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Abstract

For a long-term randomized clinical trial, it has become a well-accepted practice to
include interim analyses in trial protocols. In addition to design an efficacy monitoring
plan, investigators often develop a futility monitoring plan as well to prevent continuing
a trial that has little chance to demonstrate treatment efficacy. Conditional power is
the probability that the final analysis will result in rejection of the null hypothesis given
data accumulated at interim analysis and a prespecified effect size. Because of its nice
interpretation of the projection to the end of study, the conditional power is often built
in decision rules to stop the trial for futility at interim analysis. An aggressive rule for
futility stopping sets a relatively large threshold for the conditional power which may
result in significant loss of overall power of the study. On the contrast, a conservative
rule using small threshold may not be able to stop the trial early when there is indeed no
treatment efficacy or the treatment is even inferior to the control. An adaptive futility
monitoring plan with a time-varying conditional power boundary is developed in this
paper. This method maintains the overall size and power very well but has better
chance to stop the trial earlier for futility compared to a conservative futility stopping
rule of the conditional power. The method is illustrated using simulation studies for the
one-sided two-sample proportion test which is motivated by the ongoing multi-center
randomized control clinical trial, the Carotid Occlusion Surgical Study (COSS).

Some key words: B-value; Brownian motion; Conditional power; Group sequential test;

Interim analysis; Randomized clinical trial; Stochastic curtailment;
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1. Introduction

For a long-term randomized control clinical trial, it has become a well-accepted practice to

include interim analyses in trial protocols. The adoption of sequential interim analysis is

largely motivated by ethical and economic consideration. It is desirable to stop a trial as soon

as efficacy of the study treatment has been established. Many group sequential methods, for

example, by Pocock (1977), O’Brien and Fleming (1979) and Wang and Tsiatis (1987), have

been developed to provide strategies for early stopping for efficacy. In many long-term trials,

Data Safety and Monitoring Boards (DSMB) also require that the study have a stopping

rule for futility in order to protect subjects from being exposed to ineffective or even inferior

treatments and to save the limited resources for other promising research. DeMets and

Ware (1980, 1982), Emerson and Fleming (1989), Pampallona and Tsiatis (1994) and among

others have proposed modifications to the Pocock’s, O’Brien-Fleming’s and Wang-Tsiatis’s

methods to allow the trial to stop for accepting the null hypothesis as well as to stop for

rejecting the null hypothesis.

Conditional power is the probability that the final analysis will result in rejection of the

null hypothesis given the observed data at each interim analysis and the originally designed

effect size. The conditional power is widely accepted as a tool to define the stopping boundary

for futility as it is easily computed by B-value using Brownian motion techniques (Lan and

Witts, 1988). More importantly, it provides a nice interpretation of the projection to the end

of study. Let R denote the rejection region, and Zt the test statistic at information time t,

0 ≤ t ≤ 1 where Z1 is the test statistic at the end of the study. The trial is stopped for futility

(accepting H0) if CPt = P{Z1 ∈ R|Zt, Ha} < γ for a pre-specified 0 < γ ≤ 0.5. The quantity

1−CPt is referred to as the futility index by Ware, Muller and Braunwald (1985). Compare

to the aforementioned group sequential designs, the conditional power stopping rule has the
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advantage of implementation flexibility in addition to its projection of the result of the final

analysis, because it does not require to specify how many and when the interim analyses for

futility occur as the group sequential designs normally do. Moreover, the futility stopping

rule by the group sequential designs tends to be too aggressive. For example, Freildin and

Korn (2002) showed that the one-sided group sequential rule developed by Pampallona and

Tsiatis (1994) based on the power family group sequential tests of Wang and Tsiatis (1987)

with parameter ∆ = 0 as well as the O’Brien-Fleming sequential rule result in 50% chance

to reject the null hypothesis at the final analysis when the futility boundary is crossed at

any interim analysis. The features of conditional power stopping rule as a special method of

stochastic curtailment have been discussed by Betensky (1997), Whitehead and Matsushita

(2003) and Chang and Chuang-Stein (2004). An overview of conditional power method for

futility stopping is recently given by Lachin (2005).

