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ABSTRACT

Population structure is a phenomenon caused by population stratification or

cryptic relatedness. It exists even in populations that appear to be homogeneous.

Difference in population structure between cases and controls can inflate false

positive rates in genetic association studies. Many statistical methods have been

proposed to eliminate this side effect. However, statistical tests for detecting the

existence of such difference are lacking. Statistical tests are proposed to fill this

gap. Performance of these tests are evaluated through extensive simulation stud-

ies. These tests are applied to the HapMap genotype data on the Yoruba people

of Ibadan, Nigeria (YRI), U.S. residents with northern and western European an-

cestry (CEU) by the Centre d’Etude du Polymorphisme Humain, Han Chinese

from Beijing, China (CHB), and Japanese from Tokyo, Japan (JPT). Difference

in population structure is found to be the largest between YRI and CHB+JPT,

followed by CEU and YRI, and CEU and CHB+JPT while no difference between

CHB and JPT is detected.

Subject headings: Population stratification, F parameter, case-control design, genetic

association
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Introduction

It has been long recognized that population structure is a potential confounder in

genetic association analysis. It has gained more and more attention with the increased

popularity of large scale genetic association studies. Population structure is caused by

population stratification or cryptic relatedness. It exists even in populations that seem

to be homogeneous, for instance, European American1 and Han Chinese2,3. See Astle

and Balding4 for a recent review on this topic. Many methods have been proposed for

association studies to eliminate the confounding effect of population structure5–13.

Despite the serious consequences population structure could have on genetic association

studies, there is a lack of formal statistical tests to help researchers to decide whether or

not to use methods that take population structure into account. Indeed, there is no need

to sacrifice power when it is unnecessary. Sometimes the existence of population structure

may be obvious, for instance, if the study subjects are of different ethnic background, but

sometimes it may be not. A common approach for identifying population structure is to

use multivariate analysis methods such as cluster analysis, multidimensional scaling, or

principle component analysis. Subjective judgements are often made based on scatter plots

of proxy variables such as principal components14.

Existence of population structure does not necessarily cause inflated false positive rates

in case-control association studies. It does only when there is a difference in the pattern

of population structure between the cases and the controls. Suppose that there are J

sub-populations. The two alleles at a biallelic marker are denoted by a and A, respectively.

The frequency of genotypes aa, aA, and AA are denoted by P
(j)
0 , P

(j)
1 , and P

(j)
2 , respectively,

in sub-population j. Let aj denote the proportion of sub-population j in cases and bj in

controls. If this marker is not associated with the case-control phenotype status, frequencies

of these genotypes would be the same in cases as in controls. The frequency of allele A
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would be p1 =
∑J

j=1 aj(P
(j)
2 +P

(j)
1 /2) for cases and p2 =

∑J
j=1 bj(P

(j)
2 +P

(j)
1 /2) for controls.

So it is still possible that p1 = p2 even though there exists population structure in either

sample. The condition p1 = p2 is the null hypothesis underlying the Armitage test for

trend that is popular for association studies. Hence the false positive rate is not necessarily

inflated when population structure is present.

Population structure not only affects the allele frequency but also causes departure

from the Hardy-Weinberg equilibrium (HWE) even if each sub-population is in HWE15.

The extent of departure can be measured by a parameter F , which can be interpreted

as the proportionate reduction in heterozygosity relative to a population in HWE15. It

is also a measure of the variation of the allele frequency among sub-populations. In the

context of the previous paragraph, since the frequency of A allele is the same in cases as in

controls in each sub-population, the departure from HWE in cases would be different than

in controls. As evidenced by the work to be presented, it is possible to use the difference of

the parameter F between cases and controls as a surrogate of the difference in population

structure.

In what follows, we describe the setup of the new methods. We introduce two

single-marker test statistics and their multi-marker generalizations. Simulation studies will

be used to assess the type I error rate and the power of these statistics. Finally, we report

an application of these statistics to the HapMap genotype data.

