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The central theme in case-control genetic association studies is to efficiently identify ge-

netic markers associated with case-control status. Powerful statistical methods are critical

to accomplishing this goal. A popular statistical method is the model-free Pearson’s chi-

square test. To achieve increased power, model-based tests have been widely used despite

their lack of robustness to model-misspecification. Much research has been carried out on

increasing the robustness of model-based tests. A model-free analysis framework is pro-

posed. It involves less degree of freedom than the Pearson’s chi-square test. The likelihood

ratio statistic, the score statistic, and the Wald statistic are introduced. In addition, these

statistics are less affected by the confounding effect of population stratification on genetic

association. The performance of these statistics are evaluated by computer simulation. Also

introduced is a test for the existence of population stratification. This statistic is asymptot-

ically uncorrelated with the proposed lieklkihood ratio statistic, the score statistic, and the

Wald statistic. All these statistics are applied to a study of height in a European American

population.

Keywords: Case-control design, genetic association, genetic model, population stratification,

likelihood ratio statistic, score statistic, Wald statistic
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INTRODUCTION

Case-control study design is very popular for detecting genetic factors associated with

dichotomous traits. It has been widely used in genome-wide association studies (GWASs)

and will continue to be so. In the past three years, there have been more than 300 GWASs

conducted on many complex human disorders such as glaucoma and age-related macular

degeneration (Hindorff et al. 2009). A fundamental issue in a genetic association study is to

efficiently identify associated genetic markers (typically single neucleotide polymorphisms,

or SNPs).

The efficiency of a genetic association study critically hinges on the statistical methods

adopted. A popular method for case-control design is Pearson’s chi-square test. This is a

model-free method. It has the virtue of having adequate power for traits having a range of

gene-trait relationship. However, it can be less powerful than methods derived from genetic

models (e.g., dominance models, recessive models, or additive models). It is also sensitive

to the effect of population stratification and results in excessive false positive rates.

Disadvantages of the Pearson’s chi-square test have led to the popularity of model-based

methods. The Cochran-Armitage test of trend, which assumes the allele effect on phenotype

is additive, is a good example. The major disadvantage of model-based methods is that they

are sensitive to model mis-specification. When the assumed trait model is different from

the truth, which is almost always the case, their power can be low (Slager and Schaid 2001;

Freidlin et al. 2002; Schaid et al. 2005).

Much research has been devoted to designing testing procedures that are more robust

to model mis-specification than model-based methods. Freidlin et al. (2002) proposed a

maximin efficiency robust test and a test (named MAX) based on the maximum of test

statistics under several analysis models. They found that the MAX test is generally more

powerful than the other one. In another study, Freidlin et al. (2002) assumed an a priori

ordering of the mean genetic effects for the three genotypes that are induced from the allele

to be tested for by assuming the marker allele associated with the disease allele is known.
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Such an ordering may be difficult to make in reality. To remove this restriction, Zheng

(2003) proposed a “max and min scores” approach. Wang and Sheffield (2005) proposed a

method that allows the trait model to be in a certain model space instead of being fixed.

Although more robust to model mis-specification, these methods typically have complicated

null distributions, making it hard to evaluate the significance of test statistics.

We introduce a model-free approach for genetic association mapping using SNPs in case-

conrol study design. This approach simply compares the frequencies of a putative allele in

cases and in controls to see whether there exists a significant difference. This idea has been

used in the allelic test. The Cochran-Armitage test for trend (Sasieni 1997) also turns out

to be a test on this difference. However, they use additional assumptions. The allelic test

assumes that the marker genotype are under Hardy-Weinberg equilibrium. The Cochran-

Armitage test for trend assumes that the effect of the disease variant obeys an additive

model. The use of this idea here is different as no additional assumptions are being made.

The resulting testing procedure involves only one degree of freedom, less than that of the

Pearson’s chi-square test.

Our approach is introduced in a standard likelihood analysis framework. Starting from

the likelihood function of the observed data, the likelihood ratio test, the Wald test, and the

score test are introduced. We will discuss their connection to existing methods. Performance

of these methods will be evaluated in comparison with existing methods using simulation

studies. This new approach is applied to a study of height in a European American popula-

tion.

THE MODEL

Consider a biallelic marker such as a single nucleotide polymorphism (SNP). Denote the

two alleles by A and a, respectively. The frequencies of genotypes aa, aA, and AA are

denoted by P10, P11, and P12, respectively, in cases and by P20, P21, and P22, respectively, in

controls. Suppose that there are n10, n11, and n12 individuals of these genotypes, respectively,
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in cases and n20, n21, and n22 individuals of these genotypes, respectively, in controls. Let

n1· = n10 +n11 +n12 be the total number of individuals in cases and n2· = n20 +n21 +n22 in

controls. The total number of individuals involved in the study is denoted by n·· (= n1·+n2·).