Selection of a futility stopping boundary based on conditional power is frequently a sub-

jective matter depending on the opinion of the members of DSMB. For example, investigators

often decide to stop a trial for futility if the conditional power calculated at any time t based

on the originally designed alternative hypothesis is small, such as CPt < 0.1. This rule is

conservative as it is highly unlikely to recommend for futility and has little influence on the

overall type I and type II errors. This rule is undesirable when the alternative is chosen to

be a minimally clinically significant difference and the investigators wish to be able to stop

the trial as soon as possible if the study is unlikely to demonstrate this minimally clinically

meaningful efficacy. To increase the chance of early stopping for futility, one may increase

the value of γ with the trade-off of inflating type II error. Lan, Simon and Halperin (1982)

showed that if the interim results are monitored continuously, the overall type II error of

the study with the stopping rule for futility at any time t given by CPt < γ for which the

conditional power CPt is calculated using the originally designed alternative, is bounded by
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β/(1 − γ) where β is type II error without futility monitoring. Chang and Chuang-Stein

(2004) provided numerical evidence that both type I and type II errors can deviate substan-

tially from their nominal levels when an aggressive stopping boundary for futility based on

conditional power is adopted.

In this paper, we propose an adaptive conditional power method for futility monitoring in

which the boundary for conditional power is chosen to be a time-varying parameter instead

of a fixed value, i.e CPt < γt with γt depending on information time t. This design allows the

trial to correctly stop early for futility with larger probability than the conservative stopping

rule based on the fixed-boundary conditional power approach. It also has little effect on the

overall type I error and maintains the overall power at a prespecified level.

The proposed method is motivated by the ongoing multi-center randomized clinical trial

in which University of Iowa serves as the data coordinating center. The primary goal of this

study is to provide strong scientific evidence that the procedure of extracranial/intracranial

(ECIC) bypass by surgical anastomosis of the superficial temporal artery to the middle

cerebral artery (STA-MCA) when added to best medical therapy significantly reduces subse-

quent ipsilateral ischemic stroke (fatal and non-fatal) at two years in patients with recently

symptomatic internal carotid artery occlusion and Stage II hemodynamic failure. Study

participants are randomly assigned to treatment (ECIC bypass surgery plus best medical

therapy) and control (best medical therapy only). The study is designed to detect a differ-

ence in the primary endpoint of 40% in the control group and 24% in the surgical group.

This represents a clinically meaningful absolute risk reduction of 16% and a relative risk re-

duction of 40%. In the study design, 372 participants (including possibly 5% drop-out) will

provide 90% power to detect the minimally clinically significant difference. These calcula-

tions did not consider the effect of interim efficacy and futility analyses. However, the study

protocol requires that the study will be monitored by an independent DSMB periodically
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in which both the efficacy and futility will be assessed. The efficacy stopping boundary will

be calculated using the error-spending method developed by Lan and DeMets (1983). The

proposed method has been adopted to define the time-varying conditional power boundary

for futility.

The rest of this paper is organized as follows: Section 2 describes the method for com-

puting the time-varying conditional power boundary for futility monitoring; Section 3 carries

out simulation studies for several scenarios that may occur in the ongoing COSS study to

demonstrate the merit of the proposed method compared to the fixed-boundary conditional

power method for futility; Sections 4 concludes the paper with summary and discussion.

2. Method

We illustrate the method using the one-sided test of proportions: H0 : p1 = p2 vs. Ha :

p1 > p2. The method for two-sided or other tests can be similarly developed. Assume that

a total of 2N subjects are randomly assigned to either control or study treatment with N

subjects in each group. Let p̂1 and p̂2 be the sample proportions for the control and treatment

groups, respectively. A Z-test statistic using asymptotic theory is given by

Z1 =

√
N(p̂1 − p̂2)√

p̂1(1− p̂1) + p̂2(1− p̂2)
.

