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Abstract

Non-parametric and semi-parametric analysis of panel count data have recently
been an active research topic in statistical literature. Maximum likelihood method
based on non-homogeneous Poisson process has been proved an efficient inference pro-
cedure for such analysis. However, computing the non- and semi-parametric maximum
likelihood estimates (MLE) can be very intensive numerically. In this manuscript, we
develop an efficient numerical algorithm stemmed from the Newton-Raphson method
to compute the non- and semi-parametric MLE for panel count data. Simulation stud-
ies are carried out to demonstrate the numerical efficiency of the proposed algorithm
compared to the existing methods in the literature.

Some key words: Quadratic programming; Interval censored data; Isotonic Regression; Iter-

ative convex minorant algorithm; Monte-Carlo.
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1. Introduction

Analysis of panel count data is a common practice in clinical trials, econometrics, system

reliability, and social demographic studies. Panel count data are special type of longitudinal

count data in which the underlying counting process or covariates’ effects on the counting

process is often the study of interest. For panel count data, the exact times at which recurrent

events occur are not observable but the numbers of events that happen between consecutive

observation times are recorded. The number of observations and the observation times

are allowed to vary from subject to subject. Such data can be found in many applications,

particularly in biomedical follow-up studies, for example, the National Cooperative Gallstone

Study (Thall and Lachin, 1988) and the superficial bladder tumor clinical trial (Byar, et.

al., 1980).

Recently, non-parametric and semi-parametric analyses of panel count data have drawn

considerable attention in statistical literature. Sun and Kalfleisch (1995), Wellner and Zhang

(2000), Zhang and Jamshidian (2003), Lu et. al. (2007) and Hu et. al. (2009a, 2009b) de-

veloped non-parametric methods for estimating the mean function of underlying counting

process. Sun and Fang (2003), Zhang (2006) and Balakrishnan and Zhao (2009) studied some

non-parametric testing procedures for comparing the mean function of underlying counting

processes. Sun and Wei (2000), Zhang (2002), Hu et. al. (2003), Huang et. al. (2006), Well-

ner and Zhang (2007), Sun et. al. (2007), He et. al. (2009) and Lu et. al. (2009) conducted

various semi-parametric analyses for panel count data using proportional mean model. In

particular, Wellner and Zhang (2000, 2007) studied the non-parametric and semi-parametric

maximum likelihood methods for panel count data, respectively, based on non-homogeneous

Poisson process, and demonstrated the robustness of the methods against the underlying

counting process. Moreover, they developed two robust inference procedures for the regres-

sion parameter in the proportional mean model and showed that the maximum likelihood

inference procedure based on Poisson process is efficient if the underlying counting process is

indeed Poisson. However, computing the maximum likelihood estimate is a challenging task.

Wellner and Zhang (2000) used the iterative convex minorant algorithm (ICM) developed by

Jongbloed (1998) to compute the non-parametric maximum likelihood estimate (NPMLE)

of the mean function. The ICM algorithm can be time-consuming for the NPMLE of panel

count data when the sample size is large and the observation times are very different among

study subjects. Hu et. al. (2009a) elegantly studied panel count data in the framework of

missing value problem in which each counting process is assumed observed at pre-specified

time points but subjects to right censoring, hence the NPMLE for panel count data can be
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computed using an easy-to-implement EM algorithm. Although algorithmically convenient,

the EM does not have the advantage in quick convergence compared to the ICM algorithm.

For the semi-parametric maximum likelihood estimate (SPMLE) of panel count data with

the proportional mean model, Wellner and Zhang (2007) utilized the extended ICM algo-

rithm developed by Pan (1999) to compute the maximum likelihood estimates of regression

parameter and baseline mean function jointly. However, the algorithm requires enormous

computing effort to achieve the convergence, even for data with moderate sample size.

In this manuscript, we propose some Newton-Raphson based algorithms to compute both

the NPMLE and SPMLE of panel count data. The proposed algorithms can greatly reduce

the numerical effort in computing the NPMLE and SPMLE of panel count data compared

to the existing ICM-type of algorithms and therefore are encouraged to use in maximum

likelihood analysis of panel count data.

The rest of article is organized as follows. Section 2 briefly describes the notations in

maximum likelihood analysis of panel count data and formally formulate the NPMLE and

SPMLE; Section 3 describes the proposed Newton-Raphson based algorithms and connects

them to the ICM and extended ICM algorithms, respectively; Section 4 conducts some

simulation studies to demonstrate the numerical advantage of the proposed methods over

the ICM methods; Section 5 concludes the paper with some remarks.

