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Summary

We propose to analyze interval-censored data with Cox model using a spline-based sieve semi-

parametric maximum likelihood approach in which the baseline cumulative hazard function

is approximated by a monotone B-splines function. We apply the generalized Rosen algo-

rithm, used in Zhang & Jamshidian (2004), for computing the maximum likelihood esti-

mate. We show that the the estimator of regression parameter is asymptotically normal and

semiparametrically efficient. We also develop an easy-to-implement method to consistently

estimate the standard error of the regression parameter estimate that facilitates an adaptive
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inference procedure for semiparametric likelihood analysis for interval censored-data with

the Cox model. The method is evaluated by simulation studies regarding its finite sample

performance and is illustrated using the data from breast cosmesis study.

Some key words: B-splines; Convergence rate; Counting process; Current status data;

Empirical processes; Efficient estimation; Monotone polynomial splines; Proportional odds

model; Semiparametric model

1. Introduction

Interval censoring refers to a censoring mechanism where an event time can not be directly

observed but only is known to lie between two adjacent examination times in a sequence

of examinations or follow-up visits. An important application of the analysis of interval-

censored data is in HIV/AIDS studies. Examples include Goggins & Finkelstein (2000),

Betensky et al. (2001), Seaman & Bird (2001), Gómez et al. (2003), Song & Ma (2008) and

Hsu et al. (2007), among others. Recently, the analysis of interval-censored data has appeared

in many other biomedical and epidemiological studies. For example, Kim & Xue (2002)

analyze interval-censored data for an ongoing clinical trial for systemic lupus erythematosus,

Bogaerts et al. (2002) analyze multivariate interval-censored dental data, Bellamy et al.

(2004) develop a parametric frailty model for clustered and interval-censored data with

application to the East Boston Asthma study, and Sparling et al. (2006) study the risk of

progression of diabetic retinopathy with parametric survival models for interval-censored

data.
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The development of regression analysis of interval-censored data has been very active in

the last decade. While the likelihood-based approach for the Weibull parametric models with

interval-censored data has been implemented, exemplified by Bellamy et al. (2004) and Spar-

ling et al. (2006), most work has been focusing on semiparametric models. Imputation-based

approach was proposed by Satten et al. (1998), Song & Ma (2008), Zhang et al. (2008) in

which interval-censored event times are imputed and then some well-known semiparametric

regression methods such as Cox model (1972) for right censored data can be handily utilized.

However, the imputation methods in general produce biased estimates for the regression pa-

rameter. The semiparametric accelerated failure time model for interval-censored data was

considered by Rabinowitz et al. (1995), Li & Zhang (1998), Betensky et al. (2001), Li & Pu

(2003), and Gómez et al. (2003).

The Cox model, the most popular semiparametric model in the regression analysis with

right censored data, has also been considered in the analysis for interval-censored data.

However, for the likelihood analysis of this model with interval-censored data, the baseline

hazard function can not be eliminated using the partial likelihood approach as in the case

of right censored data. One has to estimate the regression parameter and the baseline

hazard jointly. This turns out to be a challenging task both numerically and theoretically.

Finkelstein (1986) appears to be the first to propose the Cox model for interval-censored data

with discrete hazard assumption. With this set up, the semiparametric regression problem

is essentially converted to a parametric regression problem. This approach has been adopted

by Goggins & Finkelstein (2000), Seaman & Bird (2001) and Kim & Xue (2002). The
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fully semiparametric maximum likelihood analysis for current status data is developed by

Huang (1996) in which he showed that despite the nonparametric estimator of the baseline

cumulative hazard function converges slower than the standard rate n1/2, the maximum

likelihood estimator of regression parameter can still be asymptotically normal and achieves

the semiparametric efficiency bound defined in Bicke et al. (1993). Although Huang &

Wellner (1997) discussed the possible extension of Huang (1996) to interval-censored data,

to the best of our knowledge, the theory and numerical implementation of semiparametric

maximum likelihood analysis of interval-censored data have not been fully developed in

statistical literatures.

In this article, we address the theoretical and numerical challenges in the semipara-

metric estimation of the Cox proportional hazards model with interval-censored data. We

propose an adaptive spline-based sieve semiparametric likelihood estimation procedure, in

which the log baseline cumulative hazard function is approximated by monotone B-splines

(Schumaker, 1981). The generalized Rosen’s algorithm, proposed by Zhang & Jamshidian

(2004) for computing the nonparametric maximum likelihood estimator with linear inequal-

ity constraints, is implemented to compute the sieve semiparametric maximum likelihood

estimate. We show that the proposed estimator of the regression parameter is asymptot-

ically normal and semiparametrically efficient, and the spline-based sieve estimator of the

baseline hazard function can converge faster than that based on the ordinary semiparamet-

ric maximum likelihood analysis described in Huang & Wellner (1997). We also develop an

easy-to-implement method to consistently estimate the standard error based on the ordinary

3



least-squares approach, in order to make statistical inference using the asymptotic results.

The proposed method facilitates an easy-to-implement semiparametric likelihood inference

procedure for analyzing interval-censored data with the Cox model and will be promising in

general semiparametric inference problem.

The rest of the paper is organized as follows: Section 2 describes the model and likelihood

for interval-censored data; Section 3 introduces the spline-based sieve semiparametric maxi-

mum likelihood approach and the generalized Rosen algorithm for computing the estimate;

Section 4 presents the asymptotic results of the estimator; Section 5 provides numerical re-

sults consisting of simulation studies and application to an illustrating example in breast

cosmesis study; Section 6 discusses the further application of the proposed method; Finally

the technical details are outlined in Appendices.

