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Summary

We propose to analyze panel count data using a spline-based semiparametric projected

generalized estimating equation method with the semiparametric proportional mean model

E(N(t)|Z) = Λ0 (t) e
βT
0 Z . The natural logarithm of the baseline mean function, log Λ0 (t), is

approximated by monotone cubic B-spline functions. The estimates of regression parameters

and spline coefficients are obtained by projecting the generalized estimating equation esti-

mates into the feasible domain using a weighted isotonic regression. The proposed method

avoids assuming any parametric structure of the baseline mean function or the underlying

counting process. Selection of the working-covariance matrix that represents the true corre-
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lation between the cumulative counts improves the estimating efficiency. Simulation studies

are conducted to investigate finite sample performance of the proposed method and to com-

pare the estimating efficiency using different working-covariance matrices in the generalized

estimating equation. Finally, the proposed method is applied to a real dataset from a bladder

tumor clinical trial.

Some key words: Semiparametric model; Generalized estimating equation; Monotone poly-

nomial splines; Counting process; Over-dispersion;

1. Introduction

Panel count data are often seen in clinical trials, industrial reliability and epidemiologic

studies. A well-known example is the bladder tumor randomized clinical trial studied by

Byar et al. (1980), Wei et al. (1989), Wellner & Zhang (2000), Sun & Wei (2000), Zhang

(2002), Wellner & Zhang (2007) and Lu et al. (2009) among others. Patients with superficial

bladder tumor were randomized into one of three treatment groups: placebo, pyridocine

pills or thiotepa instillation. At subsequent follow-up visits, the number of newly recurrent

tumors was counted, the new tumors were removed and the treatment was continued. The

number of follow-up visits and the visit times may vary from subject to subject. The goal

of this study was to determine the effects of different treatments on suppressing recurrence

of the bladder tumor.

There are increasing interests in methodological research for panel count data in recent
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statistical literature. Various approaches were explored by, for example, Lee & Kim (1998),

Thall (1988), Sun & Kalbfleisch (1995) and Wellner & Zhang (2000). Particularly, semipara-

metric regression analysis for panel count data with the proportional mean model, namely,

E(N(t)|Z) = Λ0 (t) e
βT
0 Z (1)

where Λ0(t) is the nondecreasing baseline mean function and β0 ∈ Rd is the d-dimension

regression parameter, has drawn considerable attention among researchers in this field. Sun

& Wei (2000) and Sun et al. (2005) studied estimating equation methods for making infer-

ence about the regression parameter β0. But the validity of their methods relies on some

assumptions of observation times which may be hard to justify in applications. Wellner

& Zhang (2007) studied the semiparametric maximum pseudo-likelihood estimator and the

semiparametric maximum likelihood estimator assuming the underlying counting process as

a nonhomogeneous Poisson process with mean given by (1). Wellner & Zhang (2007) proved

consistency and derived convergence rate of both estimators. They showed that the two es-

timators are robust to the underlying nonhomogeneous Poisson assumption. The maximum

pseudo-likelihood estimator can be easily calculated but it can be very inefficient especially

when the observation times are heavily tailed as discussed in Wellner et al. (2004). The

maximum likelihood estimator is more efficient but it requires a doubly iterative algorithm

which needs a large number of iterations to converge. Lu et al. (2009) studied the spline-

based sieve version of the semiparametric maximum pseudo-likelihood estimator and the

semiparametric maximum likelihood estimator of Wellner & Zhang (2007) by approximating
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the baseline mean function using monotone B-spline functions (Schumaker, 1981). Not only

did they demonstrate a great numerical advantage in the sieve likelihood methods, they also

showed good asymptotic behavior of their estimators. Moreover, the sieve estimators of the

baseline mean function can have a better convergence rate than their counterparts studied

by Wellner & Zhang (2007).

The nonhomogeneous Poisson process model assumes the variance of the cumulative

counts equals to the expected number of the counts, that is, no over-dispersion is accounted.

Aforementioned likelihood-based methods, though leading to a consistent estimation, do

not take into account the possible over-dispersion problem that often occurs in various ap-

plications of longitudinal count data. Although the maximum likelihood estimator of the

regression parameter is robust and semiparametrically efficient as shown by both Wellner &

Zhang (2007) and Lu et al. (2009) when the Poisson process model is true, it may not be

the best estimator when the Poisson model assumption for the underlying counting process

is violated.

In this manuscript, we consider a spline-based semiparametric regression method moti-

vated by generalized estimating equation approach (GEE). Instead of assuming the under-

lying nonhomogeneous Poisson process, we only assume the proportional mean model and

conjecture the covariance matrix that accounts for the over-dispersion. We will demonstrate

that the proposed method improves the estimating efficiency when either over-dispersion or

autocorrelation is present in the data.

4



The rest of the paper is organized as follows: Section 2 introduces the spline-based

semiparametric projected GEE method. Three working-covariance matrices are discussed to

accommodate different data structures. Section 3 proposes an easy-to-implement algorithm

to compute the projected GEE estimate. Section 4 provides numerical results including

simulation studies and an application to the bladder tumor example; Finally, we give some

concluding remarks in section 5. Some technical results are given in Appendix.

