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SUMMARY

The analysis of the joint distribution function with bivariate event time data is a
challenging problem both theoretically and numerically. This paper develops a tensor
spline-based sieve maximum likelihood estimation method to estimate the joint distri-
bution function with bivariate current status data. The I-spline basis functions are
used in approximating the joint distribution function in order to simplify the numerical
computation of constrained maximum likelihood estimation problem. The generalized
gradient projection algorithm is used to compute the constrained optimization problem.
The proposed tensor spline-based nonparametric sieve maximum likelihood estimator

is shown to be consistent and the rate of convergence can be as good as n'/4 under some



regularity conditions. The simulation studies with moderate sample sizes are carried
out to demonstrate that the finite sample performance of the proposed estimator is
generally satisfactory.
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1 Introduction

In some applications, observation of random event time 7T is restricted to the knowledge
of whether or not T exceeds a random monitoring time C'. This type of data is known as
current status data and sometimes referred to as interval censored data case 1. Current
status data arises naturally in many applications, see for example, in animal tumorigenic-
ity experiments by Hoel and Walburg (1972), and Finkelstein and Wolfe (1985); in social
demographic studies of the distribution of the age at weaning by Diamond, McDonald and
Shah (1986), Diamond and McDonald (1991), and Grummer-Strawn (1993); and in studies
of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)
by Shiboski and Jewell (1992), and Jewell, Malani and Vittinghoff (1994).

The univariate current status data has been thoroughly studied in literatures. Groeno-
boom and Wellner (1992) and Huang and Wellner (1995) studied the asymptotic properties
of the nonparametrc maximum likelihood estimator (NPMLE) of the distribution function
with current status data. Huang (1996) considered Cox proportional hazards model with

current status data and showed that the maximum likelihood estimator (MLE) of the regres-



sion parameter is asymptotically normal with y/n convergence rate, even through the MLE
of the baseline cumulative hazard function only converges at n'/? rate.

Bivariate event time data occurs in many applications as well. For example, in an Aus-
tralian twin study (Duffy, Martin and Matthews, 1990), the researchers were interested
in times to a certain event such as a disease or a disease-related symptom in both twins.
NPMLE of the joint distribution function of the correlated event times with bivariate right
censored data was studied by Dabrowska (1988), Prentice and Cai (1992), Pruitt (1991). van
der Laan (1996) and Quale, van der Laan and Robins (2006). As an alternative, Kooperberg
(1998) developed a tensor spline estimation of the logarithm of joint density function with
bivariate right censored data. Shih and Louis (1995) proposed a two-stage semiparametric
estimation procedure for the association parameter for bivariate right censored data, in which
the joint distribution of the two event times is assumed to follow a bivariate Copula model
(Nelsen, 2006): first the nonparametric estimates of the marginal distributions are obtained
and then the association parameter is estimated by the maximum pseudo-likelihood method.

For bivariate interval censored data, a nonparametric maximum likelihood estimation
method can be generalized from the univariate case. For the NPMLE, one needs to design
an efficient searching algorithm for the non-zero mass intersection rectangles (Betensky and
Finkelstein, 1999; Wong and Yu, 1999; Gentleman and Vandal, 2001; Maathuis, 2005). Sun,
Wang and Sun (2006) adopted the same idea used by Shih and Louis (1995) and proposed
a two-stage method to estimate the association parameter in Copula models for bivariate
interval censored data.

This paper studies bivariate current status data, a special type of bivariate interval

censored data. This data structure arises in the studies of two diseases in same subject or a



common disease in two correlated subjects. Let (17, 7%) be the two event times of interest and
(C4, Cy) the two corresponding random monitoring times. In this setting, the observation of

bivariate current status data consists of

X = (C1,Cq, Ay = I(Th < CY), Ay = I1(T5 < Cy)), (1.1)

where I(+) is the indicator function. Wang and Ding (2000) studied whether or not the onsets
of hypertension and diabetes are correlated for people in Taiwan. They adopted the same
idea used by Shih and Louis (1995) and Sun, Wang and Sun (2006) and proposed a two-
stage estimation of the association parameter of two event times with bivariate current status
data. This two-stage method facilitates an easy estimator of the joint distribution function
through Copula model as a by-product and is the only available method in literatures to
estimate the joint distribution function with bivariate current status data. In a study on
HIV transmission, Jewell, van der Laan and Lei (2005) investigated the relationship between
the time to HIV infection to the partner and the time to diagnosis of AIDS for the index case
by estimating smooth functionals of the marginal distribution functions. For both examples,
the bivariate event times have the same monitoring time, that is ¢} = Cy = C. Hence,
the joint distribution function can be only studied on the diagonal, that is, only F(c,c¢) is
estimable. This paper proposes a tensor spline-based sieve maximum likelihood estimation
of the joint distribution function with bivariate current status data in a general scenario in
which C} and Cs are allowed to be different and hence the method is more applicable in
practice.

The rest of the paper is organized as follows. Section 2 characterizes the spline-based
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sieve MLE 7,, = (Fn, Fo1,F,2), where Fn is the tensor spline-based estimator of the joint
distribution function, le and Fn,g are the spline-based estimators of the two corresponding
marginal distribution functions. Section 3 presents two asymptotic properties (consistency
and convergence rate) of the proposed spline-based sieve MLE. Section 4 discusses the com-
putation of the spline-based estimator. Section 5 carries out a set of simulation studies to
examine the finite sample performance of the proposed method and compare the proposed
method with the method extended from Wang and Ding (2000)’s idea. Section 6 summa-
rizes our findings and discusses some related problems. Section 7 provides the proofs of the
lemmas and theorems stated in the early sections. Finally, some technical lemmas required

by the proofs of the asymptotic properties are developed in Section 8.

2 Tensor Spline-based Sieve Maximum Likelihood Es-

timation Method

2.1 Spline-based Maximum Likelihood Estimation

Consider a sample of n ii.d. bivariate current status data (1.1), {(c1k, 014, Cok,02k) : kK =
1,2,--- ,n}. Suppose that (73,73) and (C},Cs) are independent and (Cp,C5) are non-

informative to (71,73). Then the log-likelihood for the observed data can be expressed



ln(-;data) = Z{5l,k52,k log P(Ty < c1 4, 1o < o)
k=1

+015(1 — 09 x) log P(Th < c1 4,15 > co) 2.1)
+ (1 = 61)02 log P(Th > c1 6, T < co)

-+ (1 — 51,k)<1 — 62,k) 10g P(Tl > CLk,TQ > 027k)}.

Denote F' the joint distribution function of event times (77,7%) and F; and Fy the
marginal distribution functions of F, respectively, the log-likelihood (2.1) can be rewritten

as

n

In(F, Fy, Fy;data) = Y {0140 l0g F(cyp, co)

k=1

+ 61.5(1 — 02) log(Fi (1) — F(c1, cox))

2.2
+ (1 — 01,4)02. Llog(Fa(car) — F(c1 ks c2k)) (2:2)
-+ (1 — (51#)(1 — (527;?) log(l — Fl(clyk) — FQ(CQ’]C>

+ F(c1p, c2k))}-

A class of real-valued functions is defined in a bounded region [Ly, U;] X [Lg, Us] as

F ={(F(s,t), F1(s), F5(t)) : for (s,t) € [Ly,U1] X [Lg, Us]},



where F, Fy and F; satisfy the following conditions in (2.3):

0 < F(s,t),

F(s',t) < F(s",1),

F(s,t') < F(s,1"),

[F(s",t") = F(s', t")] = [(F(s", 1) = F(s',1)] = 0,

Fi(s) — F(s,t) > 0 (2.3)
Fy(t) = F(s,t) 20,

[F1(s") = Fu(s)] = [F(s",t) = F(s', )] = 0,

[F2(t") = Fa(t)] = [F(s,t") — F(s, )] 2 0,

[1 = Fi(s)] = [F2(t) = F(s,8)] 2 0,

for ¢ < §"” with s and s” on [Ly, U], and ¢’ < ¢” with ¢’ and t” on [Lo, Us].