2. Model and Likelihood

Consider the Cox proportional hazards model, in which the conditional hazard of T given a

covariate vector Z ∈ Rd is proportional to the baseline hazard (the hazard for Z = 0). In

terms of the cumulative hazard function, this model is

Λ(t|z) = Λ0(t) exp(θ′0z), (1)

where θ0 is a d-dimensional regression parameter and Λ0 is the unspecified baseline cumula-

tive hazard function.

Let (U, V ) be the pair of examination times bracketing the event time T . That is, U is
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the last examination time before and V is the first examination time after the event. Let

Gz be the joint distribution function of (U, V ) given covariate Z = z with P (U ≤ V |z) = 1

for any z ∈ Rd and H(z) be the distribution of Z. Let δ1 = 1[T≤U ], δ2 = 1[U<T≤V ] and

δ3 = 1− δ1 − δ2 and denote the observation from a single subject by X = (δ1, δ2, δ3, U, V, Z).

Under the common assumption that conditional on Z, T is independent of (U, V ), the joint

density of X is given by

p(x) = F (u|z)δ1 {F (v|z) − F (u|z)}δ2 {1 − F (u|z)}δ3 gz(u, v)h(z),

where F (·|z) is the conditional distribution function of the event time and gz(u, v) and h(z)

are the density functions of Gz and H, respectively. Further assume that the distribution of

(U, V ) is noninformative of T , then under the Cox model, the log-likelihood of an identically

and independently distributed sample Xi = (δ1i, δ2i, δ3i, Ui, Vi, Zi) for i = 1, 2, . . . , n is given

by

ln(θ, Λ; ·) =
n∑

i=1

(
δ1i log

[
1 − exp

{
−Λ(ui)e

θ′zi

}]

+δ2i log
[
exp

{
−Λ(ui)e

θ′zi

}
− exp

{
−Λ(vi)e

θ′zi

}]
− δ3iΛ(vi)e

θ′zi

)
,

omitting the additive terms that do not involve (θ, Λ). Let φ = log Λ, the resulting log-

likelihood in terms of (θ, φ) is

ln(θ, Λ; ·) =
n∑

i=1

(
δ1i log

[
1 − exp

{
−eθ′zi+φ(ui)

}]

+δ2i log
[
exp

{
−eθ′zi+φ(ui)

}
− exp

{
−eθ′zi+φ(vi)

}]
− δ3ie

θ′zi+φ(vi)
)

. (2)

5



3. Spline-Based Sieve Maximum Likelihood Estimation

Suppose 0 = t0 < t1 < t2 < · · · < tm < ∞ are the distinct time points in the collection

of {Ui, Vi : i = 1, 2, · · · , n}. The value of the log likelihood function (2) is completely

determined by the values of φ at these points and θ. Conventionally, the semiparametric

maximum likelihood estimator is sought by maximizing (2) with respect to θ and φ(ti), for

i = 1, 2, · · · ,m. The upper bound of m is 2n if there is no tie among {Ui, Vi}, i = 1, 2, · · · , n.

However, as Huang & Wellner (1997) pointed out that this optimization problem is hard to

solve, particularly when θ is a multidimensional vector and sample size is large.

To ease the numerical difficulty in nonparametric estimation problem, Geman & Hwang

(1982) proposed a sieve maximum likelihood estimation procedure for which the unknown

function in the log likelihood is approximated by a linear span of some known basis functions

to form a sieve log likelihood. Then maximizing the log likelihood with respect to the un-

known function converts to maximizing the sieve log likelihood with respect to the unknown

coefficients in the linear span. This, in turn, reduces the dimensionality of the optimization

problem significantly since the number of basis functions required to reasonably approximate

the unknown function grows a lot slower as same size increases.

Spline technique has been well recognized in statistical literature as an efficient tool

in dimension reduction for nonparametric estimation since the theoretical development on

spline estimation by Stone (1985,1986). Therefore, it is natural to consider spline-based sieve

maximum likelihood estimation in the context of regression models with interval-censored
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data. Some further theoretical results of spline-based sieve estimator has been obtained

by Shen & Wong (1994). Shen (1998) has also applied the spline-based sieve maximum

likelihood estimation to proportional odds model with censored data. Other applications of

splines in analyzing interval-censored data can be found in Koopetberg & Clarkson (1997)

and Cai & Betensky (2003).

We now describe the spline-based sieve semiparametric maximum likelihood estimation

for the Cox model with interval-censored data. Suppose a and b are the lower and upper

bounds of censoring times {(Ui, Vi) : i = 1, 2, · · · , n}. Let a = d0 < d1 < · · · < dKn
<

dKn+1 = b be a partition of [a, b] into Kn +1 subintervals IKt = [dt, dt+1), t = 0, . . . , K, where

K ≡ Kn ≈ nv is a positive integer such that max1≤k≤K+1 |dk − dk−1| = O(n−v). Denote the

set of partition points by Dn = {d1, . . . , dKn
}. Let Sn(Dn, Kn,m) be the space of polynomial

splines of order m ≥ 1 consisting of functions s satisfying: (i) the restriction of s to IKt is

a polynomial of order m for m ≤ K; (ii) for m ≥ 2 and 0 ≤ m′ ≤ m − 2, s is m′ times

continuously differentiable on [a, b]. This definition is phrased after Stone (1985), which is a

descriptive version of Schumaker (1981), page 108, Definition 4.1. According to Schumaker

(1981), page 117, Corollary 4.10, there exists a local basis Bn ≡ {bt, 1 ≤ t ≤ qn}, so called

B-splines, for Sn(Dn, Kn,m), where qn ≡ Kn + m. These basis functions are nonnegative

and sum up to one at each point in [a, b], and each bt is zero outside the interval [dt, dt+m].