2. Spline-based Semiparametric Projected GEE method

Suppose, N = {N(t) : t ≥ 0} is a univariate counting process. There are K random ob-

servations of this counting process at 0 ≡ T0 < TK,1 < · · · < TK,K . We denote TK ≡

(TK,1, TK,2, · · · , TK,K), and N ≡ (N (TK,1) ,N (TK,2) , · · · ,N (TK,K)), the cumulative event

counts at these discrete observation times. We assume the number of observations and the

observation times, (K,TK), are independent of the point process N, conditional on the co-

variate vector Z. Panel count data are composed of a random sample of X1, X2, · · · , Xn,

where the observation Xi consists of
(
Ki, TKi

,N(i), Zi

)
with TKi

=
(
T

(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

)
and N(i) =

(
N
(
T

(i)
Ki,1

)
,N
(
T

(i)
Ki,2

)
, · · · ,N

(
T

(i)
Ki,Ki

))
.

In this article, we consider to use monotone cubic B-spline functions to approximate

the logarithm of the baseline mean function, logΛ0 (t). Suppose the observation times are

restricted in a closed interval [L,U ]. Let a sequence of knots t = {L = t1 = t2 = · · · = tl <

tl+1 < · · · < tl+mn = tl+mn+1 = · · · = tmn+2l = U} partition [L,U ] into mn + 1 subintervals,

where mn ≈ nν is a positive integer such that max1≤k≤mn |tl+k − tl+k−1| = O (n−ν). Denote
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ϕl,t a class of polynomial spline functions of order l, l ≥ 1. ϕl,t is spanned by a series of

B-spline basis functions {Bi, 1 ≤ i ≤ qn} where qn = mn + l. A subclass of ϕl,t, ψl,t =

{
∑qn

l=1 αlBl (t) , α1 ≤ α2 ≤ · · · ≤ αqn} is a collection of monotone nondecreasing B-splines

according to the variation diminishing property of B-splines (Schumaker, 1981) and hence is

a proper feasible class from which the estimate of log Λ0 (t) can be found.

The Generalized Estimating Equation (GEE) method, developed by Liang & Zeger (1986)

is widely used in parametric regression analysis of longitudinal data. It provides a robust

inference with only weak assumptions of the underlying distributions. A large amount of

literatures generalized the same idea to semiparametric regression analysis with the mean

response model given by

E (Y |Z) = µ{ϕ0 (T ) + βT
0 Z}. (2)

Zeger & Diggle (1994), Hoover et al. (1998), Lin & Ying (2001) and Wu & Zhang (2002)

among others used kernel-based estimating equation and ignored the correlation structure.

Lin & Carroll (2001), Fan & Li (2004) and Wang et al. (2005) incorporated the correlation

structure in their estimating procedures within the kernel framework. The proportional mean

model of (1) is a special case of (2) with the exponential link function µ and ϕ0 being the

logarithm of the baseline mean function. We approximate the proportional mean function

by exp{
∑qn

l=1 αlBl (t) + βT
0 Z}. The GEE for computing θ = (β, α) is given by

U (θ) =
n∑

i=1

(
∂µ(i)(θ)

∂θ

)
V (i)−1

(θ)
(
N (Ti)− µ(i)(θ)

)
= 0 (3)
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where µ(i)(θ) =
(
µ
(i)
Ki,1

(θ), µ
(i)
Ki,2

(θ), · · ·µ(i)
Ki,Ki

(θ)
)T

with µ
(i)
Ki,j

(θ) = exp
(∑qn

l=1 αlBl

(
T

(i)
Ki,j

)
+ βTZi

)
for j = 1, 2, · · ·Ki. However the solution of (3) does not necessarily provide an α =

(α1, · · · , αqn) that satisfies the monotone constraints. In order to produce a monotone non-

decreasing estimate of α, we propose to project the GEE solution α̃n = (α̃n,1, · · · , α̃n,qn) from

(3) into the feasible space Π = {α : α1 ≤ α2 ≤ · · · ≤ αqn} by a quadratic programming:

α̂n = ProjW [α̃n,Π] = argmin
α∈Π

(α− α̃n)
′W (α− α̃n), (4)

where W is a positive definite matrix. The spline-based semiparametric projected GEE

estimator of Λ0 is taken to be Λ̂(t) = exp (
∑qn

l=1 α̂n,lBl (t)) after the estimate of the spline

coefficient α̂n = {α̂n,l, l = 1, 2, · · · , qn} is obtained.

For the GEE method, V (i) is the working-covariance matrix for the panel counts from

the ith process and plays a pivotal role in determining the estimating efficiency. Different

choices of this covariance matrix could accommodate the characteristics of different counting

processes. The easiest choice of the covariance matrix is to use a diagonal matrix, in which

the diagonal elements are determined by the variance function of a Poisson distribution, i.e.
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V ar (N (TKi,j)) = E (N (TKi,j)) and

V
(i)
1 =



µ
(i)
Ki,1

0 · · · 0

0 µ
(i)
Ki,2

· · · 0

...
...

. . .
...

0 0 · · · µ
(i)
Ki,Ki


Ki×Ki

.