2. NPMLE and SPMLE of Panel Count Data

Suppose that N = {N(t) : t ≥ 0} is a univariate counting process and is observed at K

random times 0 ≡ TK,0 < TK,1 < · · · < TK,K , where K, the number of observations, is

allowed to be random as well.

For the NPMLE of panel count data, we denote the observed information for each subject

as

D = (K,TK,1, · · · , TK,K , N(TK,1), · · · , N(TK,K)) ≡ (K,TK , NK).

The panel count data consist of n i.i.d. copies of D, D1, . . . , Dn. We are interested in

estimating the expected number of events at any time t, Λ(t) = E(N(t)). Using the Poisson

process model, the log-likelihood for the observed data can be derived as

l(Λ(t);Data) =
n∑
i=1

Ki∑
j=1

{(N(TKi,j)−N(TKi,j−1)) log(Λ(TKi,j)− Λ(TKi,j−1))
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−(Λ(TKi,j)− Λ(TKi,j−1))}

=
n∑
i=1

Ki∑
j=1

(N(TKi,j)−N(TKi,j−1)) log(Λ(TKi,j)− Λ(TKi,j−1))−
n∑
i=1

Λ(TKi,Ki
)

assuming the distribution of (K,TK) is independent of N(t) and is non-informative to the

parameter Λ(t). Let 0 ≡ s0 < s1 < · · · < sm < ∞ be the ordered distinct observation time

points for the set of {TKi,0 ≡ 0 : i = 1, . . . , n} ∪ {TKi,j : i = 1, . . . , n; j = 1, . . . , Ki}. Then

the log-likelihood for panel count data can be simplified to

l(Λ;Data) =
m−1∑
l′=1

m∑
l=l′+1

Al,l′ log(Λl − Λl′)−
m∑
l=1

BlΛl, (2.1)

where

Al,l′ =
n∑
i=1

Ki∑
j=1

(N(TKi,j)−N(TKi,j−1))I[TKi,j=sl,TKi,j−1=sl′ ]
, Bl =

n∑
i=1

I[TKi,Ki
=sl],

and

Λ = (Λ1, . . . ,Λm) ≡ (Λ(s1), . . . ,Λ(sm)).

Because the mean function Λ(t) is monotone non-decreasing, we naturally require the NPMLE

to be monotone non-decreasing as well. Define the cones C and C+, respectively, by

C = {x ∈ Rm : x1 ≤ x2 ≤ · · · ≤ xm} and C+ = {x ∈ C : x1 ≥ 0} .

The NPMLE of Λ(t) is conventionally defined as the step function with jumps only possibly

occurred at sl for l = 1, 2, · · · ,m that maximized the log-likelihood (2.1) (Wellner and Zhang,

2000), that is

Λ̂ = argmax
x∈C+

l(x;Data).

For the SPMLE of panel count data, the observed data consist of D = (K,TK , NK , Z),

where Z ∈ Rd is a vector of covariates that are also available at baseline whose effects on

the counting process may be the primary study of interest in applications. The proportional

mean model

Λ(t|Z) ≡ E(N(t)|Z) = Λ(t)eβ
TZ , (2.2)

as the most popular model in analysis of counting process, has been proposed in the literature

by, for example, Lawless and Nadeau (1995), Sun and Wei (2000), Lin, et.al. (2000), and
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Wellner and Zhang (2007). With n i.i.d. copies of D, D1, . . . , Dn, Wellner and Zhang (2007)

derived the log-likelihood for panel count data using the Poisson process model under the

proportional mean model (2.2)

l(β,Λ(t);Data) =
n∑
i=1

Ki∑
j=1

{(N(TKi,j)−N(TKi,j−1)) log(Λ(TKi,j)− Λ(TKi,j−1))

+(N(TKi,j)−N(TKi,j−1))βTZi − eβ
TZi(Λ(TKi,j)− Λ(TKi,j−1))

}

=
n∑
i=1

Ki∑
j=1

{(N(TKi,j)−N(TKi,j−1)) log(Λ(TKi,j)− Λ(TKi,j−1))}

+
n∑
i=1

{
N(TKi,Ki

)βTZi − eβ
TZiΛ(TKi,Ki

)
}
.