Because φ in (2) is a nondecreasing function, it is desirable to restrict its estimate to be
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nondecreasing as well. Let

Mn(Dn, Kn,m) =

{
φn : φn(t) =

qn∑

j=1

βjbj(t) ∈ Sn(Dn, Kn,m), β ∈ Bn, t ∈ [a, b]

}
.

where Bn = {β : β1 ≤ β2 ≤ · · · ≤ βqn
}. Each element of Mn(Dn, Kn,m) is a nondecreasing

function because of the monotonicity constraints on β1, . . . , βqn
. This fact is a consequence

of the variation diminishing properties of B-splines. See for instance, Schumaker (1981),

Example 4.75 and Theorem 4.76, pages 177-178. Denote Θ ∈ Rd the feasible domain for

the regression parameter and abbreviate Mn(Dn, Kn,m) by Mn. We look for τ̂n = (θ̂n, φ̂n)

that maximizes ln(θ, φ; ·) over Θ ×Mn. This is equivalent to maximizing ln(θ,B′
nβ; ·) over

Θ × Bn. No restriction will be imposed on Θ in the optimization.

For restricted parametric maximum likelihood estimation problems, Jamshidian (2004)

generalized the gradient projection algorithm originally proposed by Rosen (1960) using the

generalized Euclidean metric ‖x‖ = xT Wx, where W is a positive definite matrix and possi-

bly varying from iteration to iteration. Zhang & Jamshidian (2004) applied the algorithm to

large-scale nonparametric maximum likelihood estimation problems by choosing W = DH ,

the matrix containing only the diagonal elements of the negative Hessian matrix H, in order

to avoid the storage problem in updating H. However, this will increase the number of

iterations and thereby the computing time. In this article, we use W = −H directly because

the dimension of unknown parameter space is largely reduced due to the use of splines. The

numerical advantage of this algorithm over the iterative convex minorant algorithm stud-

ied by Jongbloed (1998) for nonparametric maximum likelihood estimation with monotone

constraints has been demonstrated by Lu et al. (2007). In the following, we describe the
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algorithm for computing the proposed spline-based sieve semiparametric estimate.

Let ℓ̇(τ) and W be the gradient and negative Hessian matrix of the log likelihood given

by (2) with respect to τ = (θ, β), respectively. Let A = {i1, i2, · · · , ir} denote the index set

of active constraints, i.e. αij = αij+1, for j = 1, 2, · · · , r, during the numerical computation.

We define a working matrix corresponding to this set,

A =





0 · · · −1 1 0 · · · · · · · · · 0

0 0 · · · · · · −1 1 · · · · · · 0

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · −1 1 · · · 0





r×(qn+d)

.

The generalized Rosen algorithm is implemented in the following steps:

S0: (Computing the feasible search direction)

d =
{

I − W−1AT
(
AW−1AT

)−1
A

}
W−1ℓ̇(τ).

S1: (Forcing the updated τ fulfill the constraints) If the resulted direction d is not

nondecreasing in its components, compute

γ = min
i/∈A and di>di+1

(
−

αi+1 − αi

di+1 − di

)
.

Doing so guarantees that αi+1 + γdi+1 ≥ αi + γdi, for i = 1, 2, · · · , qn.

S2: (Step-Halving line search) Looking for a smallest integer k starting from 0 such

that

ℓ
{

τ + (1/2)k d
}

> ℓ(τ).
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S3: (Updating the solution) If γ > (1/2)k, replace τ by τ̃ = τ + (1/2)k d and check the

stopping criterion (S5).

S4: (Updating the active constraint set) If γ ≤ (1/2)k, in addition to replace τ by

τ̃ = τ + γd, modify A by adding indexes of all the newly active constraints to A and

accordingly modify the working matrix A.

S5: (Checking the stopping criterion) If ‖d‖ ≥ ε for a small ε > 0, go to S0. Otherwise,

compute λ =
(
AW−1AT

)−1
AW−1ℓ̇(τ).

i. If λi ≤ 0 for all i ∈ A, set τ̂ = τ and stop.

ii. If at least one λi > 0 for i ∈ A, remove the index corresponding to the largest λi

from A, and update A and go to S0.

4. Asymptotic Properties

In this section, we describe the asymptotic results of the estimator. For any φ1, φ2 ∈ Φ,

define

‖φ1 − φ2‖
2
Φ = E{φ1(U) − φ2(U)}2 + E{φ1(V ) − φ2(V )}2.

and for any τ1 = (θ1, φ1) and τ2 = (θ2, φ2) in the space of T = Θ × Φ, define

d(τ1, τ2) = ‖τ1 − τ2‖T =
{
‖θ1 − θ2‖

2 + ‖φ1 − φ2‖
2
Φ

}1/2
.

As usual, the study of asymptotic properties of the semiparametric maximum likelihood

estimator requires some regularity conditions to be satisfied. The following conditions suffi-

ciently guarantee the results in the forthcoming theorems.
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(C1) (a) E(ZZ ′) is nonsingular; (b) Z is bounded, that is, there exists z0 > 0 such that

P (‖Z‖ ≤ z0) = 1.

(C2) Θ is a compact subset of Rd.

(C3) (a) There exists a positive number η such that P (V − U ≥ η) = 1; (b) the union of

the supports of U and V is contained in an interval [a, b], where 0 < a < b < ∞, and

0 < Λ0(a) < Λ0(b) < ∞.