Using the diagonal matrix implies independence between cumulative counts, despite the cu-

mulative counts are obviously positively correlated. The spline-based semiparametric GEE

with this covariance matrix is exactly the score equation of the pseudo-likelihood studied

by Lu et al. (2009) and the proof is given in Appendix 6.1. Instead of using the diago-

nal matrix that ignores the correlation among the cumulative counts, a working-covariance

matrix that accommodates such correlation will intuitively produce more efficient esti-

mate. The covariance function based on the Poisson counting process Cov (N (t1) ,N (t2)) =

E (N (t1)) , for t1 ≤ t2 leads to the selection of the working-covariance matrix V
(i)
2 in the

form of

V
(i)
2 =



µ
(i)
Ki,1

µ
(i)
Ki,1

· · · µ
(i)
Ki,1

µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,2

...
...

. . .
...

µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,Ki


Ki×Ki

.

Through simple but tedious algebra, the spline-based semiparametric GEE with this covari-

ance matrix is exactly the score equation of the likelihood based on the nonhomogeneous
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Poisson process model by Lu et al. (2009) and the proof is given in Appendix 6.2. Despite

the improved estimation efficiency using V
(i)
2 compared to the one using V

(i)
1 , it still imposes

unrealistic assumptions to the covariance structure of the data: First, it assumes the vari-

ance of the counts equal to the mean, that is, no over-dispersion is accounted for the data;

Second, it assumes independence of the counts between non-overlapping intervals. When

either of these assumptions is violated, the estimate based on V
(i)
2 may not be very efficient.

In the literature of count data, Poisson model with a frailty variable, namelyE (N (t) |γ, Z) =

γΛ0 (t) e
βTZ , is a common choice in parametric regression analysis to account for possible

over-dispersion. Chan & Ledolter (1995) and Hay & Pettitt (2001) discussed a log nor-

mal frailty model by assuming a lognormal distribution of the frailty term γ. But there

is no close form for the marginal distribution of count and the estimation with this frailty

variable is computationally intensive. Another common frailty model assumes a gamma-

distributed subject-specific frailty term as studied in Thall (1988) and Diggle et al. (1994)

among others. Integrating out the gamma frailty variable results in a negative binomial

distribution for cumulative count. Zhang & Jamshidian (2003) introduced a gamma frailty

term to nonparametric estimation of the mean function of counting process. Zeger (1988)

considered a latent frailty process while assuming only the first and second moments of the

frailty term. We adopt a similar idea in our semiparametric GEE setting. We specify γ with

E (γ) = 1, which guarantees the identifiability of the model and does not violate the pro-

portional mean model specified in (1). Denote V ar (γ) = σ2, the marginal variance function

based on the Frailty Poisson process is V ar (N (t)) = µt + σ2µ2
t , where µt = E (N (t)). The
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correlation between successive counts is accounted for by the frailty parameter γ as well,

namely Cov (N (t1) ,N (t2)) = µt1 + σ2µt1µt2 , for t1 ≤ t2. This leads to a working-covariance

matrix of the form

V
(i)
3 =



µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,1

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,Ki

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,2

µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,2

· · · µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,Ki

...
...

. . .
...

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,Ki

µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,Ki

· · · µ
(i)
Ki,Ki

+ σ2µ
(i)
Ki,Ki

µ
(i)
Ki,Ki


Ki×Ki

and it can be rewritten as

V
(i)
3 = V

(i)
2 + σ2

(
µ(i)
)⊗2

.

V
(i)
2 is, therefore, a special case of V

(i)
3 with σ2 = 0.

The estimating equation with V
(i)
3 turns out to be the score equation of the marginal

likelihood of panel count data under the Gamma-Frailty nonhomogeneous Poisson model,

that is, given the gamma distribution of the frailty term, γ ∼ Γ (1/σ2, 1/σ2), the cumulative

count follows a nonhomogeneous Poisson process with mean γΛ (t) eβ
TZ . The proof is given

in Appendix 6.3. Because of this property and V
(i)
2 is a special case of V

(i)
3 , it is likely

that the spline-based semiparametric projected GEE method with V
(i)
3 will lead to a more

efficient estimate than the spline-based maximum likelihood estimate studied by Lu et al.

(2009), when the over-dispersion exists.
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3. Numerical Algorithm

For computing the proposed projected GEE estimate of θ = (β,Λ), estimation of the over-

dispersion parameter σ2 is needed. It is possible to create an extra estimating equation using

the second moment to jointly solve for (β, α, σ2). It is, however, numerically cumbersome.

We propose to estimate σ2 externally to the GEE.

Breslow (1984) used a method of moment to estimate the over-dispersion parameter σ2

by solving.
n∑

i=1

Ki∑
j=1

(Nij − µ̂ij)
2

µ̂ij + σ2µ̂2
ij

=
n∑

i=1

Ki − p

where Nij = N (Tij), µ̂ij is any consistent estimate of E (Nij), and p is the number of estimated

parameters. In Breslow’s method, the over-dispersion parameter can be computed iteratively

using a self-consistent algorithm given by

σ̂2
n =

∑n
i=1

∑K1

j=1
(Nij−µ̂ij)

2

µ̂ij(µ̂ij+σ̂−2
n )∑n

i=1Ki − p

Alternatively, σ2 could also be estimated explicitly by

σ̂2
n =

∑n
i=1

∑Ki

j=1

{
(Nij − µ̂ij)

2 − µ̂ij

}∑n
i=1

∑K1

j=1 µ̂
2
ij

(5)

as proposed by Zeger (1988). Both Zeger’s and Breslow’s methods could underestimate the

over-dispersion parameter and even end up with a negative σ̂2
n. If that happens, σ̂

2
n is forced

to be zero. In our spline-based semiparametric projected GEE method, this over-dispersion
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parameter is a nuisance parameter and has little impact on the consistency of the estimate

of (β,Λ). Hence, for the sake of numerical simplicity, Zeger’s method is adopted in our

calculation.