The work in this report is motivated by the issue of population structure in genetic

association studies. The methods are presented through cases and controls. However, these

methods are applicable to any two samples of interest, as illustrated by their application to

the HapMap genotype data.
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Method

Consider a biallelic marker such as a single nucleotide polymorphism (SNP). Denote

the two alleles by A and a, respectively. The frequencies of genotypes aa, aA, and AA are

denoted by P10, P11, and P12, respectively, in cases and by P20, P21, and P22, respectively,

in controls. Suppose that there are n10, n11, and n12 individuals of these genotypes,

respectively, in cases and n20, n21, and n22 individuals of these genotypes, respectively,

in controls. Let n1+ = n10 + n11 + n12 be the total number of individuals in cases and

n2+ = n20 + n21 + n22 in controls. The total number of individuals involved in the study is

denoted by n++ (= n1+ + n2+).

Let p1 be the frequency of allele A in cases and p2 in controls. Let F1 and F2 be

parameter F for cases and controls, respectively. Besides its interpretations given in the

Introduction section, this F parameter can be interpreted as the probability that a pair

of alleles in a population are identical by descent or the correlation coefficient between

the indicators of a pair of alleles when the mating is random16. The former interpretation

necessarily requires F to be in the interval [0, 1] while the latter does not. The genotype

frequencies can be written in terms of pi and Fi as follows:

Pi2(pi, Fi) = Fipi + (1− Fi)p
2
i , i = 1, 2,

Pi1(pi, Fi) = 2(1− Fi)pi(1− pi), i = 1, 2, (1)

Pi0(pi, Fi) = Fi(1− pi) + (1− Fi)(1− pi)2, i = 1, 2.

Obviously, pi and Fi provide an alternative parameterization to Pi2, Pi1, and Pi0.

The vector of genotype counts (n10, n11, n12) in cases follows a trinomial distribution

with parameters n1+ and (P10, P11, P12). The vector of genotype counts (n20, n21, n22) in

controls follows a similar trinomial distribution as well. The log-likelihood function for the
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data (cases and controls) is

l(p1, p2, F1, F2) = l1(p1, F1) + l2(p2, F2),

where

li(pi, Fi) =
3∑

j=1

nij log[Pij(pi, Fi)].

We are interested in testing whether F1 = F2 holds. For this purpose, we consider two

sets of hypotheses. One set assumes p1 = p2 while the other one does not. Hence the first

set of hypotheses are

H ′0 : F1 = F2, p1 = p2, versus H ′1 : F1 6= F2, p1 = p2

and the second set of hypotheses are

H ′′0 : F1 = F2, p1, p2, versus H ′′1 : F1 6= F2, p1, p2.

It is straightforward to compute the likelihood ratio statistic for either set of hypotheses.

However, no explicit formulae are available. For the ease of computation (especially in the

case of multiple markers to be discussed later), we would consider the score statistic for the

first set of hypotheses and the Wald statistic for the second set.

Let ψ = n1+/n++ be the proportion of case individuals out of total individuals. Define

T = n12/n+2 + n10/n+0 − 2n11/n+1. In the appendix, it is shown that the score statistic for

testing H ′0 against H ′1 is

S =
T 2

ψ(1− ψ) · (1/n+2 + 4/n+1 + 1/n+0)
.

Statistic S approximately follows a chi-square distribution with 1 degree of freedom under

the null H ′0. This can be directly verified as follows. Fixing the counts n+2, n+1, and n+0,

each of n12, n11, and n10 follows independently a binomial distribution with a common
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probability of “success” ψ under the null H ′0. Hence the variance of T equals

V ar(n12/n+2) + 4V ar(n11/n+1) + V ar(n10/n+0)

= ψ(1− ψ)/n+2 + 4ψ(1− ψ)/n+1 + ψ(1− ψ)/n+0

= ψ(1− ψ)(1/n+2 + 4/n+1 + 1/n+0).

There is a numerical problem in the computation of S statistic when any one of n+0, n+1, or

n+2 is 0 as they appear in the denominators of the fractions. When such situation occurs,

the value of statistic S is set to missing value.

