normal distribution is:

Λk,n =
| Σ̂0,k | k−1

2 × | Σ̂k,n |n−k−1
2

| Σ̂0,n |n−1
2
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−2 log(Λk,n) = (n− 1) log | Σ̂0,n | −(k − 1) log | Σ̂0,k | −(n− k − 1) log | Σ̂k,n |
= C + (n− 1) log | S0,n | −(k − 1) log | S0,k | −(n− k − 1) log | Sk,n |

(13)

where C = p [log(n− 1)− log(k − 1)− log(n− k − 1)].

The distribution of the generalized variance of a sample X1, . . . , Xn from Np(µ,Σ) is the

same as the distribution of | Σ | /(n − 1)p times the product of p independent factors, the

distribution of the j − th factor being the χ2- distribution with n − j degrees of freedom;

Theorem 7.5.3 (Andersen 1984).

It follows that | S0,n | is distributed as

| S0,n | ∼ | Σ0,n | ×χn−1 × χn−2 × . . .× χn−p

∼ χn−1 × χn−2 × . . .× χn−p;

(assuming w.l.o.g that Σ = Ip).

log | S0,n | ∼ log(χn−1) + log(χn−2) + . . . + log(χn−p)

∼ log(W1) + log(W2) + . . . + log(Wp)

and

E(log | S0,n |) = E(log(W1)) + E(log(W2)) + . . . + E(log(Wp));

where Wj ∼ χ2
n−j.

If M(log Wj)(.) is the moment generating function of the j − th term,

M(log Wj)(t) = E(et log Wj) = E(W t
j )

1

Γ(n−j
2

)2( n−j
2

)

∫
wtw(n−j

2
)−1e

−w
2 dw =

Γ(t + n−j
2

)

Γ(n−j
2

)
2t

E(log(Wj)) = lim
t→0

d

dt
M(log Wj)(t) = lim

t→0

d

dt
[
Γ(t + n−j

2
)

Γ(n−j
2

)
2t] = log 2 + ψ(

n− j

2
)

thus,
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E(log | S0,n |) → p log 2 +

p∑
j=1

ψ(
n− j

2
). (14)

For an assumed split point at k, summing S0,k , S0,n and Sk,n of (13) gives the analytical

result.

30



Table 1.
Control Limits hn,α=0.002,p

p

2 3 4 5 10 15 20 25

n

16 7.089

17 6.785

18 6.686 4.474

19 6.647 4.493

20 6.648 4.506 3.549

21 6.648 4.525 3.571

22 6.650 4.519 3.587 3.025

23 6.651 4.527 3.579 3.036

24 6.670 4.551 3.590 3.042

25 6.651 4.562 3.592 3.047

26 6.676 4.556 3.596 3.054

27 6.697 4.566 3.593 3.055

28 6.699 4.567 3.601 3.058

29 6.695 4.575 3.599 3.055

30 6.715 4.574 3.611 3.064

31 6.716 4.586 3.616 3.067

32 6.721 4.579 3.612 3.069 2.027

33 6.728 4.593 3.617 3.075 2.036

34 6.747 4.595 3.622 3.070 2.033

35 6.740 4.596 3.616 3.076 2.038

36 6.736 4.600 3.616 3.075 2.039

37 6.729 4.610 3.621 3.081 2.034

38 6.750 4.604 3.633 3.085 2.037

39 6.745 4.617 3.641 3.085 2.051

40 6.761 4.617 3.637 3.085 2.047

41 6.747 4.624 3.634 3.086 2.052

42 6.762 4.626 3.645 3.090 2.049 1.692

43 6.763 4.630 3.643 3.087 2.045 1.693

44 6.768 4.621 3.637 3.086 2.048 1.700

45 6.782 4.632 3.637 3.089 2.049 1.706

46 6.791 4.627 3.643 3.097 2.050 1.702

47 6.774 4.627 3.645 3.091 2.050 1.705

48 6.787 4.622 3.647 3.095 2.053 1.707

49 6.799 4.626 3.647 3.096 2.049 1.707

50 6.794 4.628 3.641 3.101 2.053 1.710

51 6.789 4.632 3.639 3.095 2.056 1.712

52 6.811 4.643 3.638 3.095 2.059 1.711 1.524

53 6.797 4.636 3.640 3.092 2.050 1.715 1.527

54 6.814 4.651 3.636 3.093 2.052 1.715 1.528

55 6.796 4.637 3.647 3.089 2.061 1.714 1.531

56 6.793 4.632 3.645 3.092 2.058 1.720 1.534

57 6.811 4.637 3.647 3.093 2.059 1.718 1.535

58 6.797 4.638 3.645 3.099 2.063 1.719 1.537

59 6.804 4.635 3.651 3.100 2.061 1.716 1.538

60 6.804 4.634 3.654 3.098 2.059 1.715 1.538
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Control Limits hn,α=0.002,p