(C4) φ0 = log Λ0 belongs to Φ, a class of functions with bounded pth derivative in [a, b] for

p ≥ 1 and the first derivative of φ0 is strictly positive and continuous on [a, b].

(C5) The conditional density g(u, v|z) of (U, V ) given Z has bounded partial derivatives with

respect to (u, v). The bounds of these partial derivatives do not depend on (u, v, z).

(C6) For some κ ∈ (0, 1), aT var(Z|U)a ≥ κaT E(ZZT |U)a and aT var(Z|V )a ≥ κaT E(ZZT |V )a

a.s. for all a ∈ Rd.

These conditions are usually satisfied in practice. Although some of these conditions may

be stronger than needed and could be weakened, it will make the proof considerably more

difficult.

Theorem 1. Let Kn = O(nν), where ν satisfies the restriction 1
2(1+p)

< ν < 1
2p

. Suppose

that T and (U, V ) are conditionally independent given Z and that the distribution of (U, V, Z)

does not involve (θ, Λ). Furthermore, suppose that conditions (C1)–(C6) hold. Then

d (τ̂n, τ0) = Op

{
n−min(pν,(1−ν)/2)

}
.
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This theorem implies that if ν = 1/(1 + 2p), d(τ̂n, τ0) = Op

{
n−p/(1+2p)

}
which is the

optimal convergence rate in the nonparametric regression setting. So if the baseline hazard

function is smooth, the proposed estimator can achieve a better convergence rate than the

conventional semiparametric estimator considered in Huang & Wellner (1997). Although

the overall convergence rate is lower than n1/2, the proposed estimator of the regression

parameter is still asymptotically normal and can be shown semiparametrically efficient.

Theorem 2. Suppose the conditions given in Theorem 1 hold, then

n1/2
(
θ̂n − θ0

)
→ N

{
0, I−1(θ0)

}

in distribution.

In Theorem 2, I(θ0) is the information matrix evaluated at θ0 based on the general

semiparametric information theory described by Bicke et al. (1993). The theorem implies

that the estimator of regression parameter, θ̂ converges to the true parameter at the usual

root-n rate and achieves the semiparametric efficiency bound despite the lower convergence

rate of the nonparametric component. Below we describe an approach for estimating I(θ0).

Let

l(θ, φ; x) = δ1 log
[
1 − exp

{
−eθ′z+φ(u)

}]
+ δ2

[
exp

{
−eθ′z+φ(u)

}
− exp

{
−eθ′z+φ(v)

}]

−δ3e
θ′z+φ(v)
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be the log-likelihood for a sample of size one. Consider a parametric smooth submodel with

parameter (θ, φ(s)), where φ(0) = φ and

∂φ(s)

∂s

∣∣∣∣
s=0

= h.

Let H be the class of functions h defined by this equation. The score operator for φ is

l̇2(τ ; x)(h) =
∂

∂s
l(θ, φ(s); x)

∣∣∣∣
s=0

. (3)

For a d-dimensional θ, l̇1(τ ; x) is the vector of partial derivatives of l(τ ; x) with respect

to the components of θ. For each component of l̇1, a score operator for φ is defined as in (3).

So the score operator for φ corresponding to l̇1 is

l̇2(τ ; x)(h) ≡ {l̇2(τ ; x)(h1), . . . , l̇2(τ ; x)(hd)}
′, (4)

where h ≡ (h1, . . . , hd)
′ with hk ∈ H, 1 ≤ k ≤ d.

According to Bicke et al. (1993), Theorem 1, page 70, the efficient score vector for θ is

l̇1(τ ; x) − l̇2(τ ; x)(ξ0), where ξ0 is an element of Hd that minimizes

ρ(h) ≡ E‖l̇1(τ ; X) − l̇2(τ ; X)(h)‖2 (5)

over Hd. The minimizer ξ0 = (ξ01, ξ02, . . . , ξ0d)
′ is called the least favorable direction. Denote

the efficient score by l∗(τ ; x) ≡ l̇1(τ ; x) − l̇2(τ ; x)(ξ0). Then the information for θ is

I(θ) = E‖l∗(τ ; X)‖2 = E‖l̇1(τ ; X) − l̇2(τ ; X)(ξ0)‖
2. (6)
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With interval-censored data, the least favorable direction ξ0(t) has no explicit solution

and in fact, it is the solution of a Fredholm integral equation of the second kind,

ξ0(t) −

∫
K(t, x)ξ0(x)dx = d(t)

with two complicate functions K(t, x) and d(t) described in Huang & Wellner (1997). Appar-

ently, a direct estimation of ξ0(t) for the information matrix is impossible. Nevertheless, the

definition of ξ0(t) given by (5) leads us to consider a least-squares estimator of the informa-

tion matrix. The detailed development of the least-squares method for consistent variance

estimation in semiparametric models is given by Huang et al. (2008). Specifically, with the

random sample X1, . . . , Xn and the consistent estimator τ̂n, we can estimate I(θ) by the

minimum value of

ρn(h) ≡ n−1

n∑

i=1

‖l̇1(τ̂n; Xi) − l̇2(τ̂n; Xi)(h)‖2 (7)

over Hd. That is, if ξ̂n is a minimizer of ρn over Hd, then a natural estimator of I(θ0) is

În ≡ ρn(ξ̂n).