How is T related to allele frequency and genotype frequencies? Let P̂ij = nij/ni+, i =

1, 2, j = 0, 1, 2, be the observed genotype frequencies in cases (i = 1) and in controls (i = 2)

and P̂j = n+j/n++ = ψP̂1j + (1− ψ)P̂2j, j = 0, 1, 2, be the observed genotype frequencies in

the pool of cases and controls. Then

T =

(
n12

n12 + n22

− n11

n11 + n21

)
+

(
n10

n10 + n20

− n11

n11 + n21

)
=

n12n21 − n11n22

(n12 + n22)(n11 + n21)
+

n10n21 − n11n20

(n10 + n20)(n11 + n21)

=
ψ(1− ψ)

P̂1

[
P̂12P̂21 − P̂11P̂22

P̂2

+
P̂10P̂21 − P̂11P̂20

P̂0

]
.

Let p = P2 + P1/2 be the pooled frequency of allele A for cases and controls and q = 1− p.

It is straightforward to verify that, under H ′1, T converges to

ψ(1− ψ)

1− F

(
p

P2

+
q

P0

)
(F1 − F2), (2)

as n1+ →∞, n2+ →∞, and n1+/(n1+ +n2+) = ψ. In other words, T ′ = T/α is a consistent

estimator of F1 − F2 under hypothesis H ′1, where

α =
ψ(1− ψ)

1− F̂

(
p̂

P̂2

+
q̂

P̂0

)
.

Here p̂ = P̂2+P̂1/2, q̂ = 1−p̂, P̂2 = n+2/n++, P̂0 = n+0/n++, and F̂ = 1−(1−P̂0−P̂2)/(2p̂q̂)

are the respective estimates of the corresponding parameters. The asymptotic variance
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of n
1/2
++T/α can be estimated by ψ(1 − ψ)β/α2, where β = 1/P̂2 + 4/P̂1 + 1/P̂0 with the

additional notation P̂1 = n+1/n++.

To introduce the multiple-marker version of the S statistic for a collection of SNPs

in linkage equilibrium with each other, we consider the weighted sum of the T ′ statistic

with weights proportional to the inverse of their variances. It is well known that such a

linear combination has the smallest variance when each T ′ has the same expectation. Let

subscript k index the kth SNP. A multi-marker version of the S statistic is defined as

S̄ =
(
∑

k[V ar(T ′k)]−1T ′k)2∑
k[V ar(T ′k)]−1

=
n++

ψ(1− ψ)
· (
∑

k α
2
kT
′
k/βk)

2∑
k α

2
k/βk

.

Asymptotically, S̄ follows a chi-square distribution with 1 degree of freedom. Markers at

which the statistic S takes the missing value are excluded.

Now we derive the Wald statistic for testing H ′′0 against H ′′1 . Since Pi1 =

(1− Fi) · 2pi(1− pi), Fi can be written in terms of Pi0 and Pi2 as

Fi(Pi0, Pi2) = 1− Pi1

2pi(1− pi)

= 1− 1− Pi0 − Pi2

2[1/2 + (Pi2 − Pi0)/2][1/2− (Pi2 − Pi0)/2]

= 1− 1− Pi0 − Pi2

1/2− (Pi2 − Pi0)2/2
.

Define ζi and ξi as

ζi =
∂Fi(Pi0, Pi2)

∂Pi0

=
1

2piqi
+

Pi1

(2piqi)2
(Pi2 − Pi0)

and

ξi =
∂Fi(Pi0, Pi2)

∂Pi2

=
1

2piqi
− Pi1

(2piqi)2
(Pi2 − Pi0).

Applying the Delta method, the variance of F̂i = Fi(P̂i0, P̂i2) is

Vi ≡ n−1i+ (ζ̂2i P̂i0(1− P̂i0)− 2ζ̂iξ̂iP̂i0P̂i2 + ξ̂2i P̂i2(1− P̂i2))
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where ζ̂i and ξ̂i are the values of ζi and ξi evaluated at p̂i, q̂i, P̂i0, P̂i1, and P̂i2. Let F̂i denote

the value of Fi(Pi0, Pi2) evaluated at P̂i0 and P̂i2 and X = F̂1 − F̂2. A test statistic W for

testing H ′′0 against H ′′1 is

W =
X̂2

V1 + V2
.