The vector of genotype counts (n10, n11, n12) in cases follows a trinomial distribution with

parameter n1· and (P10, P11, P12). The vector of genotype counts (n20, n21, n22) in controls

follows a trinomial distribution as well. Since P11 = 1−P10−P12 and P21 = 1−P20−P22, the

likelihood function can be described by P10, P12, P20, and P22. Let P = (P10, P12, P20, P22) be

the vector of parameters. The natural parameter space for P is Θ2 which is defined as

Θ2 = {P|0 ≤ P10, P12, P20, P22 ≤ 1, P10 + P12 ≤ 1, P20 + P22 ≤ 1}.

The log-likelihood function is

l(P) = l1(P10, P12) + l2(P20, P22),

where

li(Pi0, Pi2) = ni0 log(Pi0) + ni1 log(1− Pi0 − Pi2) + ni2 log(Pi2), i = 1, 2.

Regular association tests often test the null hypothesis P ∈ Θ0, where

Θ0 = {P|P10 = P20, P12 = P22} ∩Θ2,

against the alternative P ∈ Θ2 (Pearson’s chi-square statistic) or some other alternatives

implied by an assumed disease model (for instance, additive, dominance, or recessive model).

Particularly, the popular Cochran-Armitage test for trend is based on the model that the

log of odds of disease is linear in the number of copies of A alleles. It is well known that,

although not necessary to assume a disease model, Pearson’s chi-square can be less powerful

than model-based tests. On the other hand, model-based tests are less robust to model mis-

specification. Parameter space Θ0 is stringent as it requires the frequency of each genotype

in cases is the same as in controls.
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Let Θ1 denote a less stringent parameter space in which only the frequency of allele A is

required to be the same in cases as in controls. In terms of genotype frequencies, Θ1 is given

by

Θ1 = {P|P10 − P12 = P20 − P22} ∩Θ2.

It is apparent that Θ0 ⊂ Θ1 ⊂ Θ2. Note that the frequency of A allele in cases is P12+P11/2 =

1/2−(P10−P12)/2. Similar relationship holds in controls. So the parameter space Θ1 indeed

requires equality of A allele frequency in cases and in controls.

We thus consider statistical tests for the null hypothesis P ∈ Θ1 against the alterna-

tive P ∈ Θ2. We will introduce the likelihood ratio statistic, the score statistic, and the

Wald statistic. According to standard asymptotic theory, all these tests are asymptotically

equivalent to each other and asymptotically follow a chi-square distribution with 1 degree of

freedom.

The likelihood ratio statistic is

Λ = 2

[
max
P∈Θ2

l(P)− max
P∈Θ1

l(P)

]
.

The maximum of l(P) for P ∈ Θ2 is easy to compute. It is reached at P̂10 = n10/n1·, P̂12 =

n12/n1·, P̂20 = n20/n2·, and P̂22 = n22/n2·. However, there is no explicit solution to maxP∈Θ1 l(P).

To solve this problem, we maximize a profile likelihood.

Let p1 and p2 be the frequency of allele A in cases and in controls, respectively, and let

F1 and F2 be the coefficient of inbreeding for cases and controls, respectively. This F value

can be interpreted as the probability that a pair of alleles in a population are identical by

descent or the correlation coefficient bwtween the indicators of a pair of alleles when the

mating is random(Weir and Hill 2002). The former interpretation necessarily requires F to

be in the interval [0, 1]. We adopt the latter interpretation so F is allowed to be negative.
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The genotype frequencies can be written

Pi2 = Fipi + (1− Fi)p
2
i = p2

i + Fipiqi, i = 1, 2,

Pi1 = 2(1− Fi)pi(1− pi) = 2piqi − 2Fipiqi, i = 1, 2,

Pi0 = Fi(1− pi) + (1− Fi)(1− pi)
2 = q2

i + Fipiqi, i = 1, 2.

Under the null hypothesis P ∈ Θ1, p1 = p2 = p. Let q = 1 − p. In order to maximize

l(P) for P ∈ Θ1, consider the profile likelihood function l̃(p) defined as

l̃(p) = max
F1

l1(q2 + F1pq, p
2 + F1pq) + max

F2

l2(q2 + F2pq, p
2 + F2pq).

An explicit solution to maxF1 l1(q2 + F1pq, p
2 + F1pq) and maxF2 l2(q2 + F2pq, p

2 + F2pq) is

given in Appendix A. It is obvious that the maximum of l̃(p) over p ∈ [0, 1] is the same

as maxP∈Θ1 l(P). Maximization of l̃(p) can be achieved using regular numerical algorithms.

Let Ṗ denote the solution to maxP∈Θ1 l(P). The likelihood ratio test Λ equals

Λ = 2
∑
i=1,2

∑
j=0,1,2

nij log(P̂ij/Ṗij),

where P̂11 = 1− P̂10 − P̂12 and Ṗ21 = 1− Ṗ20 − Ṗ22.