p

2 3 4 5 10 15 20 25

n

61 6.801 4.629 3.656 3.091 2.063 1.721 1.540

62 6.793 4.645 3.662 3.098 2.059 1.718 1.541 1.420

63 6.795 4.651 3.663 3.101 2.060 1.723 1.540 1.424

64 6.806 4.650 3.657 3.101 2.062 1.726 1.543 1.423

65 6.804 4.642 3.657 3.098 2.056 1.721 1.542 1.426

66 6.811 4.649 3.655 3.101 2.060 1.719 1.545 1.427

67 6.825 4.651 3.667 3.099 2.060 1.720 1.545 1.430

68 6.809 4.659 3.658 3.102 2.057 1.722 1.547 1.431

69 6.802 4.657 3.663 3.102 2.060 1.724 1.547 1.432

70 6.809 4.652 3.660 3.104 2.060 1.721 1.547 1.434

75 6.822 4.652 3.655 3.100 2.069 1.729 1.550 1.438

80 6.806 4.663 3.657 3.100 2.065 1.730 1.550 1.441

85 6.829 4.661 3.654 3.097 2.063 1.730 1.554 1.445

90 6.844 4.672 3.656 3.099 2.064 1.732 1.553 1.446

95 6.828 4.665 3.662 3.110 2.067 1.736 1.556 1.449

100 6.850 4.665 3.664 3.102 2.068 1.728 1.557 1.451

105 8.840 4.663 3.665 3.111 2.070 1.729 1.555 1.450

110 6.845 4.671 3.676 3.107 2.071 1.732 1.558 1.452

115 6.846 4.663 3.658 3.110 2.062 1.724 1.561 1.452

120 6.844 4.662 3.669 3.109 2.072 1.732 1.557 1.452

125 6.838 4.662 3.676 3.110 2.062 1.728 1.560 1.455

130 6.859 4.664 3.663 3.104 2.063 1.729 1.562 1.451

135 6.839 4.676 3.676 3.110 2.065 1.726 1.559 1.454

140 6.866 4.675 3.669 3.112 2.071 1.727 1.561 1.451

145 6.864 4.660 3.667 3.111 2.063 1.735 1.559 1.455

150 6.852 5.665 3.674 3.112 2.069 1.735 1.561 1.454
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Table 2.

ARL when Σ changes as


 1− % 0

0 1− %




%

0.1 0.2 0.4 0.6 0.8

n0 δ

10 0.00 418.0 433.5 427.6 232.8 26.0

0.25 382.2 399.2 400.4 191.7 22.9

0.50 355.7 358.3 310.4 122.6 16.8

1.00 124.6 118.9 72.6 23.5 10.9

2.00 11.1 10.6 9.7 8.5 7.2

3.00 6.9 6.7 6.6 6.4 6.0

4.00 5.6 5.6 5.7 5.5 5.3

20 0.00 416.5 422.7 355.8 113.6 16.5

0.25 387.9 376.4 318.1 93.9 16.2

0.50 296.6 279.5 201.4 50.8 13.5

1.00 68.1 50.5 27.5 16.1 10.3

2.00 9.1 8.8 8.4 7.7 6.8

3.00 6.1 6.0 5.9 5.8 5.6

4.00 4.7 4.7 4.7 4.7 4.7

30 0.00 413.7 422.5 306.8 65.5 14.9

0.25 369.1 370.1 255.2 48.5 14.5

0.50 238.1 219.9 128.3 29.5 13.0

1.00 32.4 30.4 21.2 14.3 9.8

2.00 8.4 8.4 7.8 7.3 6.6

3.00 5.7 5.7 5.6 5.4 5.2

4.00 4.3 4.3 4.2 4.2 4.2

40 0.00 413.4 394.5 257.8 44.1 14.8

0.25 359.3 340.1 200.0 39.3 14.4

0.50 211.6 190.4 80.3 25.7 12.4

1.00 25.9 25.6 19.7 14.5 9.6

2.00 8.2 8.1 7.5 7.2 6.5

3.00 5.4 5.3 5.3 5.2 5.1

4.00 4.2 4.1 4.0 3.9 3.9
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Table 3.