In order for the one-sided (1− α)× 100% level test Z1 to achieve 1− β power to reject the

null hypothesis at a specific alternative Ha : p1 = p2 + δ, the sample size N for each group

can be calculated by

N =
(z1−α + z1−β)2 {p1(1− p1) + p2(1− p2)}

δ2
,

where zp is the pth percentile of the standard normal distribution. The drift parameter is

defined by θ = E {Z1|Ha} which can be shown to be approximately equal to z1−α + z1−β

with the designed effect size.
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Suppose an interim analysis is conducted at information time t = n/N where n is the

number of subjects in each group who are available for accessing the endpoint and p̂1,n and

p̂2,n are the sample proportions for the control and treatment groups, respectively. When n is

large enough, the difference of the sample proportions p̂1,n−p̂2,n is asymptotically distributed

as normal with variance n−1 {p1(1− p1) + p2(1− p2)}. The inverse of the asymptotic vari-

ance In = n {p1(1− p1) + p2(1− p2}−1 is referred to as the information at the interim anal-

ysis. This can be consistently estimated by În = n {p̂1,n(1− p̂1,n) + p̂2,n(1− p̂2,n}−1 and the

standard Z-test statistic can be written by

Zt = (p̂1,n − p̂2,n)

√
În.

If k sequential analyses are scheduled at discrete information times ti = ni/N for n1 < n2 <

· · · < nk, it can be demonstrated that the sequential test statistics {Zt1 , Zt2 , · · · , Ztk} have

the canonical joint distribution with information levels {In1 , In2 , · · · , Ink
} asymptotically.

Lan and Wittes (1988) defined a so-called B-value as a data monitoring tool. The B-value

at information time t is given by

B(t) = Zt

√
t

which has mean E {B(t)|Ha} = θt. As matter of fact, B(t)− θt can be viewed as a standard

Brownian motion process realized at time 0 < t < 1. The conditional power at information

time t and drift parameter θ can be computed using the properties of Brownian motion

process as

CPt(θ) = P {B(1) = Z1 > z1−α|B(t), θ} = 1− Φ

{
z1−α −B(t)− θ(1− t)√

1− t

}
,

where Φ(·) is the cumulative distribution function of the standard normal random variable.

For clinical trials involving futility monitoring, it is a common practice for investigators to

calculate the conditional power CPt(θ), subjectively select a threshold 0 < γ < 0.5, and

decide to stop the trial by declaring the futility if CPt(θ) < γ. Including stopping for futility
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will evidently inflate type II error. As shown by Lan, Simon and Halperin (1982), if data are

monitored continuously using the futility stopping rule defined as above, the overall type II

error will be bounded by β∗ ≤ β/(1 − γ). For example, if γ is chosen to be 0.1, then the

inflation of type II error will be less than 11.1%. While this rule does not inflate type II error

much, it is nevertheless conservative in terms of unable to declare futility early when there is

indeed no treatment efficacy. The reason for this is because at an early time, say t < 0.5, the

value of conditional power implicitly weights the future data assumed to follow the designed

alternative more than data accumulated up to time t. Therefore, the conditional power will

reduce slowly from the designed higher value such as 0.9 to below 0.1.

We propose a futility stopping rule with a time-varying conditional power boundary.

Instead of setting a constant threshold γ, we allow the threshold be a function of information

time γt such that we declare for futility at an interim analysis with information time t if

CPt(θ) < γt. The method is motivated by the flexible error-spending function monitoring

method developed by Lan and DeMets (1983). Suppose the trial will be monitored k times

at information times 0 < t1 < t2 < · · · < tk < 1 before the final analysis, we determine γti

sequentially for i = 1, 2, · · · , k such that

P
(
CPt1(θ) ≥ γt1 , · · · , CPtl−1

(θ) ≥ γtl−l
, CPtl(θ) < γtl

)
= f(tl)− f(tl−1)(2.1)

for l = 1, 2, · · · , k, where f(·) is an increasing function with f(0) = 0 and f(1) = β∗. If we

rewrite the conditional power at information time t as

CPt(θ) = Φ

{
Zt

√
t + θ(1− t)− z1−α√

1− t

}
and let γt = Φ(ηt), the conditional power boundary at time t, CPt(θ) < γt can be directly

related to an inequality for the interim Z-test statistic:

Zt

√
t + θ(1− t)− z1−α√

1− t
< ηt.