It can be easily argued that if F' is a joint distribution function and F; and F, are
its two corresponding marginal distribution functions, (F, Fj, F5) € F. Throughout this
paper, Fy, Fy; and Fp o are denoted for the true joint and marginal distribution functions,

respectively. Hence the NPMLE of (Fy, Fy 1, Fo2) is defined as

~ A

(F,, Fpy, Flo) = arg max g gy y)erin(F, F1, Fy; data). (2.4)

The conventional NPMLE maximizes (2.2) over F with respect to F(cix,cox), Fi(c1x)
and Fy(coy) for k =1,...,n. The study of the conventional NPMLE with bivariate current

status data is both numerically and theoretically challenging. Compare the NPMLE with its



univariate counterpart developed by Groenoboom and Wellner (1992), the computation of
the NPMLE for Problem (2.4) is much more involved in view of the constraints of F given in
(2.3). The NPMLE method adopted by Maathius (2005) may be applied to Problem (2.4),
but this type of methods may not necessarily produce a unique NPMLE as pointed out by
Maathius (2005). While the asymptotic properties of the NPMLE with univariate current
status data were thoroughly investigated by Groenoboom and Wellner (1992) and Huang
and Wellner (1995), they are much harder to study for bivariate current status data, mainly
due to the difficulty in evaluating the entropy of F (Song and Wellner, 2002).

To overcome the difficulties in Problem (2.4), the spline-based sieve maximum likelihood
estimation procedure is proposed. The main idea of the spline-based sieve method is to
solve Problem (2.4) in a subclass of F but “approximating” to F asymptotically, with the
advantage that the estimator to be found in this subclass is easy to compute and analyze. The
univariate spline-based sieve MLEs for various models were developed by Shen (1998), Lu,
Zhang and Huang (2007, 2009) and Zhang, Hua and Huang (2010). In terms of estimating
bivariate functions, the tensor spline (De Boor, 2001) estimation has been studied by Stone
(1994) in nonparametric regression setting, by Koo (1996) and Scott (1992) in estimating a
multivariate density function without censoring, and as noted in Section 1, by Kooperberg
(1998) in estimating the density function of bivariate event times subject to right censoring.
Recently, an application of the tensor B-spline estimation of a bivariate monotone function
has also been investigated by Wang and Taylor (2004) in a biomedical study.

In this paper, we propose a partially monotone tensor spline estimation of the bivariate
distribution function. To solve Problem (2.4), the unknown joint distribution function is

estimated by a linear combination of the tensor spline basis functions and its two marginal



distribution function are also independently estimated by linear combinations of spline basis
functions in the same way given by Lu, Zhang and Huang (2007, 2009) and Zhang, Hua and
Huang (2010). Then maximizing the log likelihood with respect to the unknown functions
converts to maximizing the sieve log likelihood with respect to the unknown spline coefficients

subjecting to corresponding inequality constraints.

2.2 B-spline-based Estimation

In this section, the spline-based sieve maximum likelihood estimation problem is reformulated
as a constrained optimization problem with respect to the coefficients of the B-spline basis
functions.

Suppose two sets of the normalized B-spline basis functions of order [ (Schumaker, 1981),

1

{Nﬁl)’l(s) br and {N;z)’l(t) i, are constructed in [Ly, Uy] X [Ly, Us] with the knot sequence

1 e

{u 31 satisfying Ly = up = -+ = w < wpyq < -+ < Up, < Up,+1 = Up,+; = Uy and knot
-+l e

sequence {Uj}?;{ satisfying Lo = v1 = -+ = vy < g1 < -+ < Vg, < V41 = Vg1 = Us,

where p, = O(n") and g, = O(n") for some 0 < v < 1.



Define

Pn  Q4n

Q= {70 = (Fo, Fut, Frp) - Fu(s,t) =YY i, N () NP (1),
i=1 j=1
Pn N
Foa(s) =Y BN (s),
=1
dn ( )l
2 ’
Fn,2<t) :Z’yij (t)7
j=1
with o = (041,1: T 7Oépn,Qn)7g = (ﬂh T 76}%)7 and v = ('Ylv T 77%)

subject to the following conditions in (2.5)},

ar >0,

OZLJ'_H—CYL]'ZOfOI‘jzl,...,qn—l,

Q11 — GG Z 0 for i = 1,...,pn - 1,
(Qir1j41 — ig1j) — (Qjp1 — ;) >0fori=1,....p,—1,7=1,...,¢, — 1,
B — a1, >0, (2.5)

(Biv1 — Bi) = (g1, — Qig,) = 0fori=1,... p, — 1,
M= Q1 2= 0,

(Vi1 = %) = (g1 — ap, ) 2 0for j=1,....¢o — 1,
B + Van — Upgn < L.

To obtain the tensor B-spline-based sieve likelihood with bivariate current status data,

(F, F1, Fy) = (Fy, Foa, Fr2) = 7, € £, is substituted into (2.2) to result in

10



[n(g, B,7;data) =

(2.6) over §2,.

{mmlogzz% L) NS (e )
=1 i=1 j=2
+ 016(1 = 021) 10g{25z Yer)
L l 2),l
3> i N e NP (Cz,k)}
i=1 j=1
+ (1 — 81 1) 02 log {Z N (o) (2.6)
7=1

—zzaz-,jfvsw<cl7k>Nf>’l<wf)}

i=1 j=1

Pn
+ (1 — 61,k)<1 — 52,k) IOg {1 — ZﬁiNi(l)J(Cl,k)

Lemma 2.1. Class 2, C F.

sub-class “approximates” to F as n — o0.

Asymptotic Properties

11

i=1

_Z’VJN() C?k +ann:a1j

=1 j=1

Cl k N(Q) Z(ngk)}} .

Hence, the proposed sieve MLE with the B-spline basis functions is the maximizer of

Remark 2.1. Lemma 2.1 implies that the spline-based sieve MLE in €2, is the MLE in a

sub-class of F. The spline-based sieve MLE may have good asymptotic properties if this

In this section, we describe the asymptotic properties of the tensor spline-based sieve MLE of

the joint distribution function with bivariate current status data. The study of asymptotic



properties of the proposed sieve estimator requires some regularity conditions, regarding
the event times, observation times and the choice of the knot sequences . The following
conditions sufficiently guarantee the results in the forthcoming theorems.

Regularity Conditions:

C1. Both aF%(St nd 8F0 St ) have positive lower bounds in [Ly, U1] X [La, Us].

C2. % has a positive lower bound by in [Ly, Uy] X [Ls, Us].

oP Fo St)

C3. Fy(s,t) has continuous mixed derivatives of order p, V? Fy = 55525

form=1,2,...,p,

in [Lq, U] x [L2, Us]; Fy1(s) has continuous derivative dp];(;;(s) on [Ly,Uy]; and Fya(t)

: e APyt
has continuous derivative d‘;ﬁ( ) on [Ly, Us).

C4. The observation times (Ci,Cy) follow a bivariate distribution only taking values in

[ll,ul] X [ZQ,UQ], with {; > Ll,ul < U17l2 > Lg, and ug < Us.
C5. The density of (C,Cs)’s distribution has a positive lower bound in [l1, u1] X [l2, us].

C6. Knot sequences {u;}?"" and {vj}qﬁl of the B-spline basis functions {N Dhp br. and

(2).lyan min; A min; A
{Nj joq, respectively, satisfy that both — (u) and m have positive lower
i j
bounds which are not greater than 1, where Aiu = ujy —u; for i =1,...,p, and

Agv)zyj+1—vj for g =1,...,qn.

Remark 3.1. C1 implies that Mod’—ﬁ and % have positive lower bounds on [L1,U;] and

(Lo, Us], respectively. C3 implies that both aFoa(;’t) and aF%(:’t) have positive upper bounds in

(L1, U] x [La, Uy, dFO;() and dFOdtQ have positive upper bounds on [Li,U;| and [Lg,Us],

respectively.

12



Let

Pn

qn

Qn,l = {7— = (Fna Fn,b Fn,Q) :Fn(sa t) = Z Zai7jNi(1)7l<S)N](2)7l(t)7

i=1 j=1

Pn
Fouls) =Y BN (s),
=1

dn
Foa(t) =Y NP (),
j=1

with o = (&171, tee

and 5 = (1,

’apmqn)?ﬂ = (ﬁla"' 76;071)7

77‘171)

subject to the following conditions in (3.1)},

ay > 0,
aq 41 — 0145 Z 0 fOI'j: 1,...,qn— 1,

Q11 — Q41 ZOfOI‘Z: 17...,pn—1,

(ai+1,j+1 - Oéz'+1,j) - (Oém‘ﬂ - O‘Z’J) 2
fOI'iI1,...,pn—1,j:17---aQn_1?

f1— a1, 20,

(ﬁi—i—l — ﬁz) — (OZZ‘_:,_an — ai,qn) Z 0 fOl" Z = 1, e

Y1 — Op,i Z 07

(Visr — %) — (Qppjs1 — @, 5) > 0for j=1,...

Bon + Van = Oppgn < 1.

Remark 3.2. Note that €, is a sub-class of €1,.