In practice, one can easily estimate the components of optimal ξ̂n using the ordinary

least-squares regression with the Hilbert space Hn linearly spanned by the B-splines basis

functions Bn. This estimation is implemented in the subsequent simulation studies and

application.
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5. Numerical Results

5.1 Simulation Studies

Simulation studies are carried out to evaluate the finite sample performance of the pro-

posed method. Interval-censored data are generated as follows: for each subject, we inde-

pendently generate Xi = (δi,1δi,2, δi,3, Ui, Vi, Zi), for i = 1, 2, · · · , n, where the event time is

generated according to the Cox model Λ(t|Z) = t1/2 exp(θT
0 Z) for which the true parameters

are θ0 = (−1.0, 0.5, 1.5)T and log Λ0(t) = 0.5 log t, the covariate vector Zi = (Z1,i, Z2,i, Z3,i)
T

is simulated by Z1,i ∼ Uniform(0, 1), Z2,i ∼ Normal(0, 1), and Z3,i ∼ Bernoulli(0.5); a series

of examination times are produced by the partial sum of inter-arrival times that are inde-

pendently and identically distributed according to Exp(0.5), Ui is the last examination time

before 5 at which the event has not occurred yet and Vi is the first observation time before

5 at which the event has occurred.

We perform the sieve semiparamteric maximum likelihood analysis using cubic B-splines

and estimate the standard error of the regression parameter estimates using the least-squares

method based on cubic B-splines as well. For the B-splines, the number of knots is chosen to

be Kn = [N1/3], the largest integer below N1/3, where N is the number of distinct observation

time points of the collection {(Ui, Vi) : i = 1, 2, · · · , n}, and the knots are placed at the Kn

quantiles of the N distinct observation times.

We consider three different sample sizes: n =50, 100, and 200. In each case, the Monte-

Carlo simulations with 1000 repetitions are conducted. Table 1 displays the estimation bias
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Table 1

Simulation Results of the Monte-Carlo study for the sieve semiparametric

maximum likelihood analysis of θ0 with 1000 repetitions

θ1,0 θ2,0 θ3,0

n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

Bias -0.1280 -0.0754 -0.0335 0.1055 0.0304 0.0132 0.2172 0.0917 0.0498

M-C sd 0.7613 0.4662 0.3160 0.4352 0.2716 0.1908 0.4967 0.2834 0.2056

ASE 0.8514 0.5086 0.3310 0.5002 0.3010 0.1944 0.5663 0.3283 0.2098

95%-CP 97.6% 97.1% 96.2% 98.7% 97.2% 95.0% 0.98.2% 0.97.7% 0.95.6%

(Bias), Monte Carlo standard deviation (MC s.d), the average of standard errors (ASE)

based on the asymptotic result given in Theorem 2, and the coverage probability of 95%

Wald-confidence interval for θ̂n. The results show that this adaptive spline-based seive

semiparametric maximum likelihood estimation method performs quite well: the bias is neg-

ligible compared to the standard error and the estimated standard error decreases as sample

size increases. The least-squares method for estimating the standard error overestimates

the true standard error slightly, but the overestimation lessens as sample size increases and

it provides a reasonable estimate of the standard error when sample size reaches 200. As

the result of overestimation, the coverage probability of 95% confidence interval exceeds the

nominal value but approaches to 95% when sample size increases to 200. In addition, we
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also plot in Fig. 1 the averages of the B-spline sieve estimates of the true log cumulative

hazard function for the case 0.5 log t. It shows that estimation bias is relatively large when

the sample size is small (n = 50) but drops significantly when the sample size increases to

200.

5.2 Breast Cosmesis Study

The breast cosmesis study is a clinical trial for comparing radiotherapy alone with pri-

mary radiotherapy with adjuvant chemotherapy in terms of subsequent cosmetic deteriora-

tion of the breast following tumorectomy. Subjects (46 assigned to radiotherapy alone and 48

to radiotherapy plus chemotherapy) were followed for up to 60 months, with pre-scheduled

follow-up visits for every 4-6 months. In this paper, we use the Cox model to analyze the

difference of the hazard for the time until the appearance of breast retraction between the

two treatments,

Λ(t|Z) = Λ0(t) exp(θ0Z), (8)

where Λ0 is the baseline hazard (the cumulative hazard for radiotherapy alone) and Z is the

indicator for the treatment of radiotherapy plus chemotherapy. Using the method proposed

in this paper, the cubic B-splines sieve semiparametric maximum likelihood estimate of θ0

is θ̂n = 0.8948 with asymptotic standard error given by 0.2926. The Wald test statistic is

Z = 3.0582 with p-value=0.0011. This indicates that the treatment of radiotherapy with

adjuvant chemotherapy significantly increases the risk of the breast retraction and the result

is comparable with what has been concluded in Finkelstein & Wolf (1985).
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Figure 1. The average of the B-splines sieve maximum likelihood estimates of

the log baseline cumulative hazard function with 1000 repetitions
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6. Final Remarks

In this article, we proposed an adaptive spline-based sieve semiparametric maximum likeli-

hood method. This method reduces the dimensionality of the estimation problem using the

splines and therefore releases the numerical burden of the computation without interfering

the asymptotic properties of the regression parameter estimates. An adaptive spline method

for consistently estimating the standard error is also developed in order to make inference of

the regression parameter. Although the spline function is used to approximate the baseline

log cumulative hazard function for the sieve likelihood, our simulation experiments indicate

that the number and placement of the spline knots have very little impact on the inference

made for the regression parameter using the proposed method and hence this method facil-

itates a practical and easy-to-implement semiparametric likelihood inference procedure for

analyzing interval-censored data with the Cox model which is often viewed as a challenging

task in the liteartures.