7



This leads to the boundary expressed by the interim Z-test statistic

Zt − θ
√

t < ct = ηt

√
1− t

t
− z1−β√

t

and hence the value of the conditional power boundary γtj , at time tj (j = 1, · · · , k) can be

computed by

γtj = Φ

(
ctj

√
tj

1− tj
+

z1−β√
1− t

)
, j = 1, 2, · · · , k.(2.2)

As the error spending equations (2.1) can be rewritten as

P
(
Zt1 − θ

√
t1 ≥ ct1 , · · · , Ztl−1

− θ
√

tl1 ≥ ctl−1
, Ztl − θ

√
tl < ctl

)
= f(tl)− f(tl−1)(2.3)

for l = 1, 2, · · · , k, the values of c = (ct1 , ct2 , · · · , ctk) can be computed using the software de-

veloped by Reboussin et.al (2000), available online: http://www.biostat.wisc.edu/landemets/.

We note that the conditional power boundary derived above assumes that no interim anal-

ysis for efficacy is conducted and the decision to declare for futility in the final analysis is

given by Z1 ≤ z1−α. When the interim analysis for the efficacy (often the primary purpose

for monitoring the trial) is implemented, the critical value for the Z-test statistic at the

final analysis, Z1 to reject or accept the null hypothesis is greater than z1−α which obviously

inflates the overall type II error using the futility stopping boundary described above. To

reduce the overall type II error, we propose an “ad-hoc” adaptive method by setting the

conditional stopping boundary as

CPtj(θ) < γ∗tj = Φ

(
ctj

√
tj

1− tj
+ z1−β

)
, j = 1, 2, · · · , k,(2.4)

which will reduce the overall type II error compared to the one given in (2.2).

As an illustration, we consider a clinical trial design with a monitoring plan of four interim

analyses (for both efficacy and futility) scheduled at information times t = 0.25, 0.45, 0.65

and 0.80. The sample size is determined for a one-sided standard Z-test at level 0.05 with
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power 0.90 to detect the drift parameter θ without considering to monitoring interim data.

We compute efficacy and futility stopping boundaries separately. For efficacy, if the O’Brien-

Fleming type boundary is desired, the online program developed by Reboussin et.al (2000)

produces the boundary for the Z-test statistics e = (3.7496, 2.7016, 2.1982, 1.9815, 1.7419).

For futility, suppose we would like to control the inflation of the overall type II error to be

no more than 11.1% (which is comparable to the fixed-boundary conditional power method

CPt(θ) < 0.1), the O’Brien-Fleming type boundary for the centered Z-test statistics for

the designed alternative is given by ct1 = −2.9812, ct2 = −2.1190, ct3 = −1.7195, and

ct4 = −1.5564 that maps to the conditional power boundary (2.4), γ∗t1 = 0.3301, γ∗t2 = 0.2627,

γ∗t3 = 0.1442, and γ∗t4 = 0.0335. The decision rule with interim monitoring will be given as

follows: at the jth interim analysis, for j = 1, 2, 3, and 4, if Ztj ≥ ej, stop for efficacy, else if

CPtj(θ) < γ∗tj , stop for futility, otherwise, continue the trial; at the final analysis, if Z1 ≥ e5,

declare for efficacy and otherwise declare for futility.

The larger conditional power boundary of the proposed method at early times intuitively

allows the trial to pick up the failure signal more quickly than the fixed-boundary approach

using CPt(θ) < 0.1. Whether or not the proposed method maintains adequate size and

power is evaluated by simulation studies described in the next section.

3. Numerical Results

In this section, the merit of the proposed monitoring plan will be explored by simulation

studies. We generate data by mimicking the situation of the ongoing COSS trial. The rate

of endpoint for the control group is always set at p1 = 40%, the rate for the study treatment

group will be set at different values in order to evaluate and compare the size and power

between different monitoring plans. Suppose that the trial is designed to demonstrate the
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treatment efficacy in the one-sided two-sample proportion test with level 0.05 that archives

90% power to reject the null hypothesis for the designed alternative, p1 = 40% and p2 = 24%,