This log-likelihood can be similarly simplified to

l(β,Λ;Data) =
m−1∑
l′=1

m∑
l=l′+1

Al,l′ log(Λl − Λl′)−
m∑
l=1

BlΛl +
n∑
i=1

N(TKi,Ki
)βTZi, (2.3)

using the same way as for the NPMLE with Bl being modified to Bl =
∑n

i=1 e
βTZiI[TKi,Ki

=sl].

Denote Θ = Rd×C+, then the SPMLE of panel count data, θ̂ = (β̂, Λ̂), is the element inside

Θ that maximizes the log-likelihood (2.3), that is

θ̂ ≡ (β̂, Λ̂) = argmax
θ∈Θ

l(θ;Data).

3. Projected Newton-Raphson Algorithms for Comput-

ing the NPMLE and SPMLE

The log-likelihood given in (2.1) l(x) (abbreviation for l(x;Data)) is a smooth concave func-

tion over the cone C+. Hence the ICM algorithm developed by Jongbloed (1998) for non-

parametric estimation is naturally applied by Wellner and Zhang (2000) to compute the

NPMLE of panel count data. For the semi-parametric regression analysis, the log-likelihood

given in (2.3) l(β, x) (abbreviation for l(θ;Data)) is not globally concave function over the

parameter space Θ. However, for a fixed β, l(β, x) is a smooth concave function over the

cone C+ and for a fixed x, l(β, x) is a concave function over Rd. Because of this property,
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Wellner and Zhang (2007) applied the extended ICM algorithm, developed by Pan (1999)

for computing the SPMLE of interval-censored data, to compute the SPMLE of panel count

data. This algorithm is a doubly iterative procedure: (1) given the current estimate of β,

β(old), update the estimate of Λ by optimizing l(β(old), x) using the ICM algorithm; (2) for

newly updated Λ(new), update the estimate of β, β(new) by optimizing l(β,Λ(new)) using the

Newton-Raphson algorithm; (3) repeat the circle (1)-(2) until convergence. In our experi-

ence, the ICM algorithm, although globally converging, is generally inefficient as it converges

in a super linear rate. It is very time-consuming, in particular, when applied to compute the

SPMLE of panel count data as evidenced in Wellner and Zhang (2007). Therefore it will

be practically useful to develop more efficient algorithms to compute both the NPMLE and

SPMLE for analysis of panel count data.

We start with the generalized gradient algorithm for maximizing an objective function

l(x), that is

x(k+1) = B(x(k)) ≡ x(k) +H(x(k))∇xl(x
(k)), k = 0, 1, · · · ,

where H(x) (the weight matrix for the gradient) is any positive definite matrix. If the

objective function l(x) is globally concave, then the choice of H(x) = −{∇2
xl(x)}−1

leads to

the widely used Newton-Raphson algorithm in statistics that is known to have a quadratic

rate of convergence. However the quick convergence of Newton-Raphson algorithm is only

theoretically justified for unconstrained optimization problems and it is not demonstrated in

constrained problems. In addition, the Newton-Raphson update x(k+1) does not necessarily

fall in the feasible region defined by the constrained optimization problem, say x ∈ X . In this

paper, we propose to project the Newton-Raphson update to the feasible region X during

the iterations by

x̃(k+1) = argmin
x∈X

(x− x(k+1))TW
(
x(k)
)

(x− x(k+1)),

with a positive definite matrix W (x). It is apparently that if the Newton-Raphson update

happens to be inside X , its projection to X is simply itself. Combining the two steps and

rewriting x̃(k+1) by x(k+1), the projected Newton-Raphson algorithm (projected-NR) can be

expressed as

x(k+1) = argmin
x∈X

(
x−B(x(k))

)T
W
(
x(k)
) (
x−B(x(k))

)
. (3.1)

It has been showed by Jongbloed (1998) that if the feasible region X = C or C+ and W (x(k)) =

H−1(x(k)) is chosen and happens to be a positive definite matrix, the algorithm (3.1) with a

proper line search generates a sequence converging to the true optimizer. The ICM algorithm

developed by Jongbloed (1998) selects H(x) = −{diag {∇2
xl(x)}}−1

by taking the advantage
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that the projection can be easily implemented by finding the left derivative of a cumulative

sum diagram in the paradigm of isotonic regression (Robertson et. al., 1988).