A two-stage estimating procedure is implemented when V
(i)
3 is chosen as the working-

covariance matrix. At the first stage, due to its computational convenience, the spline-based

semiparametric projected GEE method with V
(i)
1 , or equivalently the spline-based semipara-

metric maximum pseudo-likelihood estimate studied by Lu et al. (2009) is implemented to

get an initial consistent estimate of θ = (β, α), θ(0) = (β(0), α(0)). Then an estimate of σ2,

σ̂2
n is obtained using Zeger’s method (5) in which µ̂ij = µ

(i)
Ki,j

(θ(0)). At the second stage,

replacing σ2 by the estimate, σ̂2
n, the estimate of θ = (β, α) is obtained by projecting the

GEE update of

U
(
θ; σ̂2

n

)
=

n∑
i=1

(
∂µ(i)(θ)

∂θ

)
V

(i)−1

3 (θ; σ̂2
n)
(
θ; σ̂2

n

) (
N (Ti)− µ(i)(θ)

)
= 0

into the feasible space Θ = Rd × Π.

A hybrid algorithm of Newton-Raphson type method and Isotonic Regression (NR/IR) is

used to compute the spline-based projected GEE estimate. Newton-Raphson (NR) algorithm

is a widely used iterative algorithm for finding the optimizer of nonlinear equations as it is

known to have a quadratical convergence rate. However it cannot guarantee the monotonicity

of the iterates. So after each NR iteration, the projection step is made by an easy-to-
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implement isotonic regression. At the current estimate θ(k) = (β(k), α(k)), denote

H
(
θ(k); σ̂2

n

)
= −E

{
∇θU(θ

(k); σ̂2
n)
}

=
n∑

i=1

(
∂µ(i)(θ(k))

∂θ

)
V

(i)−1

3 (θ; σ̂2
n)

(
∂µ(i)(θ(k))

∂θ

)T

=

 Hββ(θ
(k); σ̂2

n) Hβα(θ
(k); σ̂2

n)

Hαβ(θ
(k); σ̂2

n) Hαα(θ
(k); σ̂2

n)

 ,

the negative expectation of the derivative of estimating function which is the Fisher in-

formation if the underlying stochastic model is indeed Gamma-frailty Poisson model. We

choose

W = diag(w1, w2, · · · , wqn) = diag
(
Hαα(θ

(k); σ̂2
n)
)

for the weight matrix in (4). The projection is actually the weighted isotonic regression

problem and the solution has a nice interpretation: it is the left derivative of the greatest

minorant of the cumulative sum diagram {Pi, i = 0, 1, · · · , n} (Groeneboom &Wellner, 1992)

where

P0 = (0, 0) and Pi =

(
i∑

l=1

wl,
i∑

l=1

wlα
(k)
l

)
;

and can be expressed as

α̂i = max
j<i

min
l>i

∑l
m=j wmα

(k)
m∑l

m=j wm

The NR/IR algorithm tailored to the spline-based projected GEE estimation is summarized

in the following steps.
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Step 0 (Initial Values): Obtain an initial estimate θ(0) =
(
α(0), β(0)

)
by the projected

GEE with the working-covariance matrix V
(i)
1 and obtain an estimate of σ2, σ̂2

n with θ(0) =

(β(0), α(0)) using the Zeger’s method (5). Iterate the algorithm through the following steps

until convergence.

Step 1 (Newton-Raphson Type Update): Update the current estimate θ(k) =
(
β(k), α(k)

)
by Newton-Raphson type algorithm,

θ̃(k+1) =
(
β̃(k+1), α̃(k+1)

)
= θ(k) +H−1

(
θ(k); σ̂2

n

)
U
(
θ(k); σ̂2

n

)
.

Step 2 (Isotonic Regression): Construct the cumulative sum diagram {Pi, i = 0, 1, · · · , n}

where

P0 = (0, 0) and Pi =

(
i∑

l=1

wl,

i∑
l=1

wlα̃
(k+1)
l

)
;

where wl, l = 1, 2, · · · , qn are the diagonal elements of Hαα

(
θ(k); σ̂n

)
.The update of α is

obtained by the left derivative of the convex minorant of this cumulative sum diagram, that

is,

α
(k+1)
i = max

j<i
min
l>i

∑l
m=j wmα̃

(k+1)
m∑l

m=j wm

Since there is no constraints on β, let β(k+1) = β̃(k+1).

Step 3 (Check the convergence): Let d = ∥θ(k+1) − θ(k)∥, if d < ε for a small ε > 0 stop

the algorithm, otherwise go back to step 1.

14



4. Numerical Results

4.1 Simulation Studies

Simulation studies are conducted to examine the performance of the spline-based semi-

parametric projected GEE estimate in finite samples. For each subject, we generate Xi =(
Ki, TKi

,N(i), Zi

)
in the following manner: (i) The simulation of observation times mimics

a possible scenario in clinical follow-up study in which the chance of skipping the follow-

up visit may increase as the study goes along. Six follow-up times are pre-scheduled at

T ◦ = {T ◦
j : T ◦

j = 2j, j = 1, · · · , 6}. The actual observation times T ◦
ij are generated from

a normal distribution, N(T ◦
j , 1/3). Let ξij = 1[T ◦

ij−1<T ◦
ij ]
, for i = 1, · · · , 6 and T ◦

i0 = 0. Let

δij = 1 if the jth visit actually happens and zero otherwise with P (δij = 1) = 1

1+e
T◦
ij

−10 .