The score statistic, denoted by S, for testing P ∈ Θ1 versus P ∈ Θ2 is (Appendix B),

S =
∑
i=1,2

∑
j=0,1,2

nij(P̂ij/P̃ij − 1),

where P̃ijs, i = 1, 2, j = 0, 1, 2 are consistent estimate of Pij under the hypothesis P ∈ Θ1.

For instance, one can use the maximum likelihood estimate Ṗ under P ∈ Θ1. However,

to avoid maximizing over the profile likelihood l̃(p), we fix p at the allele frequency in the

combined sample of cases and controls, which is p̂ = (n12 + n22)/n··+ (n11 + n21)/2n··. Then

we use the result in Appendix A to find out P10 and P12 that maximize l1(P10, P12) and P20

and P22 that maximize l2(P20, P22). Since p̂ converges to the true value of p in probability

under the null hypothesis, the genotype frequencies obtained this way also converges to their

true values in probability, which means they are consistent.
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The Wald statistic, denoted by W , is (Appendix B)

W =
[(P̂12 − P̂10)− (P̂22 − P̂20)]2

n−1
1· [P̂12 + P̂10 − (P̂12 − P̂10)2] + n−1

2· [P̂22 + P̂20 − (P̂22 − P̂20)2]
.

Let p̂1 = P̂12 + P̂11/2 be the frequency of allele A in cases and p̂2 = P̂22 + P̂21/2 in controls.

In addition, define q̂1 = 1 − p̂1, q̂2 = 1 − p̂2, and q̂ = 1 − p̂. Let F̂1 = 1 − P̂11/2p̂1q̂1,

F̂2 = 1− P̂21/2p̂2q̂2, and F̂ = 1− (P̂11 + P̂21)/2p̂q̂. With these notations, it is easy to see that

W =
2(p̂1 − p̂2)2

n−1
1· p̂1q̂1(1 + F̂1) + n−1

2· p̂2q̂2(1 + F̂2)
.

We note that, in these notations, the Cochran-Armitage trend test, denoted by G, can be

expressed as

G =
2(p̂1 − p̂2)2

(n−1
1· + n−1

2· )p̂q̂(1 + F̂ )
,

which shares the same numerator with the Wald statistic W . When n1· = n2· (i.e., the

number of cases is the same as the number of controls), the Wald statistic W is greater than

the statistic G. This is because the denominator of W becomes p̂1q̂1 + p̂2q̂2 − (P̂11 + P̂21)/4

and the denominator of G becomes 2p̂q̂− (P̂11 + P̂21)/4 = (p̂1 + p̂2)(q̂1 + q̂2)/2− (P̂11 + P̂21)/4.

The former is smaller than the latter as their difference (the former minus the latter) is

p̂1q̂1 + p̂2q̂2 − (p̂1 + p̂2)(q̂1 + q̂2)/2 = −(p̂1 − p̂2)2/2 < 0.

It is apparent that this difference converges to 0 in probability for P ∈ Θ1 as sample sizes

in cases and in controls both to to infinity. However, when n1· 6= n2·, no such relationship

holds. For instance, when the genotype ratios aa : aA : AA are 5:30:30 in cases and 3:2:3 in

controls, statistic G (= 2.37) is larger than statistic W (= 1.48); when the genotype ratios

are 17:95:80 in cases and 42:71:62 in controls, statistic G (= 8.43) is smaller than statistic

W (= 8.48).

The likelihood ratio statistic for testing P ∈ Θ0 against P ∈ Θ2 is

2

[
max
P∈Θ2

l(P)− max
P∈Θ0

l(P)

]
.
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It is natural to decompose it in the following way:

2

[
max
P∈Θ2

l(P)− max
P∈Θ0

l(P)

]
= 2

[
max
P∈Θ2

l(P)− max
P∈Θ1

l(P)

]
+ 2

[
max
P∈Θ1

l(P)− max
P∈Θ0

l(P)

]
.

The first term of the right hand side is the likelihood ratio test Λ proposed in this paper. The

second term is the likelihood ratio statistic for testing P ∈ Θ0 against P ∈ Θ1. Equivalently,

it tests for the null that F1 = F2 against the alternative F1 6= F2. That is, whether the

departure from the Hardy-Weinberg equilibrium in cases, as measured by F1, is the same

as in controls as measured by F2. When population stratification is a confounding factor to

genetic association, the F coefficient in cases will be different from that in controls. Hence

this likelihood ratio statistic can be used to test whether or not there exists population

stratification effect that confounds with genetic association. It can be approximated by its

score statistic S ′ which equals:

S ′ =
n2
··

n1·n2·
· (n12/n·2 − 2n11/n·1 + n10/n·0)2

1/n·2 + 4/n·1 + 1/n·0
,

where n·2 = n12 + n22, n·1 = n11 + n21, and n·0 = n10 + n20. The derivation of this statistic

is similar to that of S. The detail is omitted.