We note that for the NPMLE and SPMLE of panel count data described in Section 2,

the cone C+ can be equivalently expressed by the linear inequality constraints Ax ≥ 0 with

A =



1 0 · · · · · · · · · · · · · · · · · · 0
−1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

0 · · · −1 1 0 · · · · · · · · · 0
0 0 · · · −1 1 · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · · · · · · · −1 1


m×m

.

Then projecting the Newton-Raphson update to the cone C+ with the weight matrix given

by the negative Hessian matrix can be also easily implemented using the duel method for

strictly convex quadratic programming (QP) developed by Goldfarb and Idnani (1983) which

has been coded in R package for public use. Taking the advantage of quick convergence of

Newton-Raphson method and the easily accessed duel algorithm motivates the adoption of

the projected-NR algorithm to compute the NPMLE and SPMLE of panel count data.

For the NPMLE, we choose H(x) = −{∇2
xl(x)}−1

. For the SPMLE, we choose

H(β, x) =

[
H1(β, x) 0

0 H2(β, x)

]
,

where H1(β, x) = −
{
∇2
βl(β, x)

}−1
and H2(β, x) = −{∇2

xl(β, x)}−1
. Then the projected-NR

algorithm (3.1) can be expressed by(
β(k+1)

x(k+1)

)
=

(
B1(β(k), x(k))

argmaxx∈C+
(
x−B2(β(k), x(k))

)T
H−1

2 (β(k), x(k))
(
x−B2(β(k), x(k))

) ) , (3.2)

where

B1(β(k), x(k)) = β(k) +H1(β(k), x(k))∇βl(β
(k), x(k))

and

B2(β(k), x(k)) = x(k) +H2(β(k), x(k))∇xl(β
(k), x(k)).

For the β-part of (3.2), it is simply the Newton-Raphson iterate for given x, because there

is no constraint for the regression parameter in the proportional mean model (2.2).

It is noted that the success of both the ICM and projected-NR algorithms require the

weight matrix H(x) to be strictly positive definite. Directly using the Hessian matrix of the
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log-likelihood will be problematic, because the Hessian matrices that result in the weight

matrices H(x) (for the NPMLE) and H2(β, x) (for the SPMLE), may not be strictly pos-

itive definite. From the likelihood structures of (2.1) and (2.3), it can be easily seen that

if (i) Aj,l = 0 for l = 1, 2, · · · , j − 1, letting Λj = Λj−1 will increase the log-likelihood (ii)

Al,j = 0 for l = j + 1, . . . ,m and Bj = 0, letting Λj = Λj+1 will increase the log-likelihood.

Therefore, we recommend to perform the dimension reduction procedure as described by

(i) and (ii) before implementing the aforementioned algorithms. After reducing the size of

C+, the ICM and extended ICM algorithms for computing the NPMLE and the SPMLE,

respectively, will generate a stable sequence of x’s that makes the diagonal matrices of

H(x) = −{∇2
xl(x)}−1

(for the NPMLE) and H2(β, x) = −{∇2
xl(β, x)}−1

(for the SPMLE)

strictly positive definite during iterations. Therefore there is no numerical trouble in im-

plementing the ICM and extended ICM algorithms. However, when the full matrices of

H(x) and H2(β, x) are used for the projected-NR algorithm, the strictly positive definite-

ness of −∇2
xl(x) or −∇2

xl(β, x) is not guaranteed during iterations due to the fact that two

adjacently distinct Λ values are too close resulting in machine overflow in some elements

of ∇2
xl(x) and ∇2

xl(β, x). It will evidently cause either the largest eigenvalue of −∇2
xl(x)

or −∇2
xl(β, x) overflow, or the smallest eigenvalue of −∇2

xl(x) or −∇2
xl(β, x) less than zero

during iterations that will lead to the breakdown of the projected-NR algorithm. If that hap-

pens, we recommend to replace the full matrix of H(x) or H2(β, x) by −{diag {∇2
xl(x)}}−1

or −{diag {∇2
xl(β, x)}}−1

, respectively. For example, suppose at the kth iteration for com-

puting the SPMLE, it is found that the largest eigenvalue of −∇2
xl
(
β(k−1), x(k−1)

)
> 1010

or the smallest eigenvalue of −∇2
xl
(
β(k−1), x(k−1)

)
< 0, the matrix H2(β(k−1), x(k−1)) will be

replaced by −
{

diag
{
∇2
xl(β

(k−2), x(k−2))
}}−1

for the kth iteration of (3.2). In our extensive

numerical experiments, this modification does not need to be carried out very frequently.