Each subject has Ki =
∑6

j=1 ξijδij observations at TKi
=
(
T

(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

)
, where

T
(i)
Ki,j

are the jth order observation time of {T ◦
ij : ξijδij = 1, j = 1, · · · , 6}; (ii) The covariate

vector Zi = (Zi1, Zi2, Zi3) is simulated by Zi1 ∼ Uniform (0, 1) , Zi2 ∼ N (0, 1) , and Zi3 ∼

Bernoulli (0.5); (iii) Set the regression parameter β0 = (β0,1, β0,2, β0,3)
T = (−1.0, 0.5, 1.5)T

and given
(
Zi, Ki, TKi

)
, four different scenarios are used to generate the panel counts N(i) =(

N
(
T

(i)
Ki,1

)
,N
(
T

(i)
Ki,2

)
, · · · ,N

(
T

(i)
Ki,Ki

))
.

Scenario 1. Data are generated from a Gamma-Frailty Poisson process. The frailty

variables γ1, γ2, · · · , γn are a random sample from Gamma distribution, Γ (0.5, 0.5) that

results in the over-dispersion parameter equal to 2. Conditioning on the frailty variable γi as

well as the covariates Zi, the panel counts for each subject are drawn from a Poisson process,
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i.e.

N
(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
∼ Poisson

{
2γi

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}

for j = 1, 2, · · · , Ki. In this scenario, the counting process given only the covariate is not

a Poisson process. However, the conditional mean given the covariate vector still satisfies

the proportional mean model specified in (1) and E (N (t) |Z) = 2t1/2eβ
T
0 Zi . The counts are

marginally negative binomial distributed.

Scenario 2. Data are generated similarly to Scenario 1. Instead of generating the frailty

variable γ from a Gamma distribution, it is generated from a discrete distribution {0.6, 1, 1.4}

with probabilities 0.25, 0.5 and 0.25, respectively. This scenario generates so called mixed

Poisson process as studied in Wellner & Zhang (2007) and Lu et al. (2009). In this scenario,

the counting process given the covariate is not a Poisson process. Nor its marginal distribu-

tion follows a negative binomial distribution. However, the proportional mean structure (1)

still holds.

Scenario 3. Data are generated from a Poisson process with the conditional mean function

given by 2t
1/2
ij e

βT
0 Zi , that is,

N
(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
∼ Poisson

{
2

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}

for j = 1, 2, · · · , Ki.

Scenario 4. Data are generated from a ‘Negative-binomialized’ counting process. Condi-
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tioning on covariate Z, a random variable M is generated from a Negative binomial distri-

bution, NegBin(20eβ
T
0 Z , 0.1). Given M , a random sample, Xi, i = 1, 2, · · · ,M , is generated

from distribution function Fx. The count data is defined by

N (t) =
M∑
i=1

I[xi≤t].

Fx is chosen to be t1/2/90 · I[t≤8100] + I[t>8100] such that the proportional mean model in (1)

still holds and the baseline mean function Λ0 (t) = 2t1/2, is the same as those in scenarios

1, 2 and 3 for t ≤ 8100. With the current formulation of the problem, the data show both

over-dispersion and autocorrelation between non-overlapping increments. The covariance

matrix has a similar form as matrix V3, but the true over-dispersion parameter depends on

covariates.

For all these scenarios, the monotone cubic B-splines are used to approximate the baseline

mean function in the proposed semiparametric GEE method. The number of interior knots

is chosen to be mn = ⌈N1/3⌉, the smallest integer above N1/3, where N is the number of

distinct observation times. These knots are placed at the corresponding quantiles of the

distinct observation times.

For the inference of the regression parameter, we propose an “ad-hoc” approach to es-

timate the standard error of the estimated regression parameter. We pretend the proposed

spline-based semiparametric projected GEE estimate as the ordinary parametric GEE esti-

mate and obtain the standard error as the square-root of asymptotic variance based on the
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well-known sandwich formula for the ordinary GEE estimate given by Liang & Zeger (1986).

Alternatively, the bootstrap method could be implemented for estimating the standard error

since the spline approach largely reduces computing time in the estimation.

In our simulation studies, 1000 Monte Carlo samples are generated with sample size of

50 and 100 for each scenario and the results on estimation bias (bias), Monte Carlo standard

deviation (M-C sd), average of the estimated standard errors based on either the parametric

GEE sandwich formula (SSE) or bootstrap method (BSE), and their 95% coverage proba-

bilities (CP1 with SSE and CP2 with BSE) for the regression parameters are summarized in

Tables 1-2 corresponding to the four simulation scenarios with 2 different sample sizes.