Statistic S ′ is asymptotically independent of the Wald statistic W for P ∈ Θ0. Here is

a sketch of a proof. Let φ = n1·/n·· be the proportion of cases out of the total number of

study subjects. Define function f(P̂10, P̂11, P̂12, P̂20, P̂21, P̂22) as

f(P̂10, P̂11, P̂12, P̂20, P̂21, P̂22) =
n

1/2
··

[φ(1− φ)]1/2
· A

B1/2
,

where

A =
φP̂12

φP̂12 + (1− φ)P̂22

− 2φP̂11

φP̂11 + (1− φ)P̂21

+
φP̂10

φP̂10 + (1− φ)P̂20

B =
1

φP̂12 + (1− φ)P̂22

+
4

φP̂11 + (1− φ)P̂21

+
1

φP̂10 + (1− φ)P̂20

It is easy to see that [f(P̂10, P̂11, P̂12, P̂20, P̂21, P̂22)]2 equals the score statistic S ′. Under

the hypothesis P ∈ Θ0, let P0, P1, and P2 be the frequencies of genotypes aa, aA, and AA, re-

spectively, that are common to cases and controls. The function f(P̂10, P̂11, P̂12, P̂20, P̂21, P̂22)
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is 0 when P ∈ Θ0. Using Taylor’s expansion,

f(P̂10, P̂11, P̂12, P̂20, P̂21, P̂22)

=

[
1

P0

+
4

P1

+
1

P2

]−1/2
[(

P̂10

P0

− 2P̂11

P1

+
P̂12

P2

)
−

(
P̂20

P0

− 2P̂21

P1

+
P̂22

P2

)]
+ op(n−1/2

·· )

When P ∈ Θ0, The main part on the right hand side is not correlated with either P̂12 − P̂10

or P̂22 − P̂20, since

Cov

(
P̂12 − P̂10,

P̂10

P0

− 2P̂11

P1

+
P̂12

P2

)
= n1·[−P2 + 2P2 + (1− P2)− (1− P0)− 2P0 + P0]

= 0,

and similarly,

Cov

(
P̂22 − P̂20,

P̂20

P0

− 2P̂21

P1

+
P̂22

P2

)
= 0.

Since the numerator of statistic W is the square of (P̂12 − P̂10) − (P̂22 − P̂20), W is asymp-

totically uncorrelated with the S ′.

SIMULATION

We first investigate the distribution of the proposed test under the hypothesis P ∈ Θ1. In

the simulation study of type I error rate, of particular interest is to investigate the situation

where the frequency of the putative allele is the same in cases as in controls but the genotype

frequencies differ. So the allele frequency in cases is set to be the same as in controls while

the F coefficients are allowed to be different. Sample sizes in cases and in controls are allowed

to be different as well. The number of simulation replicates in all scenarios (including power

study) is fixed at 10000. Simulation results are presented in Tables 1–4. The type I error

rates of the proposed score statisti S, Wald statistic W , and the likelihood ratio statistic Λ

are close to the nominal values, so does the type I error rate of Cochran-Armitage trend test

statistic G. The Pearson’s chi-square statistic X2 tends to be inflated when F1 6= F2 which

causes the genotype frequencies in cases to be different from those in controls.
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[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

The power study is conducted as follows. Let Pi, i = 0, 1, 2 be the frequency of genotype

i. Let K =
∑2

i=0 fiPi be the prevalence of the trait. The frequency of genotype i would

be fiPi/K in cases and (1 − fi)Pi/(1 −K) in controls. In the absence of association, f0 =

f1 = f2 = K. There is no difference in genotype frequencies between cases and controls.

Let γi = fi/f0, i = 1, 2, be the relative risk of genotype i to genotype 0. In the simulation,

we consider a dominance model (γ1 = γ2), a recessive model (γ1 = 1), an additive model

(γ1 = (1 + γ2)/2), and a multiplicative model (γ1 = γ
1/2
2 ). Given population prevalence K

and the relative risk γ2, f0 can be determined from f0 = K/(P0 + γ1P1 + γ2P2), from which

f1 = γ1f0 and f2 = γ2f0 can be computed for each model. The value of γ2 is fixed at 2. It is

assumed that Hardy-Weinberg equilibrium holds at the disease locus and the frequency of

the disease allele is denoted by p.