40% reduction from the control. We consider two scenarios: (i) four interim analyses at in-

formation times t = (0.2, 0.4, 0.6, 0.8) and (ii) nine interim analyses at information times

t = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The Lan-DeMets error spending method with

the error function f(t) = 1 − Φ(z1−α/
√

t) is used to compute the efficacy stopping bound-

ary for the interim Z-test statistics which produces the boundary similar to the O’Brien-

Fleming method: for Scenario (i) e = (3.750, 2.702, 2.198, 1.982, 1.742); for Scenario (ii)

e = (6.088, 4.229, 3.396, 2.906, 2.579, 2.342, 2.160, 2.015, 1.895, 1.795). For the futility bound-

ary, in addition to the fixed-boundary conditional power method with CPt(θ) < γ = 0.1,

we explore the adaptive conditional power boundary (2.4) with four different error spend-

ing functions: (i) f1(t) = 1 − Φ(z1−β∗/
√

t); (ii)f2(t) = β∗t; (iii) f3(t) = β∗t1.5; and (iv)

f4(t) = β∗t2. We set β∗ = 0.1/(1 − γ) = 0.111 in order to make the overall type II error

comparable to the fixed-boundary method. Table 1 displays the boundaries for the proposed

adaptive conditional power method (2.4) with the four error spending functions for the two

scenarios.

For each of these error functions, the value of stopping boundary decreases as information

increases. It appears that the futility stopping rules based on the power family for the error

spending function tend to be more aggressive than that based on the O’Brien-Fleming type

error spending function in terms of terminating the trial for futility earlier. The smaller the

power, the more aggressive the stopping rule is.

Table 2 presents the Monte-Carlo simulation results based on 100,000 repetitions for

comparing the overall power and stopping probabilities between the proposed method and

the fixed-boundary conditional power method with γ = 0.1 for data generated from the

designed alternative. The results show that the loss of power due to possible futility stopping
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Table 1: The conditional power boundaries for futility stopping

Error Information Times (t)
Function 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1(t)

k = 4 – 0.342 – 0.284 – 0.179 – 0.037 –
k = 9 0.362 0.342 0.314 0.274 0.223 0.161 0.091 0.028 0.001

f2(t)
k = 4 – 0.609 – 0.405 – 0.200 – 0.025 –
k = 9 0.698 0.577 0.470 0.368 0.267 0.168 0.079 0.017 0.0001

f3(t)
k = 4 – 0.547 – 0.361 – 0.186 – 0.030 –
k = 9 0.649 0.527 0.425 0.333 0.246 0.161 0.082 0.021 0.0003

f4(t)
k = 4 – 0.489 – 0.314 – 0.163 – 0.029 –
k = 9 0.603 0.477 0.378 0.293 0.216 0.143 0.076 0.022 0.001

is almost negligible using the conditional power rules for futility monitoring. Increasing

number of interim analyses unavoidably increases type II error, but our results indicate that

the inflation of type II error is not substantial. Using the proposed monitoring method,

the chance of early stopping for futility, though larger than the fixed-boundary method, is

again negligible. For example, when the study is less than half-way through (t < 0.5), the

early stopping probabilities for futility are only 0.007, 0.025, 0.015, and 0.01, respectively,

for the proposed conditional power stopping method with the four error functions; while this

probability is 0.001 for the fixed-boundary method. Inflations of type II error at early time

can be virtually ignored, particularly for the proposed method with the O’Brien-Fleming

type error function and fixed-boundary method.

We also evaluate the influence of the proposed monitoring method on the overall size.

To do so, we generate data for the treatment group with rate p2 = 40% as well and the

simulation results are presented in Table 3. The results show that the overall sizes due

to the sequential tests for the monitoring are very well under controlled and they are all
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close to the nominal value 0.05, especially when only four interim analyses are conducted.

The size only increases to at most 0.056 when the number of interim analyses increases to

nine. When the study treatment is not different from the control at all, the fixed-boundary

method does not react to the futile trial quickly enough and the probability for the method

to stop the futile trial is only 16.1% for the trial being less than half-way through. However,

the proposed method is able to boost this probability substantially: they are 34.3%, 42.0%,

38.8%, and 31.9%, respectively, for the four selected error functions.