When data follow the Gamma-Frailty Poisson process as in Scenario 1, all three estimates

with the different working-covariance matrices are consistent. The biases are negligible

compared to the standard errors. The estimate with the working-covariance matrix V
(i)
3

apparently outperforms its alternative estimate with the working-covariance matrix V
(i)
1 or

V
(i)
2 in view of the smaller standard errors. This is expected as the working-covariance matrix

V
(i)
3 correctly specifies the underlying correlations among the cumulative panel counts. The

parametric sandwich estimate of the standard error of the estimated regression parameter

appears to underestimate the true standard error as compared to the Monte-Carlo standard

deviation, which attributes to a lower coverage than the nominal level. The underestimation

lessens as sample size increases. Among the three standard error estimates, it seems that the

estimate of the proposed GEE method with V
(i)
3 has the least bias. The bootstrap method
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provides a less biased estimate of the standard error, especially when the over-dispersion is

accounted for in the estimation procedure. The coverage probability based on the bootstrap

method when accounting for over-dispersion is close to its nominal level. Figure 1 indicates

that the squared bias for the proposed spline-based estimates of Λ0 under these different

working-covariance matrices are negligible relative to their variances. The estimate with

V
(i)
3 behaves the best as it has the smallest variance among the three. Simulation results

from Scenario 2 are similar to the results from Scenario 1. The estimate using V
(i)
3 again

behaves better than the estimate with V
(i)
1 or V

(i)
2 , even though the underlying frailty variable

is not Gamma distributed. When data are generated from a Poisson process as in Scenario

3, the proposed estimate with V
(i)
3 behaves very similar to that with V

(i)
2 which is actually

the efficient semiparametric estimate according to Lu et al. (2009). This is mainly due to the

fact that the estimate of the over-dispersion parameter is zero most of time in the simulation

studies. If the data follow a negative binomial counting process as in Scenario 4, the spline

based semiparametric GEE estimates using V
(i)
2 and V

(i)
3 are similar, both perform slightly

better than the estimates using V
(i)
1 .

The simulation results indicate that the proposed spline-based semiparametric projected

GEE method with V
(i)
3 generally produces more efficient estimate of the regression parameter

regardless of the distribution of the latent frailty variable and is equally efficient as the

semiparametric maximum likelihood estimate when the underlying counting process is indeed

Poisson.

19



4.2 Application

The proposed estimating method is applied to the bladder tumor data introduced in

Section 1. A total of 116 patients were randomized into three treatment groups, with 31

using pyridoxin pills, 38 instilled with thiotepa and 47 in placebo group. Their follow-up

times vary from one week to sixty-four weeks. Four variables, including the tumor number

(Z1) and size (Z2) at baseline (study entrance), and two indicator variables: one for pyridoxin

(Z3), one for thiotepa (Z4), are included in the proportional mean model, i.e.,

E(N(t)|Z1, Z2, Z3, Z4) = Λ0 (t) exp (β1Z1 + β2Z2 + β3Z3 + β4Z4)

Regression results with the three different working-covariance matrices are shown in Table

3. The tumor number at baseline is positively related to the recurrence of bladder tumor.

With one more tumor at baseline, the number of tumors at follow-ups increases by 15.5%,

23.1% and 39.1% on average using the working-covariance matrices V
(i)
1 , V

(i)
2 and V

(i)
3 , re-

spectively. Thiotepa instillation effectively decreases the number of recurrent tumors. The

number of recurrent tumors in patients with thiotepa instillation is 49.5%, 45.1% and 32.5%

of that in placebo group on average using V
(i)
1 , V

(i)
2 and V

(i)
3 , respectively. The tumor size

and pyridoxin pills are not significantly related to the number of recurrent tumors at follow-

up visits. The estimating results using the diagonal working-covariance matrix V
(i)
1 and the

working-covariance matrix based on Poisson process V
(i)
2 are consistent with the estimating

results based on the spline-based semiparametric pseudo-likelihood and the likelihood meth-

ods proposed by Lu et al. (2009). The proposed semiparametric projected GEE estimate
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with the frailty Poisson covariance matrix V
(i)
3 provides an estimate of the over-dispersion

parameter as 1.32. It implies the over-dispersion of panel counts and possible positive corre-

lation among the tumor numbers in non-overlapping time intervals for the underlying tumor

progression. The effect of the tumor number at the study entrance and the treatment of

thiotepa are more significant when accounting for the correlation between cumulative tumor

numbers using the frailty variable. Figure 3 plots the estimated baseline mean function.

5. Final Remark

Modeling panel count data is a challenging task in general. The proposed spline-based semi-

parametric projected GEE method avoids assuming the underlying count process and bor-

rows the strength from discrete observations within subjects as well as those across subjects

to get a spline estimate of the mean function of the counting process. Choosing differ-

ent working-covariance matrices can accommodate different data structures. The proposed

spline-based projected GEE method with the working-covariance matrices V
(i)
3 accounts for

the over-dispersion and inter-correlation between non-overlapping counts. It improves the

estimating efficiency and provides a less biased standard error estimation using either the

“ad-hoc” parametric GEE sandwich formula or the bootstrap method when over-dispersion

is present in data. In our computing algorithm, over-dispersion parameter σ2 is fixed at

its estimate in the first stage and the parameters in the proportional mean function θ are

updated in the second stage. Our simulation results (not included in this paper) show that

update θ and σ2 alternately gives similar results.
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The proposed model assumes that the observation times are noninformative to the un-

derlying counting process which may be violated in applications. Extension of the proposed

method to that scenario requires a further investigation.
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6. Appendix