At significance level 0.01, the power of statistics G,Λ, S,W , and the Pearson’s chi-square

statistic X2 is simulated for allele frequency p = 0.1, 0.3, 0.5, prevalence K = 0.01, 0.1, 0.3

and sample size (n1·, n2·) = (300, 100), (200, 200), and (100, 300). Results are presented for

the dominance model (Fig. ??), the recessive model (Fig. ??), the additive model (Fig. ??),

and the multiplicative model (Fig. ??). The four statistics G,S,W , and Λ have similar power

when the number of cases is the same as the number of controls (i.e., n1· = n2· = 200) in all

four generating models while the statistic X2 has less power for the additive model and the

multiplicative model but has more power for the dominant model (when allele frequency p is

0.3 or 0.5) and the recessive model. There seems to be a tendency that the score statistic S

is less powerful than the likelihood ratio statistic Λ and the Wald statistic W when there are
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more cases than controls (i.e., (n1·, n2·) = (300, 100)) but is more powerful when there are

less cases than controls (i.e., (n1·, n2·) = (100, 300)) for allele frequency p = 0.1 and 0.3. The

performance of the Cochran-Armitage trend test G is very similar to that of the score statistic

S except that for the dominant model, it is a bit more powerful when (n1·, n2·) = (300, 100)

and a bit less powerful when (n1·, n2·) = (100, 300) while for the recessive model the situation

is the reverse. The power of the Pearson’s chi-square statistic X2 is the lowest for the additive

model and the multiplicative model when allele frequency is 0.3 or 0.5. For each model, the

power of the likelihood ratio statistic Λ does not change as much as other test statistics as

the ratio of the subject number between cases and controls changes while the Wald statistic

W seems to change most.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

APPLICATION TO AN ADULT HEIGHT STUDY IN A EUROPEAN AMERICAN POPULATION

A study of adult height in a European American population involves 1057 ”short” in-

dividuals and 1132 ”tall” individuals(Campbell, Ogburn, Lunetta, Lyon, Freedman, Groop,

Altshuler, Ardlie, and Hirschhorn 2005). The SNP marker LCT–13910 has shown significant

association. However, if the data are divided according to whether the four grand parents

are all US-born, predominantly born in Southeastern Europe, or predominantly born in

Northwestern Europe, it significance is dramatically reduced in each sub-group, suggesting

population stratification exists in this European American population. The genotype counts

at marker marker LCT–13910 are shown in table ??, so are the p-values of various tests.

Results from the proposed likelihood ratio statistic Λ, score statistic S, and Wald statistic W
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are very similar to the Cochran-Armitage test for trend G. In addition, the value of statistic

S ′ is 1.74 which does not detect population stratification (p-value = 0.1871).

[Table 5 about here.]

DISCUSSION

Traditional tests of genetic association for case-control design typically test the null hy-

pothesis that the genotype frequencies in cases are the same as in controls. Such a null

hypothesis is too stringent making these tests are not robust to conditions such as popula-

tion structure and cryptic relatedness. Allelic test may be the only test directly based on

the difference of allele frequency between cases and controls but it relies on the assump-

tion of Hardy-Weinberg equilibrium. The Cochran-Armitage test for trend turns out to be

test based on allele frequency difference as well but it relies on an assumed additive genetic

model. We have introduced a model-free likelihood analysis framework for comparing allele

frequency between cases and controls. It requires neither Hardy-Weinberg equilibrium nor

assumed disease models. Compared to the model-free Pearson’s chi-square test, the likeli-

hood ratio statistic, the score statistic, and the Wald statistic have the virtue that each of

them has only 1 degree of freedom.

One advantage of comparing allele frequency, instead of genotype frequencies, between

cases and controls is that the null hypothesis is less affected by differences in the composition

between cases and controls. For instance, due to population stratification, there will be dif-

ference in the F coefficient between cases and controls. While F coefficient affects genotype

frequencies, it does not affect the difference between the two homozygous genotype frequen-

cies. For example, F10 − F12 = q1 − p1. This explains why in the simulation study of type I

error rate, the Pearson’s chi-square statistic is inflated when F1 in cases is different than F2

in controls while the others are not. However, this does not mean the proposed statistics are

immune to population stratification as it will cause a difference in allele frequency between

cases and controls as well.
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The statistic W has been proposed previously as a statistic to be used when the Hardy-

Weinberg equilibrium does not hold in cases and controls combined (Schaid and Jacobsen

1999). It was regarded as a test statistic needs further study(Knapp 2001). The current

study shows that W is the Wald statistic for testing P ∈ Θ1 versus P ∈ Θ2 in this study.

It is interesting to note that although the null hypothesis for the Cochran-Armitage test

for trend is that the genotype frequencies in cases are the same as in controls it is much less

sensitive to violation of this null than the Pearson’s chi-square test for the same null (Tables

1-4). This phenomenon may be explained by the fact that the Cochran-Armitage test for

trend turns out to be a test based on the difference of disease allele frequencies between cases

and controls.

Overall, the proposed likelihood ratio statistic, the score statistic, and the Wald statistic

provide some attractive alternatives for genetic association studies. They require neither

the assumption of Hardy-Weinberg equilibrium nor assuming disease models. They involves

only one degree of freedom. These statistics should be useful for unraveling genetic factors

underlying complex traits.