13

bo min;, 4<iy <p, Az('?) Ming, 1<) <g, A&i’)
l2
(3.1)
s Pn — 17
yQn — 17

We propose to find the estimator in



Q1 mainly due to the technique convenience in justifying the asymptotic properties. In
computation, the relaxation parameter by can be chosen small enough that would not result

in a different estimator from the one found in €, defined in section 2.

We study the asymptotic properties in the feasible region for observation times: [l1, u] X
[lo,us). Let Q = {7.(s,t) : 7 € Qu1, for (s,t) € [I1,u1] x [lo,us]} and let 7o(s,t) =
(Fo(s,t), Foa(s), Fo2(t)) with (s,t) € [l1,u1] X [la,ug]. Under C4, the maximization of
Zn(g, B,7; data) over €, is actually the maximization of an(g, B,7; data) over Q. Through-
out the study of the asymptotic properties, we denote 7, as the maximizer of I,, (o, 8,7; data)

!/
over €1, .

Suppose the L,(Q)-norm associated with probability measure @ is denoted by || f|| . @) =
(QIFIMY" = ([ |fI"dQ)"". In the following, the L,(Pc, ¢,)-norm, L,(Po,)-norm and L, (Peg,)-
norm are denoted as L,-norm associated with the joint and marginal probability measures
of observation times (C4,Cy), and L,(P)-norm is denoted as the L,-norm associated with
the joint probability measure P of observation and event times (77, Ty, C1, Cy).

Based on the Lg-norms, the distance between 7, = (F,, F,1, Fn2) € Q;l and 7 =

(Fo, Fo 1, Fo2) is defined as

d(Tn, 10) = (|| F5 — Fo||%2(pcl,02) + [ Fon — Fo,1||%2(pcl) + [ o2 — F0,2||%2(p02))1/2-

Theorem 3.1. Suppose C2-C6 hold, and p, = O(n’), q, = O(n") for v < 1, that is, the
numbers of interior knots of knot sequences {u; }?"*" and {v;}i" are both in the order of n®
forv < 1. Then

d(7y,70) —p 0, as n — oo.

14



Theorem 3.2. Suppose C1-C6 hold, and p, = O(n"), g, = O(n’) for v < %p, that is, the

numbers of interior knots of knot sequences {u;}2" ™" and {v;}"*" are both in the order of n®
1

forv < i Then

d(,f_n’ 7_0) _ Op(n_ min{pv,(l—?v)/?)}).

4 Computation of the Spline-Based Sieve MLE

We propose to compute the sieve MLE using I-splines for which the I-spline basis functions

are defined by

(
0, 7> 7,
l .
Ii(s) = Sty — ) M (s) /(1 +1), §—14+1 <14 <7, (4.1)
l,i<j—1+1,
\

for u; < s < ujy, where M/ s are the M-spline basis functions of order [ studied by Curry

and Schoenberg (1966) and can be calculated recursively by

1
M} (s) = ————, u; < 5 < w1,
Uit1 — Uy

(s — ) M (s) + (uis — 5) My (5)]
(0= D(uivr — w) '

By the relationship between the B-spline basis functions and the M-spline basis functions

(Schumaker, 1981), it can be easily argued that the I-spline basis function defined by (4.1)

15



can be expressed by a summation of the B-spline basis functions, that is

15 = YO N () (12)

Therefore, the spline-based sieve estimation can be re-parameterized by the I-spline basis

functions. Let

Pn  QGn

O = {7 = (Fu, Fo, Fup) s Fu(s,t) = > i IV () I 1),
i=1 j=1
Pn dn .
1),l—-1
Foa(s) =D mig + w7 Y(s),
i=1 j=1
qn Pn

) = -3 + 5 0)
Jj=1 =1

Withﬂ: (771,1"" 777pn,qn)>£: (wla"' awpn)a and ™ = (7(1,-“ aﬂ_qn)

subject to the following conditions in (4.3)},

Wi,jZOfOTizlf“ apnvj:]-a"' y dns

w; > 0,1=1, s Ps
(4.3)
m; > 0,7 =1, s Qn,s
Pn dn P an
sz,j +Zwi—|—2ﬂ'] <1
i=1 j=1 i=1 j=1

16



Then the log likelihood with the I-spline basis functions is given by

Zn(ﬂ,Q )= 2{51 k52k10g227hy Zl)l ' (C1k )[](2)’1_1(62,/1@)

=1 j=1

n

+ 01.6(1 — 02z) log{z [Znnw—i—wz

‘1 ),l— I(Cl k)

i
=1 =

& 111 2),l—1
S e <cw>}

=1 j=1

qn Pn
+ (1 = d1,%)02,x log {Z [Z Nij + Tj

j=1 Li=1

D Tt ><>}

i=1 j=1
Pn qn
+ (1 = d1)(1 — da) log {1 - Z [Z Mij + Wi
i=1 Lj=1
dn Pn
- [Z Mij +
j=1 Li=1
Pn  Q4n
n Z Z ni,jfi(l)’l_l(01,k)1](2)’l_1(02,k) } } '

i=1 j=1

[;2),1—1 (car)

(4.4)

Ii(l),l—l (Clyk)

I](Q),l—l (o)

and the spline-based sieve MLE maximizes (4.4) over O,
Lemma 4.1. Class ©,, is equivalent to €,

Remark 4.1. Lemma 2 indicates that the I-spline-based sieve MLFE is the same as the B-
spline-based sieve MLE and it is advocated in numerical computation due to the simplicity

of the constraints in class ©,.

Given p, and ¢,, the proposed sieve estimation problem described above is actually a
restricted parametric maximum likelihood estimation problem with respect to the coeffi-
cients of the I-spline and the tensor I-spline basis functions. Jamshidian (2004) generalized
the gradient projection algorithm originally proposed by Rosen (1960) using a weighted Lo

17



norm |z|| = #’Wz with a positive definite matrix W for the restricted maximum likeli-
hood estimation problems. Lu, Zhang and Huang (2007, 2009) and Zhang, Hua and Huang
(2010) implemented the generalized gradient projection algorithm for the spline-based sieve
maximum likelihood estimation problem with panel count data and interval censored data,
respectively. The algorithm adopted by Zhang, Hua and Huang (2010) is modified to com-
pute the proposed tensor I-spline-based sieve estimator.

Let I (f) and H () be the gradient and Hessian matrix of the log likelihood given by (4.4)
with respect to 0 = (01,02, ,0p, g, 4p.+q,) = (1,w,T), respectively. Note that H () may
not be negative definite for every . During the numerical iterations, if H(f) is negative
definite, we use W = —H(0); otherwise use W = —H(0) + vI, where [ is identity matrix
and 7 > 0 is chosen sufficiently large to guarantee W being positive definite. During the
numerical computation, the index set of active constraints is denoted as A = {iy, g, , i},

that is, for j =1,2,--- |r,
(1> if ij Spn “Qn + Pn + Qn, then eij = 07
(H) if ij =Pn Gnt+DPntant1, then Zf;'lQn+Pn+(In 0; =1.

Suppose the indexes in A are in ascending order and i, = p, - ¢, + pn + ¢, + 1, then the

18



working matrix corresponding to set A could have the following form,

0 0 -1 0 0 0 0
0 0 0 -1 0 0 0
A= 10 0 0 0 —10 0
1 1 1 1 1 1 1
L 4 rx(pn-gn+pn+agn)

The generalized gradient projection algorithm is implemented in the following steps:

Step 1. (Computing the feasible search direction) Compute

d - <d17 d27 e 7dp'n'Qn+pn+Qn> - {] - W_IAT(AW_IAT)_IA}W_IZ(Q)'

Step 2. (Forcing the updated 0 to fulfill the constraints) Compute

. +an
. . 0,7 1= Pmantpntang, e N PrdntPntan
mln{mlnzdz<0{_d_z}7 ZPrifI'n"‘Pn‘FQn dz }7 lf =1 dl > 07
i=

’Y:

mini;di<0{—g—i}, else.

Doing so guarantees that 6; +~vd; > 0 for i = 1,2,--+ | p, - ¢ + Pn + qn, and

Step 3. (Updating the solution by Step-Halving line search) Find the smallest integer k start-

ing from 0 such that

(0 + (1/2)"3d; ) > 1n(6;-).
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Replace 6 by § = 6 + min{(1/2)*,0.5}d.

Step 4. (Updating the active constraint set and working matriz) If k = 0 and v < 0.5, modify
A by adding indexes of all the newly active constraints to A and accordingly modify

the working matrix A.

Step 5. (Checking the stopping criterion) If ||d|| > e, for small €, go to Step 1. otherwise
compute A = (AWflAT)*lAW*lL(G).
(i) If A; > 0 for all j, set § = 6 and stop.