Asymptotically, W follows a chi-square distribution with 1 degree of freedom. It can be

shown that this is the Wald statistic, for example, using the equation (4.5.4) of Amemiya17.

Similar to the derivation of S̄, a multiple-SNP version of W is

W̄ =
[
∑

k(V1k + V2k)−1X̂k]2∑
k(V1k + V2k)−1

.

If the SNPs are in linkage equilibrium with each other, W̄ also follows an asymptotically

chi-square distribution with 1 degree of freedom.

Numerically, the value of F̂1 and V1 are highly sensitive to rare count of the heterozygous

genotype in either sample. For instance, when n11 = 0, there is ζ̂1 = ξ̂1 = 1/2p̂1q̂1. Because

of P̂10 + P̂12 = 1, the estimate of F1 is F̂1 = 1 with V1 = 0 regardless of the counts of the

two homozygous genotypes. However, if n11 6= 0, for instance, (n10, n11, n12) = (100, 1, 1),

direct computation shows that F̂1 = 0.6617 and V1 = 0.1010. They are sensitive to

rare homozygous genotypes, too. For instance, when (n10, n11, n12) = (100, 1, 3), direct

computation shows that F̂1 = 0.8522 and V1 = 0.0212 which are quite different from their

values for (n10, n11, n12) = (100, 1, 1). In summary, statistic W is very sensitive to rare

genotypes in either sample, making it less appealing than statistic S. This property of

statistic W may explain the tendency found in the simulation study to be reported that

W tends to be larger than a random variable that follows a chi-square distribution with 1

degree of freedom. Statistic W takes missing value whenever one sample has no observed

heterozygous genotype or there are no observed homozygous genotypes in either sample.

Simulation studies were carried out to assess the performance of the proposed methods.

It is assumed that the minor allele frequency is the same in cases as in controls, but the F
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parameters are allowed to be different. For specified allele frequency p and F coefficient,

the genotype frequencies are computed using relationship presented in (1). Ten thousand

simulation replicates are used to assess the type I error rate and power of the proposed

statistics.

Table 1 presents the type I error rates in the case of single marker. Simulated rejection

rates for S statistic are very close to the respective nominal levels. But W statistic tends

to be inflated, maybe due to its sensitivity to rare genotypes discussed previously. Table 2

presents the rejection rates when F1 and F2 are not equal. This rejection rate (power) is

not high for the situations considered.

[Table 1 about here.]

[Table 2 about here.]

To investigate the performance of the multi-SNP versions of statistics S and W , 50

markers were generated independently. The minor allele frequencies of these markers are

taken to be the same, which are further assumed to be the same in cases as in controls.

The 50 markers in cases (or controls) share a common parameter F . Table 3 presents the

type I error rate. Again, statistic W̄ tends to be liberal but statistic S̄ remains valid. The

power of S̄ and W̄ in the same settings as in table 3 is very high (> 0.999, data not shown).

[Table 3 about here.]

Application to HapMap genotype data

SNP genotype data were obtained from the official HapMap website (http://hapmap.

ncbi.nlm.nih.gov/downloads/genotypes/latest_ncbi_build35/rs_strand/non-redundant/).



– 11 –

These genotypes are on 90 U.S. residents with northern and western European ancestry

from 30 CEPH family trios (CEU), 90 individuals from 30 family trios from the Yoruba

people of Ibadan, Nigeria (YRI), 45 unrelated Han Chinese from Beijing China (CHB), and

45 unrelated Japanese from Tokyo, Japan (JPT). To avoid known relative relationship, only

the parents of the trios are kept for further analysis. So the sample size is 60 for CEU, 60

for YRT, 45 for CHB, and 45 for JPT. The number of SNPs genotyped for these samples

are not exactly the same. There are close to 3.8 million Single-nucleotide polymorphisms

(SNPs) for the 22 autosomes. Due to its hyper-sensivitity to rare genotype counts, results

for statistic W are not reported since the sample size of this HapMap genotype data is not

large, nor do results for its multi-marker version W̄ .