The proposed statistics have been implemented in R. The code is available from the

author upon request.
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APPENDIX A THE MAXIMUM LIKELIHOOD ESTIMATE OF THE F COEFFICIENT

FROM A SAMPLE GIVEN ALLELE FREQUENCY P

Let P0, P1, and P2 be the frequencies of genotypes AA, Aa, and aa, respectively, in the

sample. Then P0 = q2 + Fpq, P1 = 2pq − 2Fpq, and P2 = p2 + Fpq. Let γ = Fpq. The

log-likelihood function is

l(γ, p) = n0 log(q2 + γ) + n1 log(2pq − 2γ) + n2 log(p2 + γ).

Since each Pi, i = 0, 1, 2 is a probability, γ naturally satisfies γ ∈ [bl, bu], where

bl = max{−p2,−q2, pq − 0.5}, bu = min{1− p2, 1− q2, pq}.

Given the value of p, l(γ, p) is concave in γ. So it has a unique global maximum which occurs

either in the interior or on the boundaries of interval [bl, bu].

First consider the case that none of n0, n1 and n2 is 0. Given the value of p, the first-order

equation with respect to γ is

n0

q2 + γ
+

n2

p2 + γ
− n1

pq − γ
= 0,

which results in a univariate second-order equation in γ. Of the two roots, the one that

converges to the true value of γ as the sample size goes to infinity is

γ =
−b+

√
b2 − 4ac

2a

where

a = n0 + n1 + n2,

b = (n0 + n1)p2 + (n2 + n1)q2 − (n0 + n2)pq,

and

c = pq(n1pq − n0p
2 − n2q

2).

Once having the value of γ, the value of F is obtained by F = γ/pq.
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The situation that one and only one of n0, n1, and n2 is 0 is dealt with as follows. If

n0 = 0, the solution to the first-order condition is

γ = n2p/n− p2.

If n2 = 0, the solution to the first-order equation is

γ = n0q/n− q2.

If n1 = 0, l(γ, p) is an increasing function in γ. So the MLE is γ = bu.

If only n0 > 0 or only n2 > 0, l(γ, p) is increasing in γ. So the MLE of γ is bu. is

determined by q2 + γ = 1, which implies γ = 1− q2. If only n1 > 0, l(γ, p) is decreasing in

γ. So the MLE of γ is bl.
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APPENDIX B DERIVATION OF THE SCORE STATISTIC AND THE WALD STATISTIC

Since P11 = 1− P10 − P12 and P21 = 1− P20 − P22, the vector of first-order derivatives is
∂l/∂P10

∂l/∂P12

∂l/∂P20

∂l/∂P22

 =


n10/P10 − n11/P11

n12/P12 − n11/P11

n20/P20 − n21/P21

n22/P22 − n21/P21


Define matrices

Ai =

(
ni0/P

2
i0 + ni1/P

2
i1 ni1/P

2
i1

ni1/P
2
i1 ni2/P

2
i2 + ni1/P

2
i1

)
, i = 1, 2

The expectation of Ai is

E(Ai) = ni·

(
1/Pi0 + 1/Pi1 1/Pi1

1/Pi1 1/Pi2 + 1/Pi1

)
It is straightforward to compute that the Fisher Information matrix is the following

block-diagonal matrix

I =

(
A1 0
0 A2

)
where 0 is a 2 × 2 matrix whose elements are all 0. The expectation of I, E(I), is a block-

diagonal matrix with blocks E(A1) and E(A2). It is easy to compute that[
∂l(P)

∂P

]t

· [E(I)]−1 · ∂l(P)

∂P

= n−1
1·

[
P10P11

(
n10

P10

− n11

P11

)2

+ P11P12

(
n11

P11

− n12

P12

)2

+ P10P12

(
n10

P10

− n12

P12

)2
]

+n−1
2·

[
P20P21

(
n20

P20

− n21

P21

)2

+ P21P22

(
n21

P21

− n22

P22

)2

+ P20P22

(
n20

P20

− n22

P22

)2
]

= n−1
1·

[
n2

10

P10

+
n2

11

P11

+
n2

12

P12

− n2
1·

]
+ n−1

2·

[
n2

20

P20

+
n2

21

P21

+
n2

22

P22

− n2
2·

]
=

P̂10n10

P10

+
P̂11n11

P11

+
P̂12n12

P12

+
P̂20n20

P20

+
P̂21n21

P21

+
P̂22n22

P22

− n··

=
∑
i=1,2

∑
j=0,1,2

(P̂ij/Pij − 1)nij.