For the NPMLE, there is no more than 2% of times that such modification is needed and for

the SPMLE, the chance of requiring such modification is between 15% and 21%. When such

modification was required for the projected-NR, it only needed once during iterations. With

this modification built in our computation, the convergence of the projected-NR algorithm

is achieved 100% of times. In the following, we describe fully the projected-NR algorithm

for computing the NPMLE and SPMLE, respectively.

The Projected-NP algorithm for the NPMLE

1. Perform the dimension reduction for the feasible region C+ for the log-likelihood (2.1).

2. Choose an initial value Λ(0) (this can be quite arbitrary as long as two adjacent Λ(0)

are not too close).
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3. At the kth iteration (k = 1, 2, . . .), calculate the smallest and largest eigenvalues of

−∇2
Λl(Λ

k−1), λ
(k−1)
1 and λ

(k−1)
m , respectively. If neither λ

(k−1)
1 < 0 nor λ

(k−1)
m > 1010,

choose H(Λ(k−1)) = −
{
∇2

Λl(Λ
(k−1))

}−1
; else choose

H(Λ(k−1)) = −
{

diag
{
∇2

Λl(Λ
(k−2))

}}−1
, then do

• B(Λ(k−1)) = Λ(k−1) +H(Λ(k−1))∇Λl(Λ
(k−1))

• Λ̃(k) = argminΛ∈C+
(
Λ−B(Λ(k−1))

)T
H−1(Λ(k−1))

(
Λ−B(Λ(k−1))

)
using the Goldfarb-Idnani’s duel method that has been implemented in R package.

4. Perform the line search procedure described in Jongbloed (1998) on the segment

seg(Λ(k−1), Λ̃(k)) =
{

Λ(k−1) + λ
(

Λ̃(k) − Λ(k−1)
)

: λ ∈ [0, 1]
}

that is

Λ(k) =


Λ̃(k), if l(Λ̃(k)) > l(Λ(k−1)) + ε

{
∇Λl(Λ(k−1))

}T
(Λ̃(k) − Λ(k−1)){

y ∈ seg(Λ(k−1), Λ̃(k)) : (1− ε)
{
∇Λl(Λ(k−1))

}T
(y − Λ(k−1)) ≥ l(y)− l(Λ(k−1))

≥ ε
{
∇Λl(Λ(k−1))

}T
(y − Λ(k−1))

}
elsewhere

(3.3)

for a ε ∈ (0, 1/2) to guarantee the value of the log-likelihood increase sufficiently,

5. Check if

‖Λ(k) − Λ(k−1)‖∞ = max
1≤i≤m

∣∣∣Λ(k)
i − Λ

(k−1)
i

∣∣∣ ≤ η

for some small η > 0. If it is true, stop the iteration; otherwise let k = k+1 and repeat

Steps 3-4.

The Projected-NR algorithm for the SPMLE

1. Perform the dimension reduction for the feasible region C+ for the log-likelihood (2.3).

2. Choose initial values, β(0) (it can start with 0) and Λ(0) (this can be quite arbitrary as

long as two adjacent Λ(0) are not too close).

3. At the kth iteration (k = 1, 2, . . .), calculate the smallest and largest eigenvalues of

−∇2
Λl(β

(k−1),Λ(k−1)), λ
(k−1)
1 and λ

(k−1)
m , respectively. If neither λ

(k−1)
1 < 0 nor λ

(k−1)
m >

1010, choose H2,k−1 = −
{
∇2

Λl(β
(k−1),Λ(k−1))

}−1
; else choose

H2,k−1 = −
{

diag
{
∇2

Λl(β
(k−2),Λ(k−2))

}}−1
, then do

• β(k) = B1,k−1 = β(k−1) +H1(β(k−1),Λ(k−1))∇βl(β
(k−1),Λ(k−1))

• B2,k−1 = Λ(k−1) +H2,k−1∇Λl(β
(k−1),Λ(k−1))
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• Λ̃(k) = argminΛ∈C+ (Λ−B2,k−1)T H−1
2,k−1 (Λ−B2,k−1) using the Goldfarb-Idnani’s

duel method that has been implemented in R package.

4. Perform the same line search procedure as described in (3.3) with Λ(k−1) replaced

by (β(k−1),Λ(k−1)), Λ̃(k) replaced by (β(k), Λ̃(k)), l(Λ(k−1)) replaced by l(β(k−1),Λ(k−1)),

and ∇Λl(Λ
(k−1)) replaced by

({
∇βl(β

(k−1),Λ(k−1))
}T

,
{
∇Λl(β

(k−1),Λ(k−1))
}T)T

, re-

spectively.