In this section, we show that spline-based semiparametric GEE with V
(i)
1 , V

(i)
2 and V

(i)
3

coincide with the score equations under the different models. First, we define the following
notations

B
(i)
Ki,j

=
(
B1

(
T

(i)
Ki,j

)
, · · · , Bqn

(
T

(i)
Ki,j

))T
; B(i) =

(
B

(i)
Ki,1

, · · · , B(i)
Ki,Ki

)T
µ
(i)
Ki,j

= exp
(
βTZi + αTB

(i)
Ki,j

)
; µ(i) =

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)T
∆µ

(i)
Ki,j

= µ
(i)
Ki,j

− µ
(i)
Ki,j−1; ∆µ(i) =

(
∆µ

(i)
Ki,1

, · · · ,∆µ(i)
Ki,Ki

)T
∆N(i)

Ki,j
= N

(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
; ∆N(i) =

(
∆N(i)

Ki,1
, · · · ,∆N(i)

Ki,Ki

)T
Also let 1Ki

= (1, 1, · · · , 1)TKi×1, then we have

∂µ
(i)
Ki,j

∂θ
= exp

(
βTZi + αTB

(i)
Ki,j

)(
ZT

i , B
(i)T

Ki,j

)T
;

∂µ(i)

∂θ
=

(
∂µ

(i)
Ki,1

∂θ
, · · · ,

∂µ
(i)
Ki,Ki

∂θ

)T

= diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

) (
1Ki

ZT
i , B

(i)
)

6.1 Agreement between the GEE with V
(i)
1 and the score equation of the spline-based

pseudo-likelihood

Using V
(i)
1 as the working-covariance matrix, the U function of Equation (3) can be

rewritten as

U (θ) =
n∑

i=1

(
1Ki

ZT
i , B

(i)
)T

diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
×(

diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

))−1 (
N (Ti)− µ(i)

)
=

n∑
i=1

(
1Ki

ZT
i , B

(i)
)T (N (Ti)− µ(i)

)
This is exactly the score function of the spline-based pseudo-likelihood derived by Lu et al.
(2009)
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6.2 Agreement between the GEE with V
(i)
2 and the score equation of the spline-based
likelihood

When using V
(i)
2 as the working-covariance matrix, the U function of Equation (3) can

be rewritten as

U (θ) =
n∑

i=1

(
1Ki

ZT
i , B

(i)
)T

diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
V

(i)−1

2

(
N(i) − µ(i)

)
.

Using the independence of the count increments based on the nonhomogeneous Poisson
process assumption, the spline-based likelihood is given by

l̃n (θ;D) =
n∑

i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log∆Λ̃

(i)
Ki,j

+∆N(i)
Ki,j

βTZi − eβ
TZi∆Λ̃

(i)
Ki,j

]
(6)

where

∆Λ̃
(i)
Ki,j

= exp

(
qn∑
l=1

αlBl

(
T

(i)
Ki,j

))
− exp

(
qn∑
l=1

αlBl

(
T

(i)
Ki,j−1

))
A careful examination of this likelihood shows that its score function can be rewritten in a
matrix form,

∂

∂θ
l̃n (θ;D) =

n∑
i=1

(
∂∆µ(i)

∂θ

)T (
diag

(
∆µ

(i)
Ki,1

, · · · ,∆µ(i)
Ki,Ki

))−1 (
∆N(i) −∆µ(i)

)
Since

∂∆µ
(i)
Ki,j

∂θ
= µ

(i)
Ki,j

(
ZT
i , B

(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT
i , B

(i)T

Ki,j−1

)T
=

{(
−µ

(i)
Ki,j−1, µ

(i)
Ki,j

)(ZT
i B

(i)T

Ki,j−1

ZT
i B

(i)T

Ki,j

)}T

∂∆µ(i)

∂θ
=

∂∆µ
(i)
Ki,1

∂θ
, · · · ,

∂∆µ
(i)
Ki,Ki

∂θ

T

=


µ
(i)
Ki,1

0 · · · 0

−µ
(i)
Ki,1

µ
(i)
Ki,2

· · · 0
...

...
...

...

0 0 −µ
(i)
Ki,Ki−1 µ

(i)
Ki,Ki


(
1kiZ

T
i , B

(i)
)
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=


1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1

diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)(
1kiZ

T
i , B

(i)
)

The score function can be further written as

∂

∂θ
l̃n (θ;D) =

n∑
i=1

(
1Ki

ZT
i , B

(i)
)T

diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
Σ
(
N(i) − µ(i)

)
,

where

Σ =


1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1


T

diag
(
∆µ

(i)
Ki,1

, · · · ,∆µ(i)
Ki,Ki

)−1


1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1



=



1

µ
(i)
Ki,1

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

0 · · · 0

0 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

− 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

· · · 0

...
...

...
... − 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki

0 0 0 · · · 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki




1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1



=


1

µ
(i)
Ki,1

+ 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

· · · · · · 0

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

1

µ
(i)
Ki,2

−µ
(i)
Ki,1

+ 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

− 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

· · · 0

...
...

...
...

...
0 0 · · · · · · 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki−1


It is a straightforward algebra to verify that Σ =

(
V

(i)
2

)−1

, so the GEE with the working-

covariance matrix V
(i)
2 is the same as the score equation of the likelihood given in (6).