We are also interested in comparing the stopping rules discussed above for the situation

in which the treatment is better than the control but the efficacy is not as strong as originally

anticipated in design. We simulate data for the treatment group using p2 = 0.35 and display

the simulation results in Table 4. In this case, the data are generated from neither the null

nor the designed alternative hypothesis and the treatment effect size is a lot smaller than

what is expected by design. The results show that the proposed monitoring method has

almost the same overall power as that based on the fixed-boundary monitoring method. The

probabilities of early stopping for the futility when the study is less than half-way through

are 15.9%, 22.5%, 19.4%, and 14.9%, respectively, for the proposed method with the four

error functions. They are considerably larger than that using the fixed-boundary futility

stopping method, 5.7%.

Simulations with other values of p2 are also conducted (results not shown here) and the

similar patterns are observed that the proposed monitoring method substantially increases

the chance of early stopping for futility without inflating the overall power much compared

to the fixed-boundary method. Among the four selected error functions for the proposed

method, using the power family error function with smaller power, for example, 1 or 1.5

leads to a relatively aggressive plan in terms of stopping for futility at earlier time of the

trial and it appears to inflate type II error more than other error functions. The proposed
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futility monitoring method with O’Brien-Fleming type error function agrees closely to the

fixed-boundary futility monitoring method in terms of the overall size and power but has

the advantage of having a reasonable chance to pick up the futile signal early on in the trial

and it is therefore recommended to use when the effect size of the treatment is indeed not

large enough to have a clinically meaningful benefit in implementing the treatment.

4. Summary

For a long term randomized clinical trial, a sequence of interim monitoring for both efficacy

and futility may be required by DSMB. In addition to the flexible monitoring plan for the

efficacy, an adaptive futility monitoring plan for the futility is developed. Compared to

the commonly used monitoring plan in practice that the efficacy boundary is derived using

the Lan-DeMets’ error spending method and the futility boundary is set at 0.1 for the

conditional power under the designed alternative, the proposed plan increases the chance

of early stopping for futility substantially. This feature of the proposed method is very

valuable for the trial that the minimally clinically meaningful effect size is determined for

the alternative, since it allows investigators to be able to stop the trial earlier when this

minimum effect size is unlikely to be realized and thus considerable resources can be saved for

other promising trials. However, when the effect size less than the designed alternative is still

acceptable or investigators would like to accumulate as more data as possible for secondary

analysis, the fixed-boundary monitoring method with small threshold for conditional power

may be more desirable.

The proposed method does not require to pre-specify the number and times of the in-

terim analyses and the stopping boundaries for both efficacy and futility can be sequentially

obtained based on the principle of error spending method given the times of interim analysis.
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The efficacy boundary is determined based on error spending function for type I error only,

the futility boundary is similarly obtained based on error function for type II error only,

and these boundaries can be easily computed separately using the existed online software

developed by Reboussin et.al (2000). Because the number and times of interim monitoring

may not be conveniently determined prior to the trial or may be frequently modified as

exemplified by the ongoing COSS trial, this approach is obviously appealing to the investi-

gators. Although the proposed method does not purposely control for the overall size and

power for the designed alternative, our empirical results through extensive simulation studies

show that the proposed monitoring method maintains the size and power very well which

promotes the use of this method in practice.

If the number and times of the interim monitoring are exactly specified in the design, one

can design a monitoring method to control the overall size and power exactly. For example, if

the trial is scheduled to be monitored k times including the final analysis at times t1, t2, · · · , tk

with the corresponding efficacy boundary e1, e2, · · · , ek, then the conditional power should be

computed by CPt(θ) = P (B(1) > ek|B(t), θ) and therefore the futility boundary will depend

on the efficacy boundary. It is possible to compute both efficacy and futility boundaries

jointly by the iterative integration method described in Jennison and Turnbull (2000) but

the computation can be quite involved and no software is currently existed for the task.