The following comparisons are made: CEU versus CHB+JPT, CEU versus YRI, YRI

versus CHB+JPT, and CHB versus JPT. Table 4 presents the averages of statistic S for

each chromosome along with its variance. These averages surprisingly do not vary much

across chromosomes, so do the variances for each chromosome. It is very interesting to

see that the averages of S for the JPT versus CHB comparison are very close to 1 (the

mean of the chi-square disribution with 1 degree of freedom) on each chromosome and the

variances on each chromosome is even less than 2, the variance of the chi-square distribution

with 1 degree of freedom. This observation suggests that there is no difference detected

between JPT population and CHB population. CHB+JPT may represent eastern Asian

population. Results in this table also show that the difference between CHB+JPT and YRI

is the largest, followed by the difference between CEU and YRI, and then by the difference

between CRU and CHB+JPT. To view the distribution of statistic S on each chromosome

for each comparison, Q-Q plots are provided (figures 1 – 4).

[Table 4 about here.]

[Figure 1 about here.]
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[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Statistic S̄, the multiple-marker version of S, is also computed. To make sure all

markers involved are mutually independent, 22 markers that all three genotypes are present

in the pool of two samples being compared (so statistic S does not return a missing value)

are randomly selected from the 22 autosomes, one from each chromosome. Statistic S̄ is

then computed using these 22 markers. Being from different chromosomes, these 22 markers

are guaranteed to be mutually independent. This process is repeated 10,000 times for each

comparison. The QQ plots for all four comparisons are presented in figure 5. The pattern of

population structure difference remains the same as revealed by the single marker statistic

S for all the comparisons. Surprisingly, the QQ plot for CHB versus JPT conforms better

to the 45-degree line. Since the sample size is not large, there are many rare genotypes that

cause the statistic W (also W̄ ) to be large. For instance, for the comparison CHB versus

JPT, the mean of W on chromosome 1 is 6.30 with an variance of 30011.48. In comparison,

the mean of statistic S on chromosome 1 is 1.00 and its variance is 1.83. As stated before,

results from statistic W and W̄ are thus not presented.

[Figure 5 about here.]

Discussion

Statistical tests are proposed to test whether there is a difference in population

structure between two samples. Results from such tests would be of many important uses.
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Fro instance, it would be useful for genetic association studies. If a difference exists, there

would be a need to use statistical methods that account for population stratification. For

the ease of exposition, these methods are presented in terms of a case sample and a control

sample. However, they can be used to any two samples. Application to the HapMap

genotype data reveals successfully the difference in population structure between various

populations.

Difference in population structure between two samples is reflected in their different

genotype distributions. It can be shown that T = n10/n+0 + n12/n+2 − 2n11/n+1 is

asymptotically independent of the allele frequency difference in two samples under the

assumption that the population genotypes are the same in two samples. The allele frequency

difference between cases and controls is often used to construct test of association in genetic

association studies. For instance, the popular Armitage test for trend normalizes the square

of this difference with a variance estimate. This observation suggests that information used

in the statistic S presented here may be different from that used for association studies.

Two types of statistics are proposed. One assumes equal allele frequency between two

samples and the other does not need such an assumption. In the context of an association

study, it may be natural to carry out these tests at “null” markers, i.e., markers that are

known to be not associated with case-control status. The statistic W allows the allele

frequency in two samples to be different. It is highly sensitive to rare genotype counts

making chi-square approximation to its distribution invalid. Studying its distribution in

such situation could be an interesting research problem.

The proposed statistics have been implemented in R. The code is available from the

author upon request.
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Appendix Derivation of the score statistic

We found that it is easier to work on genotype frequencies than parameter

F and allele frequency p. In hypotheses H ′0 and H ′1, the frequency of allele A

is held constant, which holds if and only if P12 − P10 = P22 − P20. So the log-

likelihood function can be re-parameterized through P10, P20 and δ: l(P10, P20, δ) =∑
i=1,2[ni2 log(δ + Pi0) + ni1 log(1− δ − 2Pi0) + ni0 logPi0]. The hypotheses H ′0 and H ′1 can

be re-formulated in the following equivalent forms: H ′0 : P10 = P20, δ and H ′1 : P10 6= P20, δ.