ARL when Σ changes as


 1 %

% 1




%

0.1 0.2 0.4 0.6 0.8

n0 δ

10 0.00 395.0 393.9 374.6 289.6 67.6

0.25 366.4 368.8 358.9 245.0 66.1

0.50 333.4 321.4 295.1 177.0 39.7

1.00 144.6 142.3 117.3 50.4 18.5

2.00 11.8 11.1 10.7 9.6 8.0

3.00 6.9 6.8 6.8 6.6 6.4

4.00 5.6 5.6 5.6 5.6 5.6

20 0.00 411.0 399.8 357.1 176.8 32.3

0.25 368.1 377.4 313.0 159.5 31.6

0.50 286.7 289.6 218.3 94.2 23.3

1.00 69.1 57.9 43.5 24.6 13.1

2.00 9.4 8.9 8.9 8.2 7.5

3.00 6.1 6.0 6.0 6.0 5.8

4.00 4.7 4.7 4.8 4.7 4.8

30 0.00 375.3 382.2 310.5 127.5 23.2

0.25 381.5 362.0 260.1 111.1 22.0

0.50 251.5 219.8 171.0 56.5 18.7

1.00 38.5 33.9 28.2 18.0 12.4

2.00 8.4 8.3 8.0 7.6 7.0

3.00 5.6 5.5 5.6 5.4 5.4

4.00 4.4 4.2 4.2 4.2 4.2

40 0.00 382.5 384.0 296.1 90.4 20.6

0.25 351.1 312.5 214.1 71.8 20.3

0.50 213.8 198.3 112.7 44.3 17.3

1.00 27.1 26.8 22.9 16.8 11.8

2.00 8.1 7.9 7.7 7.5 6.9

3.00 5.5 5.3 5.3 5.3 5.2

4.00 4.1 4.0 4.0 4.0 4.0
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Table 4.

ARL when Σ changes as


 1 + %2 %

% 1 + %2




%

0.1 0.2 0.4 0.6 0.8

n0 δ

10 0.00 388.1 400.9 368.4 319.8 265.6

0.25 373.5 367.9 337.9 312.4 259.1

0.50 325.3 307.4 290.2 253.7 209.6

1.00 144.7 140.8 132.0 109.3 98.4

2.00 12.0 11.7 11.7 11.7 11.7

3.00 7.0 6.9 6.9 6.9 7.0

4.00 5.6 5.6 5.6 5.6 5.6

20 0.00 391.5 368.3 332.0 268.6 235.0

0.25 347.8 341.4 316.8 254.6 200.5

0.50 291.1 264.5 213.0 185.5 153.8

1.00 73.2 70.2 51.6 43.8 37.2

2.00 9.4 9.2 9.2 9.0 8.9

3.00 6.1 6.1 6.1 6.0 6.0

4.00 4.8 4.8 4.7 4.7 4.7

30 0.00 377.5 372.7 327.9 231.9 172.1

0.25 363.3 332.8 309.0 208.5 158.6

0.50 249.9 233.2 188.7 141.8 86.0

1.00 39.9 37.7 32.2 25.6 21.8

2.00 8.4 8.4 8.4 8.3 8.3

3.00 5.6 5.6 5.7 5.6 5.5

4.00 4.3 4.3 4.3 4.3 4.2

40 0.00 387.2 367.5 302.5 215.3 139.0

0.25 353.4 331.7 245.1 169.4 109.4

0.50 197.0 184.7 142.7 104.8 64.8

1.00 28.2 26.7 24.0 21.5 19.6

2.00 8.2 8.1 8.0 7.8 7.7

3.00 5.4 5.4 5.4 5.4 5.3

4.00 4.1 4.1 4.1 4.1 4.1
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Table 5.
Control Limits hn,α=0.002,p=2