For this proposed method, the Z-test statistic is defined as

Zt =
√

n (p̂1,n − p̂2,n) /
√

p̂1,n(1− p̂1,n) + p̂2,n(1− p̂2,n)

which is different from the standard Z-test statistic for the two-sample proportion test. The

purpose for doing so is to make the test statistic asymptotically normally distributed with

variance one for both the null and alternative hypotheses. If the standard Z-test statistic

Zt =
√

n (p̂1,n − p̂2,n) /
√

2p̂n(1− p̂n), where p̂n = (p̂1,n + p̂2,n) /2, is used, the sample size for
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the fixed design should be modified to

N =

{
z1−α

√
2p̄(1− p̄) + z1−β

√
p1(1− p1) + p2(1− p2)

δ

}2

with p̄ = (p1 + p2)/2, the drift parameter θ is approximately equal to

θ = z1−α + z1−β

√
p1(1− p1) + p2(1− p2)

2p̄(1− p̄)
,

and the conditional power with the designed alternative can be computed by

CPt(θ) = Φ

{
Zt

√
t + θ(1− t)− z1−α√
1− tR(α, β, θ)

}
with R(α, β, θ) = (θ− z1−α)/z1−β. Despite the slight difference in the formula for computing

the conditional power, the futility stopping boundary turns out to be the same and our

simulation experiments (not shown here) indicate that the two versions of the Z-test statistic

yield very similar results unless the difference between p1 and p2 is very large.
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Table 2: The empirical stopping probabilities and overall power using Monte-Carlo simula-
tion with 100,000 repetitions for data generated with p1 = 0.40 and p2 = 0.24

Information f1(t) f2(t) f3(t) f4(t) γ = 1
time (t) k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9
0.1

Efficacy – 0.000 – 0.000 – 0.000 – 0.000 – 0.000
Futility – 0.000 – 0.010 – 0.003 – 0.001 – 0.000

0.2
Efficacy 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005
Futility 0.000 0.000 0.011 0.005 0.005 0.004 0.002 0.002 0.000 0.000

0.3
Efficacy – 0.046 – 0.046 – 0.046 – 0.046 – 0.046
Futility – 0.001 – 0.004 – 0.002 – 0.002 – 0.000

0.4
Efficacy 0.163 0.112 0.163 0.112 0.163 0.112 0.163 0.112 0.163 0.112
Futility 0.003 0.002 0.007 0.004 0.006 0.003 0.005 0.002 0.000 0.000

0.5
Efficacy – 0.159 – 0.159 – 0.159 – 0.159 – 0.159
Futility – 0.004 – 0.002 – 0.003 – 0.003 – 0.001

0.6
Efficacy 0.330 0.171 0.329 0.170 0.329 0.170 0.330 0.170 0.330 0.171
Futility 0.009 0.003 0.005 0.002 0.006 0.002 0.004 0.003 0.004 0.003

0.7
Efficacy – 0.140 – 0.139 – 0.140 – 0.140 – 0.140
Futility – 0.004 – 0.002 – 0.004 – 0.002 – 0.006

0.8
Efficacy 0.252 0.113 0.250 0.111 0.251 0.112 0.252 0.113 0.252 0.113
Futility 0.006 0.003 0.004 0.001 0.004 0.002 0.005 0.003 0.015 0.010

0.9
Efficacy – 0.082 – 0.080 – 0.081 – 0.082 – 0.083
Futility – 0.002 – 0.001 – 0.002 – 0.002 – 0.023

1.0
Efficacy 0.142 0.059 0.138 0.056 0.140 0.058 0.142 0.058 0.143 0.059
Futility 0.090 0.093 0.087 0.090 0.090 0.091 0.092 0.093 0.088 0.068

Overall Power 0.893 0.887 0.886 0.878 0.889 0.883 0.893 0.885 0.894 0.888
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Table 3: The empirical stopping probabilities and overall size using Monte-Carlo simulation
with 100,000 repetitions for data generated with p1 = 0.40 and p2 = 0.40

Information f1(t) f2(t) f3(t) f4(t) γ = 1
time (t) k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9
0.1

Efficacy – 0.000 – 0.000 – 0.000 – 0.000 – 0.000
Futility – 0.001 – 0.079 – 0.040 – 0.018 – 0.000

0.2
Efficacy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Futility 0.012 0.011 0.171 0.070 0.111 0.055 0.067 0.038 0.000 0.000