5. Check if

‖θ(k) − θ(k−1)‖∞ = max

(
max

1≤i≤m

∣∣∣Λ(k)
i − Λ

(k−1)
i

∣∣∣ , max
1≤j≤d

∣∣∣β(k)
j − β

(k−1)
j

∣∣∣) ≤ η

for some small η > 0. If it is true, stop the iteration; otherwise let k = k+1 and repeat

the Steps 3-4.

Remark. For the line search, we adopt the doubly step-halving procedure developed in

Jongbloed (1998). As an illustration, we describe the line search procedure for the NPMLE

as follows: (i) let x = Λ(k−1) and y = ỹ = Λ̃(k), if l(y) > l(x)+ε {∇Λl(x)}T (y−x), set Λ(k) = y

and no further line search is needed; otherwise (ii) let λ = 1, p = 1/2, and check (ii-a) if

l(y) > l(x)+(1−ε) {∇Λl(x)}T (y−x), set λ = λ+p, or (ii-b) if l(y) < l(x)+ε {∇Λl(x)}T (y−x),

set λ = λ− p, then let y = x+ λ(ỹ − x), p = p/2 and repeat the circle (ii-a) and (ii-b) until

both are not true resulting in the update Λ(k) = y. This procedure has been proved timely

efficient in searching the new update that increases the log-likelihood.

4. Numerical Study

In this section, we report the numerical results from an extensive simulation study and

demonstrate the great time-efficiency in computing the NPMLE and SPMLE of panel count

data using the projected-NR algorithms, compared to the ICM/extended-ICM algorithms

adopted in the literature.

For the NPMLE, we simulate a sample of {(Ki, TKi
, NKi

) : i = 1, 2, · · · , n} accord-

ing to the scheme given by Wellner and Zhang (2000). For each subject, Ki is sampled

from {1, 2, 3, 4, 5, 6}; given Ki, a panel of observation times TKi
= (TKi,1, · · · , TKi,Ki

) are

made as the order statistics of Ki observations sampled from Unif(0, 10) and are rounded

to the second decimal point to make the observation times possibly tied across different
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Table 1: Comparison of the algorithms for computing the NPMLE using Monte-Carlo sim-
ulation with 100 replicates.

Dimension of C+ No. of iterations Computing time in seconds
Proj-NR ICM Proj-NR ICM

n = 50
mean 122 6 132 1.36 15.56
s.d. 9 1 36 0.27 5.01

n = 100
mean 224 6 131 4.90 46.24
s.d. 11 1 33 0.90 12.40

n = 200
mean 400 6 126 16.72 131.94
s.d. 13 1 30 2.83 33.06

subjects; finally given Ki and the panel observation times TKi
, the panel counts NKi

=

(Ni(TKi,1), · · · , Ni(TKi,Ki
)) are sampled from the Poisson process Poisson(2t), i.e.

Ni(TKi,j)−Ni(TKi,j−1) ∼ Poisson (2(TKi,j − TKi,j−1)) , j = 1, · · · , Ki

with TKi,0 ≡ 0 and Ni(0) ≡ 0.

The numerical experiments are conducted with sample size n =50, 100, and 200, respec-

tively. For each sample size, a sample of panel count data are drawn as described above, the

NPMLE of the true mean function Λ(t) = 2t are computed by the ICM and projected-NR

(Proj-NR) with the convergence criterion set as η = 10−5. The NPMLEs are computed for

100 repeated samples and the results are summarized in Table 1.

Table 1 clearly shows that the quadratic convergence rate of ordinary Newton-Raphson

algorithm is also achieved for the proposed projected-NR algorithm, as it reaches the numeri-

cal convergence with a single digit of iterations which is much faster than the ICM algorithm.