(ii) If there is at least one j such that \; < 0, let j* = argminj.y,«{);}, then
remove the index i;« from A and remove the j*th row from A and go to Step

1.

5 Simulation Studies

Copula models are often used in studying bivariate event time data (Shih and Louis, 1995;
Wang and Ding, 2000; Sun, Wang and Sun, 2006; Zhang, Zhang, Chaloner, and Stapleton,

2010)

We consider bivariate Clayton Copula function

1

Co(u,v) = (w1 407 —1)1=a

with a > 1. For the Clayton Copula, a larger a corresponds to a stronger positive association

between the two marginal distributions. The association parameter o and Kendall’s 7 for

20



the Clayton Copula, are related by 7 = g—ﬁ

In the simulation studies, We compare the proposed sieve MLE to the semiparametric
maximum pseudo-likelihood estimator based on the method studied by Wang and Ding
(2000) under Clayton Copula model for the finite sample performance. The semiparametric
maximum pseudo-likelihood estimator of the bivariate distribution function is constructed
as follows: First, the NPMLEs of the two marginal distribution functions are computed
using Convex Minorant Algorithm (Gnoeneboom and Wellner, 1992) and the association
parameter « is estimated by the maximum pseudo-likelihood method. Then, the NPMLEs
of the marginal distribution functions and the maximum pseudo-likelihood estimator of the
association parameter are plugged into the Clayton Copula model to form the semiparametric
maximum pseudo-likelihood estimator of the joint distribution function.

The proposed sieve MLE and the semiparametric maximum pseudo-likelihood estimator
are evaluated with various combinations of Kendall’s 7 (7 = 0.25,0.75) and sample sizes
(n = 100,200). Under each of the four settings, the Monte-Carlo simulation with 500
repetitions is conducted and the cubic (I=4) I-spline basis functions are used in the proposed

sieve estimation method. The event times (77, T), monitoring times (C, C3), and the knots

selection of the cubic I-spline basis functions are specified as follows:

(i) (Ewvent times) (T, T5) are generated from the Clayton copula with the two marginal dis-
tributions being exponential with the rate parameter 0.5. Under this setting, Pr(T; >

5) < 0.1 for i = 1,2 and [L1, U;] x [Ls, Us] is chosen to be [0, 5] x [0, 5].

(ii) (Censoring times) Both C; and Cy are generated independently from the uniform dis-

tribution on [0.0201,4.7698] (Pr(0 < T; < 0.0201) = Pr(4.7698 < T; < 5) = 0.01, for
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(iii)

i = 1,2). The observation region [l1,u1] X [la, us]=[0.0201, 4.7698] x [0.0201, 4.7698] is
inside [0, 5] x [0, 5] and the distribution functions are bounded away from 0 and 1 inside

the observation region.

(Knots selection) Theorem 3.2 implies that the proposed sieve estimator converges at a

rate not faster than n'/4, and the rate of convergence reaches n'/* for p > 2 and v = 4ip

. If p =2, then v = 1/8 and the number of subintervals made of the knot sequence

could be chosen as n'/8

. This choice of the number of knots is mainly of interest for the
asymptotic properties when n is very large. In practice, for the number of interior knots
My, Mn~+1 is often chosen as the closest integer to n'/? that was used by Lu, Zhang and
Huang (2007, 2009) and Zhang, Hua and Huang (2010). For moderate sample sizes,
say n = 100, 200, our experiments show that such m,, is a reasonable choice for the
number of interior knots and hence the number of spline basis functions is determined
by pn = ¢, = m, +4 in our computation. Therefore, we choose 4 and 5 as the numbers
of interior knots for sample size 100 and 200, respectively. Two end knots of all knot
sequences are chosen to be 0 and 5. For each sample of bivariate observation times

(Cy, Cy), the interior knots of {IV*}", and {1;2)’3 i, are allocated at the k/(m, +1)

quantiles, k = 1,...,m, of the sample of C; and the sample of C5, respectively.

Table 1 and 2 display the estimation biases (Bias) and the square roots of the mean

square errors (MSEY?) from the Monte-Carlo simulation of 500 repetitions for both the

proposed sieve MLE and the semiparametric maximum pseudo-likelihood estimator of the

bivariate distribution function at the 9 pairs of time points (sq, ) with different sample

sizes and different values of Kendall’s 7. Table 3 calculates the average estimation bias and
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the average square root of the mean square error for 2209 values of (s1, so) with both s; and
so uniformly taking 47 values from 0.1 to 4.7. It appears that the bias and the mean square
error of the proposed sieve MLE may be a little larger at some points near the boundary
than its counterpart, it outperforms its counterpart because of smaller overall bias and mean
square error (Table 3). It is also noted that mean square error of the proposed sieve MLE
noticeably decreases as sample size increases from 100 to 200.

For sample size n = 200, the estimation biases of the joint distribution function from
the same Monte-Carlo simulation for both estimation methods are graphically presented in
Figure 1 and 2 with Kendall’s 7 = 0.25 and 0.75, respectively. These figures clearly indicate
that the bias of the proposed sieve MLE is noticeably smaller than that of the semiparametric
maximum pseudo-likelihood estimation inside the closed region [0.1,4.7] x [0.1,4.7], but the
bias of the proposed sieve MLE near the origin increases as Kendall’s 7 increases. As the
by-product of the estimation methods, the estimates of the marginal distribution function of
Ty from the same Monte-Carlo simulation for both the proposed sieve MLE (Sieve) and the
NPMLE using Convex Minorant Algorithm (Nonparametric) are also computed and plotted
in Figure 3 along with the true marginal distribution function (7True). Figure 3 clearly
indicates that the bias of the proposed sieve MLE for the marginal distribution function is
generally smaller than that of the NPMLE, particularly near the two end points of interval

0.1,4.7).
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Figure 1: Comparison of the bias between the proposed spline-based sieve estimator (left) and the
semiparametric maximum pseudo-likelihood estimator (right) for the joint distribution function
when sample size n = 200, Kendall’s 7 = 0.25

Figure 2: Comparison of the bias between the proposed spline-based sieve estimator (left) and the
semiparametric maximum pseudo-likelihood estimator (right) for the joint distribution function
when sample size n = 200, Kendall’'s 7 = 0.75
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Figure 3: Comparisons of the estimated marginal distributions of T} between the proposed spline-
based sieve estimation method and the nonparametric maximum likelihood method when sample
size n = 200 (left: kendall’s 7 = 0.25; right: kendall’s 7 = 0.75)
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Table 1: Comparisons of the pointwise bias and square root of mean square error between the pro-
posed spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator
when Kendall’s 7 = 0.25

Sample Size n = 100

15
h 0.1 1.6 4.6
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo

0.1 Bias 5.47e-3 -1.90e-2 Bias 1.99e-2 -3.69e-2 Bias 3.11e-2 -3.95e-2
MSEY2  3.21e-2 1.90e-2 | MSE'/2  6.74e-2  4.86e-2 | MSE'/2  7.81e-2  5.42¢-2
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
1.6 Bias 1.50e-2 -4.06e-2 Bias -5.20e-2  1.02e-3 Bias -3.08e-2  2.81e-3
MSEY?  6.37e-2  4.62e-2 | MSEY?2  9.67e-2  1.02e-3 | MSEY/?  8.57¢-2  1.12e-1
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
4.6 Bias 2.52e-2 -4.39e-2 Bias -2.76e-2  1.15e-2 Bias -4.46e-3  1.0le-1
MSEY?  7.27e-2  5.06e-2 | MSEY2  8.96e-2 1.22e-1 | MSEY/?2  7.22e-2  1.32e-1
Sample Size n = 200

15
h 0.1 1.6 4.6
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo

0.1 Bias 3.32e-3 -1.86e-2 Bias 1.14e-2 -3.66e-2 Bias 1.67e-2 -3.90e-2
MSEY?  2.35¢-2 1.90e-2 | MSEY2  4.93¢-2  4.56e-2 | MSE'/?  5.37¢-2  5.06¢-2

Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
1.6 Bias 5.39e-3 -3.69e-2 Bias -4.83e-2  1.45e-3 Bias -2.69e-2  1.68e-2
MSEY?  4.22e-2  4.67e-2 | MSEY/?2  8.29e-2  7.26e-2 | MSE'/2  6.70e-2  9.26e-2

Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
4.6 Bias 1.19e-2 -3.80e-2 Bias -2.21e-2 1.21e-2 Bias -8.32e-3  7.76e-2
MSEY?  4.83e-2 5.29e-2 | MSEY?2  6.91e-2  9.32e-2 | MSEY/?2  5.75e-2  1.08e-1
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Table 2: Comparisons of the pointwise bias and square root of mean square error between the pro-
posed spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator
when Kendall’s 7 = 0.75