It should be a straightforward task to apply the method presented here to other semi-

parametric regression models for interval-censored data such as the partial linear regression

proposed by Xue et al. (2004), the proportional odds regression studied by Huang & Rossini

(1997) and Shen (1998), and the additive hazard model studied by Lin et al. (1998) and

Martinussen & Scheike (2002). In principle, our proposed method can be applied to any

semiparametric maximum likelihood estimation problems in which the maximum likelihood

estimator of finite-dimensional parameter can be shown asymptotically efficient and the nu-
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merical computation for infinite-dimensional nuisance parameter is a burden,
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7. Appendices

7.1 Appendix A-Proofs

This section contains the sketch of the proofs for Theorems 1 and 2. Some empirical

process theorems developed in van der Vaart (1998) and van der Vaart & Wellner (1996) will

be heavily involved. Throughout the following proofs, we denote Pf =
∫

f(x)dP (x) and

Pnf = 1
n

∑n
i=1 f(Xi), the empirical process indexed by function f(X) and we let C represent

a generic constant that may vary from place to place.

The proof of Theorem 1:

Before deriving the convergence rate, we need to show that the sieve semiparametric max-

imum likelihood estimator τ̂n is consistent in the metric d. This can be accomplished by

verifying the conditions of Theorem 5.7 in van der Vaart (1998). Let M(τ) = Pl(τ ; X) =

Pl(θ, φ; X) and Mn(τ) = Pnl(τ ; X) = Pnl(θ, φ; X). Hence for any τ = Tn = Θ × Mn,

Mn(τ) − M(τ) = (Pn − P )l(τ ; X).

Let L1 = {l(τ ; X) : τ ∈ Tn}. By the calculation of Shen & Wong (1994), page

597, ∀ǫ > 0, there exists a set of brackets
{
[φL

i , φU
i ] : i = 1, 2, · · · ,

[
(1/ǫ)Cqn

]}
such that

for any φ ∈ Mn, one has φL
i (u) ≤ φ(u) ≤ φU

i (u) for some 1 ≤ i ≤
[
(1/ǫ)Cqn

]
and all

u ∈ [a, b], and P |φU
i (X) − φL

i (X)| ≤ ǫ. Since Θ ⊂ Rd is compact, Θ can be covered by

[
C(1/ǫ)d

]
balls with radius ǫ; that is, for any θ ∈ Θ, there exists an 1 ≤ s ≤

[
C(1/ǫ)d

]

such that |θ − θs| ≤ ǫ and hence |θ′z − θ′sz| ≤ Cǫ for any z because of (C1). This implies
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that θ′z ∈ [θ′sz − Cǫ, θ′sz + Cǫ] for all z. Hence we can easily construct a set of brackets

{
[lLs,i(X), lUs,i(X)] : s = 1, 2, · · · ,

[
C(1/ǫ)d

]
; i = 1, 2, · · · ,

[
(1/ǫ)Cqn

]}
that for any l(τ ; X) ∈

L1, there exist an s ≤
[
C(1/ǫ)d

]
and an i ≤

[
(1/ǫ)Cqn

]
such that l(τ ; X) ∈ [lLs,i(X), lUs,i(X)]

for any sample point X, where

lLs,i(X) = δ1 log
[
1 − exp

{
−eθ′sz+φL

i (u)−Cǫ
}]

+δ2 log
[
exp

{
−eθ′sz+φU

i (u)+Cǫ
}
− exp

{
−eθ′sz+φL

i (v)−Cǫ
}]

− δ3e
θ′sz+φU

i (v)+Cǫ

and

lUs,i(X) = δ1 log
[
1 − exp

{
−eθ′sz+φU

i (u)+Cǫ
}]

+δ2 log
[
exp

{
−eθ′sz+φL

i (u)−Cǫ
}
− exp

{
−eθ′sz+φU

i (v)+Cǫ
}]

− δ3e
θ′sz+φL

i (v)−Cǫ.

Using Taylor expansion along with Conditions (C1)-(C3), we can easily demonstrate that

P |lUs,i(X) − lLs,i(X)| ≤ Cǫ for all 1 ≤ s ≤
[
C(1/ǫ)d

]
and 1 ≤ i ≤

[
(1/ǫ)Cqn

]
which leads

to the conclusion that the ǫ-bracketing number for L1 with L1(P )-norm is bounded by

C(1/ǫ)Cqn+d. Hence L1 is Glivenko-Cantelli by Theorem 2.4.1 of van der Vaart & Wellner

(1996). Therefore, supτ∈Tn
|Mn(τ)−M(τ)| →p 0. Let g(z, t) = exp {θ′z + φ(t)} and g0(z, t) =
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exp {θ′0z + φ0(t)}. Some algebra yields that

M(τ0) − M(τ) = E

(
[1 − exp{−g0(Z,U)}] log

1 − exp{−g0(Z,U)}

1 − exp{−g(Z,U)}

+[exp{−g0(Z,U)} − exp{−g0(Z, V )}] log
exp{−g0(Z,U)} − exp{−g0(Z, V )}

exp{−g(Z,U)} − exp{−g(Z, V )}

+ exp{−g0(Z, V )} log
exp{−g0(Z, V )}

exp{−g(Z, V )}

)

= E

(
[1 − exp{−g(Z,U)}]m

[
1 − exp{−g0(Z,U)}

1 − exp{−g(Z,U)}

]

+[exp{−g(Z,U)} − exp{−g(Z, V )}]m

[
exp{−g0(Z,U)} − exp{−g0(Z, V )}

exp{−g(Z,U)} − exp{−g(Z, V )}

]

+ exp{−g(Z, V )}m

[
exp{−g0(Z, V )}

exp{−g(Z, V )}

])
,

where m(x) = x log x − x + 1 ≥ (x − 1)2/4 for 0 ≤ x ≤ 5. Further analysis by using Taylor

expansion and Conditions (C1)-(C3) leads to

M(τ0) − M(τ) ≥ CE

(
1

1 − exp{−g(Z,U)}
[exp{−g0(Z,U)} − exp{−g(Z,U)}]2

+
1

exp{−g(Z, V )}
[exp{−g0(Z, V )} − exp{−g(Z, V )}]2

)

≥ CE
[
{(θ0 − θ)′Z + (φ0 − φ)(U)}2 + {(θ0 − θ)′Z + (φ0 − φ)(V )}2

]
.