Although each iteration of the projected-NR is costly as it needs to invert a matrix of large

dimension, for example, the average dimension of the Hessian matrix is 400 when sample size

n=200, the faster convergence of the projected-NR still offsets the numerical complication

in inverting a large matrix by consuming much less computing time. In this example, on

average, the projected-NR algorithm only needs to spend about 17 seconds to compute the

NPMLE with average size of 400 while the simple ICM will spend 7 times more to compute

the NPMLE.
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Table 2: Comparison of the algorithms for computing the SPMLE using Monte-Carlo simu-
lation with 100 replicates

Dimension of C+ Computing time in seconds
Proj-NR-1 Proj-NR-2 Ext-ICM
n = 50

mean 122 23.59 35.98 1045.96
s.d. 9 8.44 11.95 500.10

n = 100
mean 227 74.54 116.73 2704.45
s.d. 12 16.29 24.34 902.83

n = 200
mean 402 245.92 373.56 7191.03
s.d. 14 43.02 56.81 1981.34

For the SPMLE, we also generate three covariates for each subject Zi = (Zi,1, Zi,2, Zi,3)

using Zi,1 ∼ Unif(0, 1), Zi,2 ∼ N(0, 1), and Zi,3 ∼ Bernoulli(0.5). The simulated data for Ki

and TKi
are obtained using the same scheme as described above. Given the covariates Zi,

the number of observation times Ki and the panel observation times TKi
, the panel count

data are sampled from a conditional Poisson process with the conditional mean function

given by Λ(t|Zi) = 2t exp(βTZi), i.e.

Ni(TKi,j)−Ni(TKi,j−1) ∼ Poisson
(
2(TKi,j − TKi,j−1) exp(βTZi)

)
, j = 1, · · · , Ki

with TKi,0 ≡ 0 and Ni(0) ≡ 0, where β is chosen as βT = (β1, β2, β3) = (−1.0, 0.5, 1.5)T .

In addition to the extended ICM algorithm (Ext-ICM) adopted by Wellner and Zhang

(2007) and the projected-NR algorithm (Proj-NR-1) proposed in this paper, we also consider

another version of the projected-NR algorithm (Proj-NR-2) that is the doubly iterative

algorithm described in the beginning of Section 3 with the ICM iteration replaced by the

projected-NR iteration. The comparison of the three algorithms in the similarly designed

simulation study as that for the NPMLE described above is summarized in Table 2.

For the SPMLE, we do not present the numbers of iterations in Table 2, because they

are not comparable as the Proj-NR-2 and Ext-ICM algorithms involve two-level iterations.

Actually, the Proj-NR-1 needs more than 160 iterations on average to converge for each of the

three scenarios of sample size, showing the convergence in a slower than quadratic rate. It is

not surprising since the full Hessian matrix is not always negative definite and only the block

diagonal Hessian matrix is utilized in the algorithm in order to insure the global convergence
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of the algorithm. Table 2 shows that Ext-ICM algorithm is clearly not an efficient algorithm

for computing the SPMLE of panel count data, it needs about 120 minutes on average to

achieve the numerical convergence for a moderate sample of n = 200. If the ICM step

is replaced by the projected-NP in the extended ICM method for updating the estimate

of baseline mean function, it shortens the computing time significantly: for sample size

n = 200, it takes about 6.2 minutes on average to achieve the numerical convergence. With

the proposed projected-NR algorithm, despite the lack of quadratic rate of convergence as in

the ordinary Newton-Raphson method, the saving in computing time is still substantial: for

sample size n = 200, it only consumes about 4 minutes to achieve the numerical convergence

which is less than 4% of computing time spent in the Ext-ICM algorithm. When sample

size is small, the projected-NR algorithm appears even more efficient as the inversion of

the Hessian matrix becomes less costly. As for a majority of semiparametric regression

applications, estimation with more than 400 unknown parameters is considered to be a

relatively “large” problem, the proposed method clearly demonstrated its robustness and

numerical efficiency and therefore is recommended to use in the likelihood analysis of panel

count data.

Table 3 displays the estimation results of the semi-parametric maximum likelihood method

for the regression parameters based on the Monte-carlo simulation study with 100 replicates.

It clearly indicates that the estimated regression parameters are asymptotically unbiased

and the Monte-Carlo standard deviation decreases as sample size increases, resulting in the

mean square errors converging to zero.

Figure 1 plots the mean, 2.5 and 97.5 percentiles of the maximum likelihood estimates

of the baseline mean function, respectively, resulted from the Monte-Carlo simulation study

with 100 replicates. It is apparently that the mean of the MLEs is very close to the true

baseline mean function Λ(t) = 2t and the gap between the 2.5 and 97.5 percentiles of the

estimated mean function at times 0 < t < 10 (interior of possible observation times) tends to

be smaller as sample size increases from 50 to 200. Hence it provides a numerical evidence

for the asymptotic unbiasedness and consistency of the maximum likelihood method for

estimating the mean function in semi-parametric regression analysis with panel count data

that has been shown theoretically by Wellner and Zhang (2007) under some mild regularity

conditions.