6.3 Agreement between the GEE with V
(i)
3 and the score equation of the likelihood of

Gamma-Frailty Poisson model

By the derivation of the equivalence between the GEE with V
(i)
2 and the score equation

of likelihood in (6), we have(
∂µ(i)

∂θ

)T

V
(i)−1

2

(
N(i) − µ(i)

)
=

Ki∑
j=1

(
∂∆µ

(i)
Ki,j

∂θ

)(
∆N(i)

Ki,j

∆µ
(i)
Ki,j

− 1

)
(7)
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This equality holds for any nonnegative and nondecreasing process N(i). Let N(i) = 2µ(i),
then (

∂µ(i)

∂θ

)T

V
(i)−1

2 µ(i) =

Ki∑
j=1

∂∆µ
(i)
Ki,j

∂θ
=
∂µ

(i)
Ki,Ki

∂θ
=
(
ZT

i , B
(i)T

Ki,Ki

)T
µ
(i)
Ki,Ki

(8)

Taking the β part of (7), we have(
∂µ(i)

∂β

)T

V
(i)−1

2

(
N(i) − µ(i)

)
=

Ki∑
j=1

(
∂∆µ

(i)
Ki,j

∂β

)(
∆N(i)

Ki,j

∆µ
(i)
Ki,j

− 1

)

The left hand side of (8) can be rewritten as

LHS = Zi1
T
Ki
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
V

(i)−1

2

(
N(i) − µ(i)

)
= Ziµ

(i)TV
(i)−1

2

(
N(i) − µ(i)

)
and the right hand side of (8) can also be rewritten as

RHS =

Ki∑
j=1

(
µ
(i)
Ki,j

Zi − µ
(i)
Ki,j−1Zi

)(∆N(i)
Ki,j

∆µ
(i)
Ki,j

− 1

)
= Zi

(
N(i)

Ki,Ki
− µ

(i)
Ki,Ki

)
.

This implies that

µ(i)TV
(i)−1

2

(
N(i) − µ(i)

)
= N(i)

Ki,Ki
− µ

(i)
Ki,Ki

. (9)

Again letting N(i) = 2µ(i), we obtain

µ(i)V
(i)−1

2 µ(i) = µ
(i)
Ki,Ki

(10)

The U function of Equation with V
(i)
3 as the working-covariance matrix can then be rewritten

as,

U (θ) =
n∑

i=1

(
∂µ(i)

∂θ

)T (
V

(i)
2 + σ2µ(i)µ(i)T

)−1 (
N(i) − µ(i)

)

=
n∑

i=1

(
∂µ(i)

∂θ

)T

V (i)
2 − σ2

1 + σ2µ(i)T
(
V

(i)
2

)−1

µ(i)

(
V

(i)
2

)−1

µ(i)µ(i)TV −1
2

(N (Ti)− µ(i)
)

=
n∑

i=1

{(
∂µ(i)

∂θ

)T

V
(i)−1

2

(
N(i) − µ(i)

)
− σ2

1 + σ2µ(i)TV −1
2 µ(i)

(
∂µ(i)

∂θ

)T

V
(i)−1

2 µ(i)
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×µ(i)TV
(i)−1

2

(
N(i) − µ(i)

)}
=

n∑
i=1

{
Ki∑
j=1

(
µ
(i)
Ki,j

(
ZT

i , B
(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT

i , B
(i)T

Ki,j−1

)T)(∆N(i)
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(
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)T
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(i)
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(
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− µ
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)}
(by Equations (8)-(10))

=
n∑

i=1

{
Ki∑
j=1

(
µ
(i)
Ki,j

(
ZT

i , B
(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT

i , B
(i)T

Ki,j−1

)T) ∆N(i)
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∆µ
(i)
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−
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Ki,Ki

1 + σ2µ
(i)
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(
ZT

i , B
(i)T

Ki,Ki

)T
µ
(i)
Ki,Ki

}

This is exactly the score function of the Gamma-frailty Poisson likelihood.
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Figure 1. Simulation results for estimations of the baseline mean function, Λ0 (t) = 2t1/2
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Poisson Data
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Figure 2. Simulation results for estimations of the baseline mean function, Λ0 (t) = 2t1/2
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Table 3
The spline-based sieve semiparametric inference for bladder tumor data

V1

Est. Sandwich Std. p-value Bootstrap Std. p-value

Z1 0.1444 0.0518 0.0053 0.0660 0.0286
Z2 −0.0447 0.0488 0.3595 0.0449 0.3189
Z3 0.1776 0.2246 0.4292 0.2894 0.5395
Z4 −0.6966 0.2397 0.0037 0.3250 0.0321

V2

Est. Sandwich Std. p-value Bootstrap Std. p-value

Z1 0.2075 0.0677 0.0022 0.0905 0.0499
Z2 −0.0353 0.0732 0.6299 0.0691 0.0972
Z3 0.0637 0.3502 0.8556 0.3891 0.9730
Z4 −0.7960 0.2952 0.0070 0.3780 <0.0001

V3

Est. Sandwich Std. p-value Bootstrap Std. p-value

Z1 0.3289 0.0702 0.0000 0.0994 0.0009
Z2 0.0054 0.0767 0.9437 0.0809 0.9484
Z3 0.0213 0.4069 0.9583 0.4081 0.9782
Z4 −1.0692 0.3389 0.0016 0.3944 0.0044
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Figure 3. Point estimates of the baseline mean function
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