Sample Size n = 100

b
h 0.1 1.6 4.6
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo

0.1 Bias -1.07e-2 -4.34e-2 Bias 2.86e-2 -4.19e-2 Bias  3.00e-2 -4.19¢-2
MSEY2  4.24e-2  4.34e-2 | MSEY/2  7.85¢-2 5.37e-2 | MSEY/?  7.95¢-2  5.38¢-2
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
1.6 Bias  2.80e-2 -4.01e-2 Bias -5.63e-2 -4.72e-2 Bias -8.88¢-3 -2.09e-2
MSEY?2  7.92e-2  5.66e-2 | MSEY/2  9.65¢-2  1.07ce-1 | MSE'/?  7.64e¢-2  1.20e-1
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
4.6 Bias  3.00e-2 -4.00e-2 Bias -1.02e-2 -1.98e-2 Bias -3.13e-2  7.84e-2
MSEY?  8.09e-2 5.67e-2 | MSEY2  7.59¢-2  1.15e-1 | MSE'/?  7.01e-2  1.10e-1
Sample Size n = 200

b
h 0.1 1.6 4.6
Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo

0.1 Bias -1.19e¢-2 -4.18e-2 Bias 1.95e-2 -3.82¢-2 Bias 2.02e-2 -3.82¢-2
MSEY2  3.35¢-2 4.4le-2 | MSEY/2  550e-2 5.34e-2 | MSEY2  5.54e-2  5.35e-2

Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
1.6 Bias 2.02e-2 -3.77e-2 Bias -5.11e-2 -2.26e-2 Bias -1.09e-2 -3.81e-3
MSEY2  5.60e-2 5.20e-2 | MSEY2  7.72e-2  7.60e-2 | MSE/2  5.97¢-2  8.82¢-2

Sieve  Pseudo Sieve  Pseudo Sieve  Pseudo
4.6 Bias 2.09e-2 -3.77e-2 Bias -1.18e-2 -4.64e-3 Bias -3.39e-2 5.31e-2
MSEY2  5.62¢-2 5.20e-2 | MSEY/2  599¢-2  9.30e-2 | MSEY/2  6.07e-2  8.38e-2

Table 3: Comparisons of the overall bias and square root of mean square error between the proposed
spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator

Sample Size
100 200
Sieve  Pseudo Sieve  Pseudo
0.25 Bias -1.08e-3 -7.71e-3 Bias -2.20e-3 -7.57e-3
MSEY2  7.72e-2  1.04e-1 | MSEY/2  598e-2  7.93e-2
Sieve  Pseudo Sieve  Pseudo
0.75 Bias -5.17e-3 -2.81e-2 Bias -4.63e-3 -1.88e¢-2
MSEY2  7.42e-2 1.08¢-1 | MSEY2  5.74e-2  8.27e-2

kendall’s 7
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6 Final Remarks

The estimation of the joint distribution function with bivariate event time data is a chal-
lenging problem in survival analysis. Development of sophisticated methods for this type
of problems is much needed for practice. In this paper, we develop a tensor spline-based
sieve maximum likelihood method for estimating the joint distribution function with bi-
variate current status data. This sieve estimation approach reduces the dimensionality of
the nonparametric maximum likelihood estimation problem substantially which makes the
nonparametric maximum likelihood estimation tractable numerically. Under mild regularity
conditions, we also show that the proposed spline-based sieve estimator is consistent and

1/4 if the true joint dis-

could converge to the true joint distribution function at a rate of n
tribution function is smooth enough. The simulation studies indicate that the finite sample
performance of this proposed sieve estimation method is generally satisfactory and even
better than the semiparametric maximum pseudo-likelihood estimation method with the
Clayton copula model. It is also worth noting from our simulation studies that, for estimat-
ing the marginal distribution function in this bivariate event time setting, using the joint
estimation method as proposed in this article may yield a better estimator than the NPMLE
with only the marginal event time data. This fact may be general true as the joint estimation
method implicitly takes the potential correlation between two event times into consideration.

The proposed spline-based sieve estimation method can be readily extended to bivariate

right censored and bivariate interval censored data studied by for example, Dabrowska (1988)

and Kooperberg (1998), and by Maathuis (2005) and Sun, Wang and Sun (2006), respectively.
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7 Technical Proofs

For the rest of this paper, we denote K as a universal positive constant that may be different

from place to place and P, f = %Z?Zl f(X;), the empirical process indexed by f(X).
Proof of Lemma 2.1. (i) Since ay 1 > 0, it is obvious that 0 < F, (s, t).

(ii) By Theorem 5.9 in Schumaker (1981), we have

OF,(s,t Pl (11 g1 — O i _
a(s ) _ Z Z( )( +1,j ,J)Ni(j_)fl 1(3)]\/(2)’1(15).

=1 j—1 Wit — Uit

Then by the constraints o; 111 — ;1 > 0 and (@141 — Q1) — (@441 — @) > 0,

we have a;q1; — o ; > 0. Hence 8F”8—(;’t) > 0 and it is followed by

Fo(s',t) < Fy(s",4). (7.1)

(iii) By the similar arguments as in (ii), it can be shown that

F.(s,t") < Fu(s,t"). (7.2)

(iv) By Theorem 5.9 in Schumaker (1981), we can derive

82F (S t) pn—1gn—1 Oé‘+1 01— Ol — G + O s i1 9) [—1
Z T\ I—1 2 1,5+ 0,54 i+1,5 i, N( ), 5 N( ), ~
E T D Dl e i S WS S SNV U

(7.3)
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Then by the constraint (oi1,j+1 — it1,5) — (@41 — @iy) = 0,

0?F,(s,t)
0sot

>0, or F,(s",t") — F,(s',t') < F,(s",t") — F.(s',t").

(V) Since 61 — 01,4, Z 0 and (ﬁ’H—l — ﬁz) — (OZH_an — ai,qn) Z 0, then ﬁz — Uiq, Z 0. Hence,

Fo(s,t) < Fy(s,Us) < Fyy(s). (7.4)

(vi) By the similar arguments as in (v), it can be shown that

Fo(s,1) < Fy(Uy,t) < Fra(t). (7.5)

(vii) By Theorem 5.9 in Schumaker (1981) again, we have

(L= DB =)y

dF,1(s) R~
ds -

=1 Wil — Uit

Then by the constraint (8i11 — 3i) — (Qit1.9, — Qi) > 0,

O(Fpa(s) — Fuls, 1))
Js

>0, or F(s",t) = Fp(s',t) < Fpoa(s") — Fua(s').

viii) By the similar arguments as in (vii), it can be shown that F,(s,t") — F,(s,t') <
y

Foa(t") — Foo(t).

(ix) Since B-spline basis functions sum to one and their supports only cover a part of the
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knot intervals, then Fy,(Ur) = ﬁpnNzgrlb)’l(Uﬁ = Bpns Fr2(U2) = 'anNq(s)’l(U2> = Yan>

and F,(Uy,Us) = oy, o NS (UDNSE (U) = a, .. Hence,

Foo(Uz) = Fo(Ur, Uz) = g, — Qe < 1= 08y, =1 — F,1(Uh).

dF’Zl’;(S) > 8Fggs’t) and dF’;’f(t) > 8F’é§s’t) guarantee F, 1(Uy) — F,1(s) >

Moreover,

F.(Uy,Us) — F,(s,Us) and F,, 2(Us) — F,2(t) > F,(Uy,Us) — F,,(Uy, t), respectively.

Hence,

1 — Fpi(s) — Fra(t) + Fou(s, t) ={1 — F1(Uy) + Fa(Ur) — Foa(s)}
—{Fo2(t) — F, (U, t) + F, (U, t) — F(s, 1)}
>{F,2(Us) — F,,(Uy, Uz) + F,,(Uy,Uz) — F(s,Us) }
—{Fo2(t) — F, (U, t) + F, (U, t) — F(s, 1)}
={F,2(Us) — F,,2(t) — F,,(Uy,Us) + F,,(Uy, t)}
+{F. (U1, Us) — Fo(s,Us) — Fo(Up,t) + (s, t)}

>0.