The vector of first-order derivatives of the log-likelihood function is
∂l/∂P10

∂l/∂P20

∂l/∂δ

 =


n12/(δ + P10)− 2n11/(1− δ − 2P10) + n10/P10

n22/(δ + P20)− 2n21/(1− δ − 2P20) + n20/P20∑
i=1,2[ni2/(δ + Pi0)− ni1/(1− δ − 2Pi0)]

 .

The second order derivatives are

∂2l

∂P 2
10

= − n12

(δ + P10)2
− 4n11

(1− δ − 2P10)2
− n10

P 2
10

,

∂2l

∂P10∂P20

= 0,

∂2l

∂P10∂δ
= − n12

(δ + P10)2
− 2n11

(1− δ − 2P10)2
,

∂2l

∂P 2
20

= − n22

(δ + P20)2
− 4n21

(1− δ − 2P20)2
− n20

P 2
20

,

∂2l

∂P20∂δ
= − n22

(δ + P20)2
− 2n21

(1− δ − 2P20)2
,

∂2l

∂δ2
=

∑
i=1,2

[
− ni2

(δ + Pi0)2
− ni1

(1− δ − 2Pi0)2

]
.

So the expectation of the negative of the matrix of the second-order derivatives is
n1+λ 0 n1+µ

0 n2+λ n2+µ

n1+µ n2+µ n1+ν1 + n2+ν2

 ,
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where

λ =
1

δ + P10

+
4

1− δ − 2P10

+
1

P10

,

µ =
1

δ + P10

+
2

1− δ − 2P10

,

νi =
1

δ + Pi0

+
1

1− δ − 2Pi0

.

Under H0, it is easy to see the maximum likelihood estimates of P10 and P20

are given by P̂10 = P̂20 = n+0/n++ and the maximum likelihood estimate of δ satisfy

n+1/n++ = 1− δ̂−2P̂10. Define P̂11 = P̂21 = n+1/n++ and P̂12 = P̂22 = n+2/n++. The vector

of first-order derivatives becomes Tn++(1,−1, 0)t where T = n12/n+2− 2n11/n+1 +n10/n+0.

The expectation of the negative of the matrix of second-order derivatives becomes n2
++A

where

A =


bn1+

n++
0 n1+

n++
( 1
n+2

+ 2
n+1

)

0 bn2+

n++

n2+

n++
( 1
n+2

+ 2
n+1

)

n1+

n++
( 1
n+2

+ 2
n+1

) n2+

n++
( 1
n+2

+ 2
n+1

) 1
n+1

+ 1
n+2

 ,

in which b = 1/n+2 + 4/n+1 + 1/n+0. Let

A11 =
bn2+

n++

(
1

n+2

+
1

n+1

)
−
[
n2+

n++

(
1

n+2

+
2

n+1

)]2
,

A12 =
n1+n2+

n2
++

(
1

n+2

+
2

n+1

)2

,

A21 = A12,

A22 =
bn1+

n++

(
1

n+2

+
1

n+1

)
−
[
n1+

n++

(
1

n+2

+
2

n+1

)]2
.
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According to equation (4.5.5) of Amemiya17, the score statistic is

S = T 2(1,−1, 0)A−1


1

−1

0


=

T 2

|A|
(1,−1)

 A11 A12

A21 A22

 1

−1


=

T 2

|A|

[
b

(
1

n+2

+
1

n+1

)
−
(

2

n+1

+
1

n+2

)2
]

=
T 2n++

|A| · n+0n+1n+2

.

The determinant of A equals

|A| =
b2n1+n2+

n2
++

(
1

n+2

+
1

n+1

)
−
bn2

1+n2+

n3
++

(
1

n+2

+
2

n+1

)2

−
bn1+n

2
2+

n3
++

(
1

n+2

+
2

n+1

)2

=
bn1+n2+

n2
++

[
b

(
1

n+2

+
1

n+1

)
−
(

1

n+2

+
2

n+1

)2
]

=
bn1+n2+

n2
++

· n++

n+0n+1n+2

.