0.3
Efficacy – 0.001 – 0.001 – 0.001 – 0.001 – 0.001
Futility – 0.064 – 0.113 – 0.091 – 0.072 – 0.005

0.4
Efficacy 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Futility 0.184 0.126 0.184 0.078 0.168 0.105 0.171 0.094 0.044 0.038

0.5
Efficacy – 0.004 – 0.004 – 0.004 – 0.004 – 0.004
Futility – 0.141 – 0.080 – 0.097 – 0.097 – 0.118

0.6
Efficacy 0.010 0.007 0.010 0.007 0.010 0.007 0.010 0.007 0.010 0.007
Futility 0.285 0.104 0.171 0.077 0.222 0.086 0.200 0.126 0.305 0.192

0.7
Efficacy – 0.009 – 0.009 – 0.009 – 0.009 – 0.009
Futility – 0.119 – 0.069 – 0.108 – 0.084 – 0.187

0.8
Efficacy 0.017 0.010 0.016 0.010 0.017 0.010 0.017 0.010 0.017 0.010
Futility 0.183 0.073 0.125 0.060 0.136 0.068 0.180 0.100 0.352 0.170

0.9
Efficacy – 0.010 – 0.010 – 0.010 – 0.010 – 0.010
Futility – 0.080 – 0.050 – 0.053 – 0.085 – 0.129

1.0
Efficacy 0.021 0.013 0.021 0.012 0.021 0.012 0.021 0.013 0.022 0.013
Futility 0.287 0.227 0.300 0.269 0.313 0.242 0.332 0.232 0.248 0.106

Overall Size 0.050 0.056 0.049 0.055 0.050 0.055 0.050 0.056 0.051 0.056
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Table 4: The empirical stopping probabilities and overall power using Monte-Carlo simula-
tion with 100,000 repetitions for data generated with p1 = 0.40 and p2 = 0.35

Information f1(t) f2(t) f3(t) f4(t) γ = 1
time (t) k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9 k = 4 k = 9
0.1

Efficacy – 0.000 – 0.000 – 0.000 – 0.000 – 0.000
Futility – 0.000 – 0.047 – 0.022 – 0.010 – 0.000

0.2
Efficacy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Futility 0.004 0.004 0.088 0.036 0.052 0.027 0.028 0.017 0.000 0.000

0.3
Efficacy – 0.003 – 0.003 – 0.003 – 0.003 – 0.003
Futility – 0.023 – 0.056 – 0.041 – 0.029 – 0.001

0.4
Efficacy 0.012 0.009 0.012 0.009 0.012 0.009 0.012 0.009 0.012 0.009
Futility 0.075 0.054 0.096 0.044 0.081 0.051 0.083 0.041 0.012 0.011

0.5
Efficacy – 0.017 – 0.017 – 0.017 – 0.017 – 0.017
Futility – 0.078 – 0.042 – 0.053 – 0.052 – 0.045

0.6
Efficacy 0.045 0.027 0.045 0.027 0.045 0.027 0.045 0.027 0.045 0.027
Futility 0.158 0.057 0.099 0.044 0.125 0.049 0.100 0.068 0.132 0.089

0.7
Efficacy – 0.034 – 0.034 – 0.034 – 0.034 – 0.034
Futility – 0.080 – 0.043 – 0.073 – 0.051 – 0.122

0.8
Efficacy 0.071 0.038 0.070 0.038 0.071 0.038 0.071 0.038 0.071 0.038
Futility 0.132 0.051 0.084 0.038 0.090 0.048 0.115 0.070 0.254 0.136

0.9
Efficacy – 0.041 – 0.039 – 0.040 – 0.041 – 0.041
Futility – 0.061 – 0.035 – 0.041 – 0.065 – 0.167

1.0
Efficacy 0.085 0.046 0.082 0.044 0.084 0.045 0.085 0.046 0.086 0.046
Futility 0.418 0.376 0.424 0.403 0.440 0.380 0.460 0.381 0.387 0.211

Overall Power 0.213 0.215 0.209 0.211 0.212 0.213 0.213 0.215 0.214 0.215
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