Proof of Theorem 3.1. We show 7,, is an consistent estimator by verifying the three condi-

tions of Theorem 5.7 in van der Vaart (1998).
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For (s,t) € [l1,u1] X [l2, us] we define Q by

Q= {7(s,t) = (F(s,t), Fi(s), Fa(t)) : T satisfies the following conditions (a) and (b)},

(a) F(s,t) is nondecreasing in both s and ¢, Fi(s) — F(s,t) is nondecreasing in s but
nonincreasing in t, Fy(t) — F(s,t) is nondecreasing in ¢ but nonincreasing in s, and

1 — Fi(s) — F5(t) + F(s,t) is nonincreasing in both s and ¢,

(b) F(S,t) > bl, F1(8>—F<8,t> > bg, Fg(t)—F(S,t) > bg, and 1—F1(8)—F2(t)+F<S,t) > b4,

forbl>O,b2>0,b3>0andb4>0.

Lemma 8.1 indicates that there exist by > 0, by > 0, b3 > 0 and by > 4 small enough to
guarantee that 75 € 2 and Q;l € () under C2 and C6. We suppose by, by, b and by in above
Condition (b) are chosen small enough such that € contains both 7y and €2, .

The class of functions made by the log of density for single observation (s,t) is defined

as L ={l(1) : 7 € Q}, where

(1) =6102log F(s,t) + 01(1 — d2) log[Fi(s) — F(s,t)]
+ (1= 61)02 log[Fy(t) — F(s,1)]

+ (1 —=01)(1 = d2) log[l — Fi(s) — Fy(t) + F(s,t)],

with 01 = 1jp <4, 02 = L<g. We denote M(7) = PI(7) and M, (1) = P,(I(7)).
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(i) First, we verify the condition:

sup [M,, (1) — M(7)| —, 0.

TEQ

It suffices to show that £ is a P-Clivenko-Cantelli, since

sup [M,,(7) — M(7)| = sup |(Bn — P)I(7)[ —, 0.
TEQ l(r)eLl

Let Ay = {2850 7 — (F, 1, Fy) € Q}, and Gr = {1y, gupoy b < 5 S upylp <t < up)

By Conditions (a) and (b), we know 0 < W <1 and w is nonincreasing in both
0g 01 0g 01
s and t. Therefore A; C sconv(Gy), the closure of the symmetric convex hull of G; (van der

Vaart and Wellner, 1996). Hence Theorem 2.6.7 in van der Vaart and Wellner (1996) implies

that

N(e,G1, La(Qcr,cy)) < K (1)4, (7.7)

€

for any probability measure Q¢, ¢, for (Cy, Cs), by the fact that V(G;) = 3 and the envelop

function of G is 1. (7.7) is followed by

1\ 43
log N (e, 5conv(G1), L2(Qcy cn) < K (—) 7

€
using the result of Theorem 2.6.9 in van der Vaart and Wellner (1996). Hence

1\ 43
log N(e, A1, La(Qey.0n) < K <—> . (7.8)

€
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Let

Al = {616,1og F(s,t) : 7 = (F, Fy, Fy) € Q}.

Suppose the centers of e-balls of A; are fi,i = 1,2,...,[K(1)*3], then for any joint

probability measure @ for (17,75, Cy, Cy)

16102 log F — 6185 log by fill3, o)

2
— Q| 6,8, log b, 1OgF—fi
log b1

log F(C}, C: ?
=L |:1[T1<C1,T2<Cz} log by (% — filCy, 02))}
1

log F(Cy,C 2
=F {E { [1[T1<01,T2<Cg] log by (M - fi(Cla 02))] |C'1, 02}}

log by

log F(Cl, CQ)

2
e e

= FEc, o, |:F0(01702)10g by (

log F(Cl, CQ)
log by
2

< Ecl,cg {108; by ( - fi(CbCz))]

L2(Q01,02)

Let by = —logb, then 6185 loghy fi,i = 1,2,..., [K(1)*3] are the centers of eby-balls of

A’ Hence by (7.8) we have log N (eby, A}, Ly(Q)) < K (%)4/3, and it follows that

1 - 1 1\ /3
/ sup \/log N(eby, A}, Ly(Q))de < / VK (—) de < co.
0o @ 0

€

It is obvious that the envelop function of A is by, therefore A} is a P-Donsker, by

Theorem 2.5.2 in van der Vaart and Wellner (1996).
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Let

Ay = {6,(1 — 85) log(Fy(s) — F(s,t)) : 7 = (F, Fy, Fy) € Q}
Ay = {(1 = 6))d2log(Fy(t) — F(s,t)) : 7 = (F, Fy, Fy) € Q}

and
A; ={(1=091)(1 = 2)log(l — Fi(s) — F5(t) — F(s,t)) : 7 = (F, F}, F») € Q}

By the similar arguments in showing A] to be a P-Donsker, it can be shown that A, A;
and A, are all P-Donsker classes. So L is P-Donsker as well. Since P-Donsker is also

P-Clivenko-Cantelli, it then follows that sup;,e. [(Pn — P)I(7)| =, 0.

(ii) Second, we verify

M(79) — M(7) > Kd(ro,7)?%,

for any 7 € €. Note that

M(ro) — M(7) = P{l(10) — I(7)}
Foy — Fy
F—-F

— Iy — Foae + Fy
1-F—F+F ’

Foo — Fy

E
=P {51(52 lOg FO + (51(1 — 52) IOg i3 i
H —

+ (1 — 61)(52 lOg

(1 = 61)(1 = 6) log -

FO FOl_FO FOQ_FO
=P Fylog — + (Fo1 — Fb)log —=—— + (Fo2 — Fp) log ———
CI,CQ{ 0108 7 + (Foa — Fp) log F—F + (Fo2 — Fo) log Fy— F

1—Fy1— Fyo+ F
+(1 — Foq — Foo + Fp) log o 0.2 0} ;

1-F—F+ F
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it follows that

M(ro) = M(r) =Foy.c, {Fm (%) FR (%)
om (=)

1—Fyq1 — Foo+ Fo
1—-F —F+ F : :
Fl-hA-FB )m( - F -+t F )}

where m(z) = rlog(x) —z+ 1> (x —1)*/4 for 0 < z < 5.

Since F' has positive upper bound,
E F
Fey . {Fm (Fo)} > FPoy o, {F (Fo - 1) /4} > KPc,c,(Fy — F)?
= KHFO - F”%Q(PCLCQ)'

Similarly, we can easily show that

Foqr — Fy
Pevs { (B = Py (SR ) 2 KB = ) = (= Pl

F0,2 — Iy 2
PC’l,CQ {(F2 - F)m (W) } > K”(FOQ — Fg) — (Fo — F)”L2(Pcl,02)’

and

1— Fy1 — F )

1-F -+ F

ZKH(]_ - F071 - FO,Q + FO) - (]. - F1 - FQ + F)||%2(P01,02)'
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So combining (7.10), (7.11), (7.12) and (7.13) results in

M(70) = M(r) 2K (1B = FllE s, o) + | (Fot = F2) = (Fo = F)ly )

I (For = F) = (Fo = F)r )

Let fi = [[Fo — F“%Q( , f2 = [|Foq — Fl”%Q(PCl), and f3 = |[Foz — F2||2L2(pc2)-

PCl,CQ)

If f, is the largest among f1, fo, fs, then
M(ro) = M(7) > K fi = (K/3)()r + f2 + f3). (7.14)
If f, is the largest, then
M(ro) — M(7) > K[fi + (f2 — f)] = K fa > (K/3)(fi + fo + f3). (7.15)
If f5 is the largest, then
M(ro) = M(7) = K[fi+ (fs = f1)] = Kfs = (K/3)(f1 + f2 + fa). (7.16)
Therefore, by (7.14), (7.15) and (7.16), it follows that

M(7o) — M(7) > Kd(o,7)%.

(iii) Finally, we verify M., (7,,) — M, (19) > —o,(1).

Lemma 8.3 indicates that there exists 7,, = (F,, Fi1, Fr2) in Q;L such that for 7, =
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(Fo, Foa, Foz2), |1Fn — Follee < K(n7P), ||Fg — Foalleo < K(n7?Y), and [[Fr2 — Fo2lle <

K (n~?). Since 7, maximizes M,,(7) in Q,, M,,(,) — M,,(7,,) > 0. Hence,

M, (7)) — M, (10) =M, (7)) — M, (73,) + ML, (7,) — M (70) > M, (7,) — M, (70)

=P (l()) = Pu(l(70)) = (P — P){l(7a) — U(70) } + P{l(70) — I(70)}.