Hence the score statistic S is

S =
n2
++

n1+n2+

· T
2

b

=
n2
++

n1+n2+

· (n12/n+2 − 2n11/n+1 + n10/n+0)
2

1/n+2 + 4/n+1 + 1/n+0

.
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Fig. 1.— Chromosome-wise Q-Q plot of statistic S against the 1-df chi-square distribution
for 22 autosomes using HapMap genotype data: CHB versus JPT
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Fig. 2.— Chromosome-wise Q-Q plot of statistic S against the 1-df chi-square distribution
for 22 autosomes using HapMap genotype data: CEU versus CHB+JPT
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Fig. 3.— Chromosome-wise Q-Q plot of statistic S against the 1-df chi-square distribution
for 22 autosomes using HapMap genotype data: CEU versus YRI
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Fig. 4.— Chromosome-wise Q-Q plot of statistic S against the 1-df chi-square distribution
for 22 autosomes using HapMap genotype data: YRI versus CHB+JPT
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Fig. 5.— Q-Q plot of the multi-marker statistic S̄ against the 1-df chi-square distribution.
Statistic S̄ is computed 10,000 times. Each time it is computed using 22 randomly selected
markers, one from each autosome.
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Table 1: Simulated type I error rate for statistics S and W . Computed from 10,000 simulation
replicates.

Statistic S Statistic W
Significance Level Significance Level

n p F1(= F2) 0.01 0.005 0.001 0.01 0.005 0.001
300 0.1 0.1 0.0108 0.0043 0.0009 0.0164 0.0099 0.0035

0.2 0.0103 0.0051 0.0007 0.0148 0.0086 0.0032
0.3 0.0102 0.0047 0.0009 0.0156 0.0105 0.0033

0.2 0.1 0.0098 0.0040 0.0007 0.0139 0.0083 0.0015
0.2 0.0094 0.0047 0.0008 0.0123 0.0058 0.0013
0.3 0.0103 0.0052 0.0010 0.0114 0.0064 0.0018

500 0.1 0.1 0.0081 0.0034 0.0010 0.0130 0.0077 0.0018
0.2 0.0101 0.0044 0.0009 0.0104 0.0060 0.0016
0.3 0.0098 0.0045 0.0008 0.0122 0.0060 0.0013

0.2 0.1 0.0088 0.0043 0.0009 0.0120 0.0062 0.0013
0.2 0.0115 0.0061 0.0015 0.0107 0.0063 0.0014
0.3 0.0094 0.0051 0.0011 0.0125 0.0067 0.0019
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Table 2: Simulated power for statistics S and W computed from 10,000 simulation replicates.

Statistic S Statistic W
Significance Level Significance Level

n p F1(= F2) 0.01 0.005 0.001 0.01 0.005 0.001
300 0.1 (0.1, 0.2) 0.0430 0.0262 0.0085 0.0654 0.0447 0.0181

(0.1, 0.3) 0.2040 0.1403 0.0535 0.2440 0.1839 0.0904
(0.2, 0.3) 0.0395 0.0225 0.0056 0.0539 0.0348 0.0143

0.2 (0.1, 0.2) 0.0699 0.0448 0.0142 0.0750 0.0471 0.0171
(0.1, 0.3) 0.3458 0.2650 0.1313 0.3632 0.2849 0.1535
(0.2, 0.3) 0.0683 0.0428 0.0114 0.0713 0.0443 0.0151

500 0.1 (0.1, 0.2) 0.0848 0.0500 0.0144 0.0919 0.0608 0.0228
(0.1, 0.3) 0.3883 0.2976 0.1414 0.4072 0.3266 0.1849
(0.2, 0.3) 0.0649 0.0413 0.0134 0.0753 0.0488 0.0178

0.2 (0.1, 0.2) 0.1223 0.0826 0.0291 0.1300 0.0911 0.0360
(0.1, 0.3) 0.6024 0.5097 0.3201 0.6068 0.5157 0.3359
(0.2, 0.3) 0.1190 0.0792 0.0302 0.1240 0.0837 0.0326
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Table 3: Simulated type I error rate with 50 independent markers computed from 10,000
simulation replicates.