All computation tasks for the simulation study are performed with Intel Core 2 CPU

6600 @2.40GHZ and the computing software is developed for R 2.9.1 which can be obtained

by requesting to the first author.
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Table 3: Estimation Results of the Regression Parameters in the Monte-Carlo Simulation
Study with 100 replicates

n = 50 n = 100 n = 200
Estimation of β1

Bias -0.0063 -0.0012 -0.0076
s.d. 0.1021 0.0705 0.0422
MSE 0.0105 0.0050 0.0018

Estimation of β2

Bias 0.0017 0.0025 0.0015
s.d. 0.0318 0.0202 0.0138
MSE 0.0010 0.0004 0.0002

Estimation of β3

Bias 0.0091 0.0117 0.0007
s.d. 0.0695 0.0501 0.0311
MSE 0.0049 0.0026 0.0010

5. Summary and Final Remarks

This article proposes a projected Newton-Raphson algorithm, that is, it projects the ordi-

nary Newton-Raphson update to result in a modified Newton-Raphson update inside the

feasible region that has the smallest distance (in the sense of a weighted L2 norm) from

the original Newton-Raphson update. This algorithm is successfully applied to compute

both the NPMLE and SPMLE of panel count data and demonstrates its great numerical

efficiency compared to the ICM methods available in the literature. For the NPMLE, the

quadratic rate of convergence for the ordinary Newton-Raphson algorithm is preserved for

the proposed project-NR algorithm, as the full Hessian matrix is strictly negative definite.

For the SPMLE, this fast convergence rate is not exhibited because only the block diagonal

elements of the full Hessian matrix are used to insure the strictly positive definiteness for

the weight matrix. Nevertheless, this algorithm still consume much less computing time to

compute the SPMLE than the extended-ICM algorithm used in Pan (1999) and Wellner and

Zhang (2007).

We should be aware that the proposed method requires the strictly positive definiteness

of the weight matrix in both the Newton-Raphson and projection steps. In this paper, we

perform dimension reduction before any calculations which guarantees the weight matrix

to be strictly positive definite to start with. This step seems to be very crucial from our
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numerical experiments: not only it warrants the global convergence, it also largely reduces

the computing time due to the dimension reduction.

We also note that the projected-NR algorithm (3.1) can be simplified to

x(k+1) = argmin
x∈X

{
(x− x(k))TH−1(x(k))(x− x(k))− 2(x− x(k))T∇xl(x

(k))
}

and hence the Goldfarb-Idnani’s dual method for QP can be directly applied without the

intermediate Newton-Raphson step. However, our numerical studies show that the saving

of computing time over the projected-NR is very minimum and is almost ignorable when

sample size n ≤ 200 in our simulation settings.

In our proposed projected-NR algorithm, the (strictly positive definite) weight matrix

for the projection step is chosen to be the negative Hessian matrix to accommodate the

Newton-Raphson method, the convergence of the algorithm with this choice of the weight

matrix along with a proper line search procedure is guaranteed by Theorem 1 of Jongbloed

(1998). However, this is not necessary. We may choose some simple weight matrices like the

diagonal elements of the negative Hessian matrix and hence the complicated QP algorithm

can be replaced by the ICM. This approach has been successfully implemented by Hua

(2010) in other applications. However, the adoption of this method, though simpler than

the proposed method, does not always lead to numerical convergence in the applications

concerned in this paper.

Although the projected-NR algorithm is illustrated in analysis of panel count data, it

is generally applicable to other non-parametric and semi-parametric estimation problems in

which the infinite-dimensional parameter subjects to monotone constraints. Our recommen-

dation in implementing the projected-NR is as follows: (i) perform dimension reduction first

to make sure the Hessian matrix and the block diagonal elements of the Hessian matrix are

strictly negative definite; (ii) perform the Newton-Raphson algorithm (for the SPMLE, if the

full Hessian matrix is negative definite, using the full Hessian matrix in stead of the block

diagonal elements used in this article); (iii) perform the projection step using the diagonal

elements of the negative Hessian matrix first (ICM step), if it does not converge, using the

full Hessian matrix for the infinite-dimensional parameter instead (Quadratic programming).
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Figure 1. The Monte-Carlo simulation study with 100 replicates for the maximum likelihood

estimator of the baseline mean function for the semi-parametric proportional mean model.
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