n h0,0.002,2 h10,0.002,2 h20,0.002,2 h30,0.002,2 h40,0.002,2

6 4.98

7 5.43

8 5.72

9 5.91

10 6.05

11 6.15

12 6.25

13 6.33

14 6.40

15 6.43

16 6.47 7.08

17 6.50 6.79

18 6.52 6.69

19 6.55 6.65

20 6.59 6.65

21 6.59 6.64

22 6.61 6.65

23 6.62 6.65

24 6.65 6.67

25 6.64 6.65

26 6.65 6.67 7.49

27 6.68 6.70 7.14

28 6.68 6.70 6.98

29 6.69 6.70 6.89

30 6.71 6.72 6.86

31 6.71 6.72 6.82

32 6.72 6.72 6.80

33 6.72 6.73 6.79

34 6.74 6.75 6.79

35 6.74 6.74 6.78

36 6.73 6.73 6.77 7.73

37 6.72 6.73 6.76 7.30

38 6.75 6.75 6.78 7.13

39 6.74 6.75 6.77 7.02

40 6.76 6.76 6.78 6.95

41 6.74 6.75 6.76 6.90

42 6.76 6.76 6.78 6.88

43 6.76 6.76 6.78 6.86

44 6.76 6.77 6.78 6.85

45 6.78 6.78 6.79 6.84

46 6.79 6.79 6.80 6.84 7.86

47 6.77 6.77 6.78 6.82 7.43

48 6.78 6.78 6.79 6.83 7.23

49 6.79 6.80 6.80 6.83 7.12

50 6.79 6.79 6.80 6.82 7.04

55 6.79 6.79 6.80 6.81 6.89

60 6.80 6.80 6.80 6.81 6.84

65 6.80 6.80 6.80 6.81 6.83

70 6.80 6.80 6.81 6.81 6.82

75 6.82 6.82 6.82 6.82 6.83

80 6.80 6.80 6.80 6.81 6.81

90 6.84 6.84 6.84 6.84 6.85

100 6.85 6.85 6.85 6.85 6.85

110 6.84 6.84 6.84 6.84 6.85

130 6.85 6.86 6.86 6.86 6.86

150 6.85 6.85 6.85 6.85 6.85
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Table 6.

Summary for change using step-down method

np µsys µdia σsys ρsys,dia σdia χ2
in χ2

out|in pin pout|in

1 1 0 0 0 0 14.18 16.32 0.0001 0.0026

1 0 0 0 1 0 3.95 26.54 0.0467 0.0000

1 0 1 0 0 0 3.20 27.30 0.0735 0.0000

1 0 0 0 0 1 2.14 28.35 0.1426 0.0000

1 0 0 1 0 0 0.09 30.40 0.7574 0.0000

2 1 1 0 0 0 22.64 7.86 0.0000 0.0048

2 1 0 0 1 0 15.46 15.04 0.0004 0.0017

2 1 0 0 0 1 13.99 16.50 0.0009 0.0008

2 1 0 1 0 0 12.11 18.39 0.0023 0.0003

2 0 0 0 1 1 7.40 23.10 0.0246 0.0000

2 0 1 0 1 0 6.15 24.35 0.0462 0.0000

2 0 1 0 0 1 4.68 25.81 0.0959 0.0000

2 0 0 1 1 0 4.13 26.36 0.1262 0.0000

2 0 1 1 0 0 2.80 27.70 0.2463 0.0000

2 0 0 1 0 1 1.98 28.52 0.3716 0.0000

3 1 1 0 1 0 26.07 4.43 0.0000 0.1091

3 1 1 0 0 1 24.61 5.89 0.0000 0.0525

3 1 1 1 0 0 22.73 7.77 0.0000 0.0204

3 1 0 0 1 1 19.43 11.07 0.0002 0.0039

3 1 0 1 1 0 16.16 14.34 0.0010 0.0007

3 1 0 1 0 1 14.00 16.49 0.0028 0.0002

3 0 1 1 0 1 10.12 20.38 0.0175 0.0001

3 0 0 1 1 1 7.86 22.64 0.0489 0.0000

3 0 1 1 1 0 6.85 23.65 0.0767 0.0000

3 0 1 0 1 1 4.69 25.81 0.1956 0.0000

4 1 1 0 1 1 30.04 0.46 0.0000 0.4979

4 1 1 1 1 0 26.77 3.72 0.0000 0.0535

4 1 1 1 0 1 24.62 5.88 0.0000 0.0152

4 1 0 1 1 1 19.89 10.61 0.0000 0.0011

4 0 1 1 1 1 10.58 19.92 0.0000 0.0000
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