Statistic S Statistic W
Significance Level Significance Level

n p F1(= F2) 0.01 0.005 0.001 0.01 0.005 0.001
300 0.1 0.2 0.0089 0.0042 0.0006 0.0154 0.0091 0.0017

0.3 0.0091 0.0048 0.0015 0.0156 0.0082 0.0018
0.2 0.1 0.0088 0.0041 0.0008 0.0119 0.0064 0.0010

0.2 0.0107 0.0056 0.0013 0.0122 0.0066 0.0015
0.3 0.0106 0.0061 0.0009 0.0131 0.0066 0.0015

500 0.1 0.1 0.0102 0.0053 0.0014 0.0139 0.0077 0.0022
0.2 0.0097 0.0057 0.0004 0.0128 0.0065 0.0014
0.3 0.0095 0.0046 0.0010 0.0164 0.0096 0.0015

0.2 0.1 0.0102 0.0052 0.0012 0.0094 0.0056 0.0010
0.2 0.0102 0.0047 0.0011 0.0100 0.0050 0.0006
0.3 0.0112 0.0057 0.0008 0.0125 0.0063 0.0011
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Table 4: Mean and variance of statistic S on each chromosome for the population comparisons
using Hapmap genotype data

Statistic S (mean and variance)
Chromosome CEU vs. CHB+JPT CEU vs. YRI YRI vs. CHB+JPT JPT vs. CHB

1 1.37 (4.10) 1.56 (4.72) 2.16 (9.50) 1.00 (1.83)
2 1.36 (4.14) 1.55 (4.60) 2.21 (10.08) 0.97 (1.59)
3 1.35 (3.75) 1.58 (4.77) 2.15 (9.63) 0.99 (1.77)
4 1.34 (3.80) 1.55 (4.71) 2.15 (9.43) 0.98 (1.67)
5 1.34 (3.72) 1.48 (4.19) 2.07 (8.95) 0.99 (1.78)
6 1.34 (3.71) 1.49 (4.37) 2.11 (9.19) 1.00 (1.83)
7 1.33 (3.71) 1.55 (4.80) 2.13 (9.99) 0.98 (1.66)
8 1.27 (3.34) 1.59 (5.18) 2.23 (10.50) 0.95 (1.54)
9 1.33 (3.90) 1.49 (4.50) 2.09 (9.62) 1.03 (1.88)
10 1.35 (3.80) 1.55 (4.74) 2.11 (9.12) 0.99 (1.74)
11 1.28 (3.34) 1.52 (4.40) 2.06 (8.82) 0.96 (1.62)
12 1.42 (4.55) 1.59 (4.97) 2.11 (8.92) 1.01 (1.83)
13 1.38 (4.18) 1.46 (4.13) 2.12 (9.25) 0.95 (1.57)
14 1.37 (3.76) 1.54 (4.70) 2.07 (8.84) 0.99 (1.76)
15 1.40 (4.22) 1.72 (5.81) 2.17 (9.62) 1.00 (1.95)
16 1.35 (3.63) 1.59 (4.74) 2.16 (9.51) 0.96 (1.68)
17 1.27 (3.50) 1.68 (5.38) 2.26 (10.40) 1.01 (1.87)
18 1.23 (3.19) 1.51 (4.23) 2.06 (8.35) 0.98 (1.77)
19 1.24 (3.22) 1.50 (4.40) 2.04 (8.58) 0.99 (1.76)
20 1.35 (3.93) 1.53 (4.57) 2.22 (10.10) 1.00 (1.78)
21 1.23 (3.19) 1.56 (5.17) 2.07 (9.16) 0.99 (1.67)
22 1.34 (3.88) 1.53 (4.68) 2.35 (11.32) 1.03 (1.87)