With Conditions (C1)-(C6), using the same arguments as those in Wellner & Zhang (2007),

page 2126-2127 leads to

M(τ0) − M(τ) ≥ C
(
‖θ − θ0‖

2 + ‖φ − φ0‖
2
Φ

)
= Cd2(τ0, τ).

Then it implies that supτ :d(τ,τ0)≥ǫ M(τ) ≤ M(τ0) − Cǫ2 < M(τ0).

For φ0 ∈ Φ, Lu (2007) has shown that there exists a φ0,n ∈ Mn of order m ≥ p + 2 such

that

‖φ0,n − φ0‖∞ ≤ Cq−p
n = O

(
n−pν

)
.
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This also implies that ‖φ0,n − φ0‖Φ ≤ Cq−p
n = O (n−pν). Now let τ0,n = (θ0, φ0,n), we have

Mn(τ̂n) − Mn(τ0) = Mn(τ̂n) − Mn(τ0,n) + Mn(τ0,n) − Mn(τ0)

≥ Pnl(τ0,n; X) − Pnl(τ0; X)

= (Pn − P ) {l(τ0,n; X) − l(τ0; X)} + M(τ0,n) − M(τ0).

Using the brackets for Mn given above, we can similarly construct a set of brackets for the

class L2 = {l(θ0, φ; x)−l(θ0, φ0; x) : φ ∈ Mn and ‖φ−φ0‖Φ ≤ Cn−pν} with the ǫ-bracketing

number associated L2(P )-norm bounded by (1/ǫ)Cqn . This yields a finite-valued bracketing

integral defined in van der Vaart (1998), page 270. Hence the class L2 is P -Donsker by

Theorem 19.5 of van der Vaart (1998). By the Dominated Convergence Theorem, it is

obvious that in this class P {l(θ0, φ; X) − l(θ0, φ0; X)}2 → 0 as n → ∞. Hence

(Pn − P ) {l(θ0, φ0,n; X) − l(θ0, φ0; X)} = op(n
−1/2)

by the relationship between P -Donsker and asymptotic equicontinuity given by Corollary

2.3.12 of van der Vaart & Wellner (1996). By the Dominated Convergence Theorem again,

it is easy to see that M(τ0,n) − M(τ0) > −o(1) as n → ∞. Therefore,

Mn(τ̂n) − Mn(τ0) ≥ op(n
−1/2) − o(1) = −op(1).

This completes the proof of d(τ̂n, τ0) → 0 in probability.

Next, we verify the conditions of Theorem 3.2.5 of van der Vaart & Wellner (1996) in order

to derive the convergence rate. First, we have already shown in the proof of consistency that

M(τ0) − M(τ) ≥ Cd2(τ0, τ).
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Second, we further explore Mn(τ̂n) − Mn(τ0). In the proof of consistency, we know that

Mn(τ̂n) − Mn(τ0) ≥ I1,n + I2,n, where I1,n = (Pn − P ) {l(θ0, φ0,n; X) − l(θ0, φ0; X)} and

I2,n = P {l(θ0, φ0,n; X) − l(θ0, φ0; X)}. By Taylor expansion, we have

I1,n = (Pn − P )
{

l̇2(θ0, φ̃; X)(φ0,n − φ0)
}

= n−pν+ǫ(Pn − P )

{
l̇2(θ0, φ̃; X)

φ0,n − φ0

n−pν+ǫ

}

for any 0 < ǫ < 1/2 − pν. Because ‖φ0,n − φ0‖∞ = O(n−pν) and l̇2(θ0, φ̃; X) is uniformly

bounded due to Conditions (C1)-(C4), we can easily obtain that P
{

l̇2(θ0, φ̃; X)φ0,n−φ0

n−pν+ǫ

}2

→

0. Due to L2 being P -Donsker, using Corollary 2.3.12 of van der Vaart & Wellner (1996)

again, we can conclude that (Pn − P )
{

l̇2(θ0, φ̃; X)φ0,n−φ0

n−pν+ǫ

}
= op(n

−1/2). Hence

I1,n = op(n
−pν+ǫn−1/2) = op(n

−2pν),

due to the selection of ν. Using the fact that the function m(x) = x log x−x+1 ≤ (x−1)2 in

the neighborhood of x = 1, it can be easily argued that M(τ0)−M(τ0,n) ≤ C‖φ0,n − φ0‖
2
Φ =

O(n−2pν), which implies that I2,n = M(τ0,n) − M(τ0) ≥ −O(n−2pν). Thus we conclude that

Mn(τ̂n) − Mn(τ0) ≥ −Op(n
−2pν) = −Op

(
n−2 min(pν,(1−ν)/2)

)
.

Let L3(η) = {l(τ ; x) − l(τ0; x) : φ ∈ Mn and d(τ, τ0) ≤ η}. Using the same argument

as that in the proof of consistency, we obtain that the logarithm of the ǫ-bracketing number

of L3(η), log N[ ]{ǫ,L3(η), L2(P )} is bounded by Cqn log(η/ǫ). This leads to

J[ ]{η,L3(η), L2(P )} =

∫ η

0

√
1 + log N[ ]{ǫ,L3(η), L2(P )}dǫ ≤ Cq1/2

n η.