According to equation (4.5.5) of Amemiya(Amemiya 1985), the score statistic is obtained by

substituting an estimate of P that is consistent under H1.
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Now we derive the Wald statistic. Let δ̂ = (P̂12 − P̂10)− (P̂22 − P̂20) = 2(p̂1 − p̂2) where

p̂1 = (2n12 + n11)/2n1· is the observed frequency of allele A in cases and p̂2 the observed

frequency of allele A in controls. The variance of δ̂ is

V ar(δ̂) = V ar(P̂12 − P̂10) + V ar(P̂22 − P̂20)

= n−1
1· [P12(1− P12) + P10(1− P10) + 2P12P10]

+n−1
2· [P22(1− P22) + P20(1− P20) + 2P22P20]

= n−1
1· [P12 + P10 − (P12 − P10)2] + n−1

2· [P22 + P20 − (P22 − P20)2]

= n−1
1· · 2p1q1(1 + F1) + n−1

2· · 2p2q2(1 + F2)

So the Wald test statistic is

W =
δ̂2

ˆV ar(δ̂)

=
2(p̂1 − p̂2)2

n−1
1· p̂1q̂1(1 + F̂1) + n−1

2· p̂2q̂2(1 + F̂2)

One can also apply the formal definition of Wald statistic (e.g., equation (4.5.4) of

Amemiya(Amemiya 1985)). Let δ = (P12 − P10)− (P22 − P20). The Wald statistic equals

−h(P)t

{
∂h

∂Pt

[
∂2 logL

∂P∂Pt

]−1
∂ht

∂P

}−1

h(P)

evaluated at P̂. Substituting ∂2 logL/∂P∂Pt by n··plim n−1
·· ∂

2 logL/∂P∂Pt = E(I) (Amemiya

1985), it becomes

δ̂
[
(1,−1, 1,−1)E(I(P̂ ))−1(1,−1, 1,−1)t

]−1

δ̂,

which turns out to be equal to W .
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Figure 1: Power comparison for the dominant model. The bars in each group are for (in the
order) Cochran-Armitage trend test G, likelihood ratio statistic Λ, score statistic S, Wald
statistic W , and Pearson’s chi-square statistic X2.
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Figure 2: Power comparison for the recessive model. The bars in each group are for (in the
order) Cochran-Armitage trend test G, likelihood ratio statistic Λ, score statistic S, Wald
statistic W , and Pearson’s chi-square statistic X2.
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Figure 3: Power comparison for the additive model. The bars in each group are for (in the
order) Cochran-Armitage trend test G, likelihood ratio statistic Λ, score statistic S, Wald
statistic W , and Pearson’s chi-square statistic X2.
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Figure 4: Power comparison for the multiplicative model. The bars in each group are for
(in the order) Cochran-Armitage trend test G, likelihood ratio statistic Λ, score statistic S,
Wald statistic W , and Pearson’s chi-square statistic X2.
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Table 1: Type I error rate. The vector of allele frequencies is (p1, p2) = (0.1, 0.1) and
significance level is α = 0.01. X2 is the Pearson’s chi-square statistic.

Statistic
(F1, F2) (n1·, n2·) X2 G S W Λ

(0.05, 0.05) (100, 300) 0.0092 0.0104 0.0108 0.0131 0.0109
(200, 200) 0.0056 0.0080 0.0086 0.0085 0.0087
(300, 100) 0.0096 0.0088 0.0087 0.0142 0.0103

(0.1, 0.05) (100, 300) 0.0179 0.0115 0.0109 0.0137 0.0116
(200, 200) 0.0115 0.0116 0.0115 0.0123 0.0120
(300, 100) 0.0093 0.0073 0.0080 0.0113 0.0095

(0.3, 0.05) (100, 300) 0.1454 0.0129 0.0102 0.0161 0.0106
(200, 200) 0.1484 0.0128 0.0127 0.0129 0.0131
(300, 100) 0.0672 0.0076 0.0110 0.0118 0.0109

(0.1, −0.05) (100, 300) 0.0999 0.0137 0.0112 0.0151 0.0123
(200, 200) 0.0445 0.0096 0.0100 0.0103 0.0103
(300, 100) 0.0185 0.0078 0.0096 0.0120 0.0102

(0.2, −0.05) (100, 300) 0.2367 0.0133 0.0099 0.0135 0.0106
(200, 200) 0.1700 0.0100 0.0109 0.0105 0.0107
(300, 100) 0.0653 0.0071 0.0105 0.0134 0.0114
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Table 2: Type I error rate. The vector of allele frequencies is (p1, p2) = (0.1, 0.1) and
significance level is α = 0.001. X2 is the Pearson’s chi-square statistic.