(7.17)

Define

Lo ={l(1) : Tw = (Fp, Fu1, Fa) € Q|| Fry — Follso < K(n7P),

| Fap — Foalloo S K(n7P), | Fr2 — Fozllee < K(n7)}

Since (a + b+ ¢+ d)? < 4(a® + b* + ¢ + d?), then for any I(7,,) € L,,, we have

Fn,l_Fn)2

F 2
2 < n
P{Z(Tn) — l(ro)} 4P (5152 log —0) +4P (51(1 — 52) log . 3

FnQ_Fn ?
4P ( (1 — 61)09log ————
" (( 1)3zlog Foo — Fo)

1_Fnl_Fn2+Fn ?
+4P [ (1 —=067)(1—69)1 : :
(( 2 2)log 1—F0,1—F0,2+F0>

Fn,l _Fn>2
Fo1 — Fo

EN\?
§4P01,Cg (log F) —+ 4PCl,Cg <10g
0

1_Fn,1_Fn,2+Fn)2

EF,o—F\*
4P, log /=~ 4P 1
e ( o ) e ( T Foy - Fost By

(7.18)

The facts that || F,, — Fyl|lo < K(n7?") and that Fy has a positive lower bound result in

1/2 < £ < 2 for large n. It can be easily shown that if 1/2 < z < 2, |log(z)| < K|z — 1|.
Fy
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Hence ‘log ‘;—g <K % — 1‘ and it follows that
E,|? E, P
Fey IOgF <KPc,c, ?_1 SKPCLC2|F”_FO|2
0 0

<K(n*)* —0.

The similar arguments yield to

2

Fn - Fn
Poy.c, |log | <K Pe, | (Fu1 — Fo) — (Fox — Fo)?
FO,l - FO
<K(n™*)*—0,
F,o—F,|°
n2 — 4L'n
PCl,Cz log’— SKPCLCQKFHQ_FH) - (FO,Q—FO)IQ
FO,Z - FO
SK(nfpv)z — 0,
and
1—F —F,o+ F,|?
PCl,Cg lOg 1 2 + — O

1—Fo1 — Foo + F

(7.19)

(7.20)

(7.21)

(7.22)

Combining (7.18), (7.19), (7.20), (7.21) and (7.22) results in P{i(7,) — (10)}* — 0, asn —

oo. Hence

pp{l(m,)—1U(m0)} = {varp[l(Tn)—l(To)]}1/2 < {P{[l(Tn)—l(7’0)]2}1/2 — 0, asn — oo. (7.23)

Since £ is shown a P-Donsker in the proof of (i), Corollary 2.3.12 of van der Vaart and

38



Wellner (1996) indicates that

(P, — P){i(1,) — l(10)} = 0y (n_l/Q) , (7.24)

by the fact that both I(7,,) and I(7y) are in £ and (7.23).

In addition,

[P{I() = U(70)}| <P[U(7a) = 1(70)]

1/2

<K {P[i(r) — U(r0)]"}

— 0, as n — oo.

Therefore P(I(7,) — (79)) > —o(1) as n — oo. Hence,

This completes the proof of d(7,,7) — 0 in probability. O]

Proof of Theorem 3.2. We derive the rate of convergence by verifying the conditions of The-
orem 3.4.1 of van der Vaart and Wellner (1996). To apply the theorem to this problem,
we denote M, (7) = M(7) = PI(r) and d, (7, 72) = d(71,72). The maximizer of M(7) is

To = (F07F0,17F0,2)-

(i) We first verify that for § > 0,

sup (M(7) — M(7)) < —K§?

0/2<d(1,10)<d,7€QY,
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By the proof of consistency, we have already established that for any 7 € Q, M(m) —M(7) >

Kd?(7,7) and it directly results in the above inequality.

(ii) We will find a function (-) such that

J
E sup Gn(r —710) ¢ < KM
§/2<d(r,m0)<6,7€Q, Vn

and § — (5)/d% is decreasing on 4, for some a < 2, and for r, < §!, it satisfies
r2 (1/r,) < Ky/n for every n.

Let

Lns={l(t) —l(r) : 7 €Q, and §/2 < d(7,79) < 6}.

First, we evaluate the bracketing number of L, s.
Let £ = {l(r) : 7€ QY Fo={F 7= (FF,F)cQ} Fo={F :7=

(F,F,F) €Q}, and Fo={Fy: 7= (F, [}, F) € Q}.

Lemma 8.5 indicates that there exist e-brackets [FL, FY],i = 1,2,...,[(1/e)5Pr] to
cover F,,. Lemma 8.6 indicates there exist e-brackets [Fj(l)’L, Fj(l)’U],j =1,2,...,[(1/e)kPn]
to cover F, 1, and there exist e-brackets [Fk(Q)’L, F,£2)’U], k=1,2,...,[(1/e)k%"] to cover F,.».

Let

1V =016 1og FY + 61(1 — &) log(Fj(l)’U — FY) + (1= 6,)d; log(FY — L

+ (1= 681)(1 — &) log(1 — FF — FPW 1 FY),
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and

1L =6010slog FE +61(1 — 8) log(FM — FY) + (1 — 61)ds log (F* — FY)

+ (1= 81)(1 — &) log(1 — FOV — FOV 4+ By,

Then for any I(7) € L}, ,there exist 7,5, k, for i = 1,2,...,[(1/e)KPan],

j=12..[(1/e)kP] and k = 1,2,...,[(1/e)k®], such that [X

Lin < U(r) < 1Y), and the

l7j7k

1L

number of brackets 1V, 1's is bounded by (1/€)%Pnan . (1/€)KPn . (1/e)Km.
4,5,k

0,7,k
Note that

U FOU _ pL @)U _ pL

U L 7 J ? k i

[ee] 7 % ( 00
o LB - B R
og

1— F}-(l)’U . E]@),U + FiL N

Since for any 7 € €, F has positive lower bound, then for small €, F¥ can be made to

have positive lower bound as well. Combining with the fact that F\V (s, t) is close to F(s,t)

guarantees that 0 < Z;,ZLJ —1<1fori=1,2,...,[(1/¢e)%P%]. Note that by logz < (z — 1)
for 0 < (z — 1) < 1, therefore log ?EL] < };’LL] —1.
Hence,
; ; L v L U L
log =p |l < HFL —1H < ‘ ﬁ(l«‘; - Fh| <K|F' -F'|_ <Ke
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Similarly, by the definition of €2/, we can easily show that

FOU _ pL
log—2— || < Ke
1),L U - ’
U
FPY — FF
log % S KE,
F2T=F
and
(1),L (2),L U
logl_Fj&l)U_Fj@)U—i_E < Ke.

Hence, it follows that

Noe, L3, [ oo} < (1 €)fPrantfpntiian < (1 fe)pnn

and Nj{e, Lk, Lo(P)} < (1/e)Pran by the fact that Ly-norm is bounded by L.-norm.

Finally, by (L,.s + l(70)) C L,

Ny{e, Los, La(P)} < (1/€)fPran, (7.25)

Second, we show that P{L(7)— L(79)}* < K& for any L(7) — L(7y) € L, 5. Since for any
7= (F, [y, Fy) with d(7,70) < 0, [|F = FollLo(Pe, 0,) < d(F, Fy) < 6. Then under C1, C3 and
C5, Lemma 8.7 indicates that for very small 6 > 0, F' and Fj are very close at every point in

[l1,u1] X [l,us]. Then the fact that Fy has a positive lower bound results in 1/2 < Fﬂo < 2.
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Hence ‘log F%’ <K ‘Fﬂo — 1‘ and it follows that

2
<KPe c,

2

PChCz < KVPCLC2 ’F - F0|2 < K&

F
— 1
Fo

) F
O JR—

Again by the definition of €2/, we can similarly show that given a small § > 0, when n is

large enough, the following inequalities are true,

F,—F |
P, log —— | < K§?
C1.Ce |08 Fop—Fo| — ’
F—F |?
P, log —=—— | < K62
C1,0 |108 F0,2 — FO >~ y

and

2

1-F —F+F < Ké2.

1 —Foy1 — Fopa + Fo

PCl,Cg lOg

Hence for any I(7) —I(79) € L, 5, we have P{l(7) —(19)}* < K&2. Tt is obvious that L, 5
is uniformly bounded by the structure of the log likelihood, Lemma 3.4.2 of van der Vaart

and Wellner (1996) indicates that

J 46, Los, La(P)}
52\/n ’

Ep H Gy, ||£n,5§ Kj[]{57£n,57L2(P)} 1+

where

g
J{6, Las, La(P)} = / \/1+1ogNH{e,£n,5,L2<P)}de < K(pogn)'/?6?
0
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by (7.25). This gives 1(0) = (pnqn)/20"% + (pngn)/(0n'/?). Tt is easy to see that 1(5)/9 is

decreasing function of §. Note that for p, = ¢, = n"’,

n2pv¢(1/npv) _ n2pvnvn7pv/2 + n2pvn2vnfl/2npv

_ nl/?{n(Spv)/Z—(1—2v)/2 + n3pv—(1—2v)}.