Because Conditions (C1) and (C3) guarantee the uniform boundedness of l(τ ; x), using

Theorem 3.4.1 of van der Vaart & Wellner (1996), the key function φn(η) in Theorem 3.2.5
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of van der Vaart & Wellner (1996) is given by φn(η) = q
1/2
n η + qn/n

1/2. Note that

n2pνφn(1/npν) = npνnν/2 + n2pνnν + n2pνnν/n1/2 = n1/2
{
npν−(1−ν)/2 + n2pν−(1−ν)

}
.

Therefore, if pν ≤ (1 − ν)/2, n2pνφn(1/npν) ≤ n1/2. This implies that if we choose rn =

min(pν, (1 − ν)/2), it follows that r2
nφn(1/rn) ≤ n1/2 and Mn(τ̂n) − Mn(τ0) ≥ −Op(r

−2
n ).

Hence rnd(τ̂n, τ0) = Op(1).

The proof of Theorem 2:

To derive the asymptotic normality for θ̂n, we just need to verify the conditions of the

general theorem given in Appendix B. For Condition (B1), we only need to verify that

Pnl̇2(θ̂n, φ̂n; X)(ξ0) = op(n
−1/2) since Pnl̇1(θ̂n, φ̂n; X) ≡ 0. Because ξ0 has a bounded deriva-

tive, it is also a function with bounded variation. Then it can be easily shown using the

argument in Billingsley (1986), page 435-436, that there exist a ξ0,n ∈ Sn(Dn, Kn,m) such

that ‖ξ0,n − ξ0‖Φ = O(q−1
n ) = O(n−ν) and Pnl̇2(τ̂n; X)(ξ0,n) = 0. Therefore we can write

Pnl̇2(τ̂n; X)(ξ0) = I3,n + I4,n, where

I3,n = (Pn − P )l̇2(τ̂n; X)(ξ0 − ξ0,n)

and

I4,n = P
{

l̇2(τ̂n; X)(ξ0 − ξ0,n) − l̇2(τ0; X)(ξ0 − ξ0,n)
}

.

Let L4 = {l̇2(τ ; x)(ξ0 − ξ) : τ ∈ Tn, ξ ∈ Sn(Dn, Kn,m) and ‖ξ0 − ξ‖Φ ≤ n−ν}. It can

be similarly argued that the ǫ-bracketing number associated with L2(P )-norm is bounded

by C (1/ǫ)d (1/ǫ)Cqn (1/ǫ)Cqn which leads L4 being a P -Donsker due to Theorem 19.5 of
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van der Vaart (1998). Furthermore, for any r(τ, ξ; x) ∈ L4, Pr2 → 0 as n → ∞. Hence

I3,n = op(n
−1/2) by Corollary 2.3.12 of van der Vaart & Wellner (1996). By Cauchy-Schwatz

inequality and regularity conditions (C1)-(C4), it can be easily shown that

I4,n ≤ Cd(τ̂n, τ0)‖ξ0 − ξ0,n‖Φ = Op

(
n−min(pν,(1−ν)/2)n−ν

)
= Op

(
n−min(ν(p+1),(1+ν)/2)

)

= op(n
−1/2).

So (B1) holds. (B2) holds by similarly verifying that the class L5(η) = {l∗(τ ; x) − l∗(τ0; x) :

τ ∈ Tn and d(τ, τ0) ≤ η} is P -Donsker and for any r(τ ; x) ∈ L5(η), Pr2 → 0 as η → 0 .

(B3) can be easily established using Taylor expansion and the convergence rate derived in

Theorem 1. Hence the proof is complete.

7.2 Appendix B-A General Theorem

This section presents a general theorem for asymptotic normality of the maximum likeli-

hood estimator of the finite-dimensional parameter in a setting of semiparametric maximum

likelihood estimation when the infinite-dimensional parameter is treated as a nuisance pa-

rameter. This theorem is the simplified version of the general theorem given in Huang (1996).

The following conditions will be assumed.

(B1): Pnl̇1(θ̂n, φ̂n; X) = op(n
−1/2) and Pnl̇2(θ̂n, φ̂n; X)(ξ0) = op(n

−1/2)

(B2): (Pn − P )
{

l∗(θ̂n, φ̂n; X) − l∗(θ0, φ0; X)
}

= op(n
−1/2)

(B3): P
{

l∗(θ̂n, φ̂n; X) − l∗(θ0, φ0; X)
}

= −I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n
−1/2)
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Theorem 3. Suppose (B1)-(B3) are satisfied, and suppose that I(θ0) is nonsingular. Then

n1/2(θ̂n − θ0) = n1/2I−1(θ0)
n∑

i=1

l∗(θ0, φ0; Xi) + op(1) →d N
{
0, I−1(θ0)

}
.

Proof: Combining (B2) and (B3), we have

Pn

{
l∗(θ̂n, φ̂n; X) − l∗(θ0, φ0; X)

}
= −I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n

−1/2).

By (B1), it follows that

Pnl
∗(θ0, φ0; X) = I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n

−1/2)

Because I(θ0) is nonsingular, and Pnl
∗(θ0, φ0; X) = Op(n

−1/2) due to the ordinary large

sample theory, one has ‖θ̂n − θ0‖ = Op(n
−1/2). Thus op(‖θ̂n − θ0‖) = op(n

−1/2) and therefore

Pnl
∗(θ0, φ0; X) = I(θ0)(θ̂n − θ0) + op(n

−1/2).

The result follows.
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