Statistic
(F1, F2) (n1·, n2·) X2 G S W Λ

(0.05, 0.05) (100, 300) 0.0009 0.0014 0.0011 0.0030 0.0014
(200, 200) 0.0009 0.0005 0.0004 0.0006 0.0005
(300, 100) 0.0016 0.0012 0.0011 0.0020 0.0015

(0.1, 0.05) (100, 300) 0.0023 0.0009 0.0008 0.0027 0.0012
(200, 200) 0.0010 0.0016 0.0013 0.0019 0.0020
(300, 100) 0.0006 0.0007 0.0007 0.0019 0.0010

(0.3, 0.05) (100, 300) 0.0464 0.0010 0.0002 0.0032 0.0010
(200, 200) 0.0306 0.0012 0.0012 0.0015 0.0015
(300, 100) 0.0144 0.0003 0.0007 0.0026 0.0012

(0.1, −0.05) (100, 300) 0.0243 0.0022 0.0015 0.0047 0.0023
(200, 200) 0.0063 0.0009 0.0009 0.0011 0.0011
(300, 100) 0.0020 0.0003 0.0005 0.0021 0.0005

(0.2, −0.05) (100, 300) 0.0835 0.0013 0.0006 0.0029 0.0008
(200, 200) 0.0289 0.0009 0.0007 0.0010 0.0008
(300, 100) 0.0116 0.0010 0.0014 0.0021 0.0013
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Table 3: Type I error rate. The vector of allele frequencies is (p1, p2) = (0.3, 0.3) and
significance level is α = 0.01. X2 is the Pearson’s chi-square statistic.

Statistic
(F1, F2) (n1·, n2·) X2 G S W Λ

(0.05, 0.05) (100, 300) 0.0084 0.0090 0.0090 0.0111 0.0098
(200, 200) 0.0091 0.0104 0.0105 0.0112 0.0108
(300, 100) 0.0113 0.0106 0.0111 0.0128 0.0115

(0.1, 0.05) (100, 300) 0.0141 0.0099 0.0086 0.0103 0.0096
(200, 200) 0.0150 0.0098 0.0099 0.0109 0.0102
(300, 100) 0.0138 0.0096 0.0106 0.0122 0.0109

(0.3, 0.05) (100, 300) 0.2393 0.0133 0.0093 0.0116 0.0091
(200, 200) 0.3272 0.0112 0.0119 0.0116 0.0115
(300, 100) 0.2224 0.0073 0.0117 0.0127 0.0116

(0.1, −0.05) (200, 200) 0.0959 0.0107 0.0111 0.0114 0.0111
(200, 200) 0.0999 0.0119 0.0123 0.0127 0.0121
(200, 200) 0.0937 0.0096 0.0101 0.0103 0.0100

(0.2, −0.05) (100, 300) 0.2556 0.0153 0.0111 0.0132 0.0112
(200, 200) 0.3506 0.0088 0.0092 0.0094 0.0091
(300, 100) 0.2171 0.0064 0.0108 0.0124 0.0108
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Table 4: Type I error rate. The vector of allele frequencies is (p1, p2) = (0.3, 0.3) and
significance level is α = 0.001. X2 is the Pearson’s chi-square statistic.

Statistic
(F1, F2) (n1·, n2·) X2 G S W Λ

(0.05, 0.05) (100, 300) 0.0007 0.0003 0.0005 0.0006 0.0006
(200, 200) 0.0005 0.0008 0.0008 0.0009 0.0008
(300, 100) 0.0006 0.0010 0.0008 0.0010 0.0009

(0.1, 0.05) (100, 300) 0.0016 0.0008 0.0007 0.0013 0.0009
(200, 200) 0.0022 0.0010 0.0009 0.0013 0.0011
(300, 100) 0.0030 0.0012 0.0014 0.0015 0.0012

(0.3, 0.05) (100, 300) 0.0787 0.0020 0.0009 0.0019 0.0012
(200, 200) 0.1224 0.0012 0.0015 0.0014 0.0014
(300, 100) 0.0696 0.0002 0.0007 0.0011 0.0007

(0.1, −0.05) (100, 300) 0.0206 0.0009 0.0009 0.0011 0.0009
(200, 200) 0.0223 0.0008 0.0008 0.0009 0.0008
(300, 100) 0.0211 0.0013 0.0014 0.0014 0.0014

(0.2, −0.05) (100, 300) 0.0914 0.0029 0.0018 0.0025 0.0019
(200, 200) 0.1348 0.0010 0.0011 0.0010 0.0011
(300, 100) 0.0602 0.0005 0.0012 0.0021 0.0013
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Table 5: Genotype counts at marker LCT–13910 (CC:CT:TT)

All Four US-born Southeastern Northwestern
Data Tall 161:474:489 66:265:314 54:55:18 41:154:157

Short 231:444:380 76:278:282 128:86:13 27:79:86
p-value X2 3.74E−06 0.263 0.00585 0.678

G 1.42E−06 0.106 0.00188 0.717
S 1.42E−06 0.106 0.00201 0.719
W 1.31E−06 0.106 0.00248 0.720
Λ 1.38E−06 0.106 0.00214 0.720
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