Therefore, if pv < (1 — 2v)/3, n?"4(1/nP") < n'/2. Moreover,

n2(1—2v)/3w(1/n(1—2v)/3) _ p20-20)/3 0 —(1-20)/6 | 2(1-20) /3,20, ~1/2, (1-20)/3
1/2

=2n

This implies if r,, = nm{Pv(1=20)/3} " p20),(1 /1 ) < Knl/2,

(iii) Finally, we need to show that M(7,,) —M(79) > —O, (r,,?). Note that by (7.17), ML, (7,,) —
M,.(10) > L1 + Ion, where L1, = (P, — P){I(7) — l(70)} and Iy, = M(7,,) — M(7) for any
I(12) € L. Given by (7.24), I, , = 0p(n™"/?). Then if v < &, we have I, = 0,(n"*"). In

what follows, we show that M(7y) — M(7,) < O(n2").

By (7.9),
I Fy1— F
M(7) = M(7) =Fer.c, {an (ﬁ) + (P — Fo)m (H)
n n,l - n
Fyo — F
+(Fno — F,)m (H) (7.26)
TL,2 - n

1— Fox — Fop + F
+(1 — Fua _Fn,2+Fn)m < 0,1 0,2 0)} .

1_Fn,l_Fn,Q+Fn

By the fact that m(z) = zlog—z + 1 < (x — 1)? in the neighborhood of z = 1 and the
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definition of L,

F, F, 2
f)ChC2 {an <FO>} SKPCl,Cb {Fi (FO — 1) } = KPC:[,CQ(FO — Fn)Q

(7.27)
<K|Fy— F,||2 =0 (n7%").
similarly, we can show that
Fy, — F
Pevs { (Fus = B (2= ) | <K= Rl + Kl o - Pl
wl o (7.28)
=0 (n™?"") ,
Fyo — F
Prvcs{ (Foa = B (22 =0 ) L <KIR = Rl + Kl Foe - Fuall
w2 (7.29)
=0 (n™*"") ,
and
1— Fyy — Fys + K
Pe, e, {(1 — Foy = Fop+ F)m ( S ) }
]-_Fn,l_Fn,Z_l_Fn (730)

< K||Fo = Foll5 + K| Foa — Fupll% + Kl[Fop — Faalli = 0 (7).

Combining (7.26), (7.27), (7.28), (7.29) and (7.30) results in M(7y) — M(7,) < O(n?"). and

it then follows that

M, (7,) — M, (1) > -0 (n*m’) + 0, (n*ZP”) =-0, (n’%”)

v

— O, (n72mintee0=2/30) — O, (r,2)
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Therefore, it follows by Theorem 3.4.1 in van der Vaart and Wellner (1996) that
rnd(Tn, T0) = Op(1).

O

Proof of Lemma 4.1. Let o, ; = anﬂ 22:1 Ny Bi = anzl { ;’” L Mm.j + wm} and vy; =
120 Mim + ). It can be easily argued that condition (2.5) and (4.3) are equivalent.
By the relationship between the B-spline basis functions and the I-spline basis functions

given by (4.2), it follows that

Pn  Qn Pn  Qn

1),l 2[ ll 2),0—1
SN a NN ) = S0 iy L),
=1 1

=1 j=1 i=1 j=

Pn Pn
S ANO () {z} )
=1

=1

and

Zﬂ =Z§{Zmﬁm}f“ ‘).

7j=1 =1

8 Technical Lemmas

Lemma 8.1. Suppose T = 1y or 7 € ., then under C2 and C6, the following two properties

hold for F(s,t), Fi(s) and Fy(t) with 7(s,t) = (F(s,t), F1(s), F»(t)).
(1) F(s,t) is nondecreasing in both s and t. Fi(s) — F(s,t) is nondecreasing in s and
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nonincreasing in t. Fy(t) — F(s,t) is nondecreasing in t direction and nonincreasing in

s. 1 —Fi(s) — Fy(t) + F(s,t) is nonincreasing in both s and t.

(2) F(s,t), Fi(s) — F(s,t), Fo(t) — F(s,t) and 1 — Fi(s) — Fy(t) + F(s,t) all have positive

lower bounds.

Proof. (i) First, we verify the two properties for 7 = 7.
Property (1) is obviously true by the properties of any joint distribution.

Under C2 and by (s,t) € [l1, u1]| x [l2, ug),

F(S,t) :Fo(s,t):P(T1 §$7T2 St) ZP(LI < T §$7L2 < T St)

> (s — Ly)(t — Ly) min w > (I1 — L1)(l2 — L2)bo,

st 0s0t

Fl(S) — F(S,t) = FQJ(S) — Fo(S,t) = P(T1 < S,Tg > t) > P(Ll <711 < 5,1 < T < UQ)

> (s — Ly)(Uy — t) min w > (li = L1)(Uz — u2)bo,

st 0sot

Fg(t) — F(S,t) = F()g(lf) — F[)(S,t) = P(T1 > S,TQ < t) > P(S <711 < Ul,LQ <Ty < t)

> (Uy = s)(t — Lz) min 9 Fo(s, 1)

lin — > (Uy — uy)(la — La)by,
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and

1-— F1(8> — Fg(t) + F(S,t) =1- F()’l(S) - F()VQ(t) + F()(S,t)
:P<T1>S,T2>t)ZP(S<T1§U1,'LL<T2§U2)

. 0*Fy(s,t)
> (U; — Uy, — -
(Uy — s)(Usy t)Hsl}tIl py

> (U — u1)(Uz — ug)by.

(ii) Second, we verify the two properties for 7 € 0/,.

’

Lemma 2.1 indicates that Q, C F in [I;,u1] X [l2, us], hence any 7 = (F, Fy, F) € Q,

satisfies property (1).

Under C6 and the 4th condition in (3.1), (7.3) in the proof of Lemma 2.1 results in

2
O°F(s,t) o . Qisljil = Qi =~ Qivl,j + Qi

" (u) (v)

ds0t v max;, A; 7 max; A
min;, Al(q;) ming, A;?
> ig YLt T Qi1 T Qid + Qi ] ] (8.1)
= : (W ©)
i, min;, A: ming, Ajilj max;, Al(?) max;, Agf)
] ]
>K.

(7.1) in the proof of Lemma 2.1 and (8.1) imply that for (s,t) € [I1,u1] X [lo, ug)

Ly pl2 g2p
Fis.0)2 Fis.t) ~ Fls.La) = F(Lt) + Pt = [ [ S8 ayas
s t

Z (8 — Ll)(t — LQ) mlnw

st 0sOt > (I = L1)(lo — L) K.
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It follows by (7.4) and (7.2) in the proof of Lemma 2.1 and (8.1) that

Fi(s) — F(s,t) >F(s,Uy) — F(s,t) > F(s,Us) — F(s,t) — F(Ly,Us) + F(Lq,t)

2([1 - Ll)(UQ - UQ>K

Similarly, (7.5) and (7.1) in the proof of Lemma 2.1 and (8.1) result in

F2<t> - F(S,t) Z(Ul - U1)<l2 - LQ)K

Finally, (7.6) in the proof of Lemma 2.1 and (8.1) result in

1-— F1(8> - Fg(t) -+ F(S,t) ZF(Ul, UQ) - F(S, Ug) - F(Ul,t) + F(S,t)

Z(Ul — ul)(Ug — Ul)K

]

Lemma 8.2. Suppose g(z,y) is a bivariate function in closed region [Ly, U] X [Lq, Us] with
the continuous mized derivatives of order w, VI g = 8m—my) form=1,2,... w. Then there
exists a bivariate function made of a linear combination of tensor B-spline basis functions,
Ag(z,y) = >0 >0 104”]\/'(1 (x )Nj@)’l(y), with order I > w + 1 for every B-spline basis
function and {Ni(l) | having knot sequence {u;}" f satisfying Ly = up = -+ = u <
}q+z

U < o < Uy < Upyyp = o0 = upy = Uy, {Nj@)’l}?: having knot sequence {v;

satisfying Ly = vy = -+ =0 < U1 < -0 < Vg < Ugy1 = * -+ = Ugpq = Us, such that for some
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constant K > 0

g — Aglle < K|T’w(|‘g”wm)a

where |T| = max{max;<;<p(uit1 — ¥;), max;<;<,(vj+1 — vj)}, and

g
8mmayw7'm

[P — I
Proof. The proof of this lemma closely follows the arguments for justifying Jackson Theorem
in De Boor (2001, p149). We define w(g; h) = max{|g(x1,y1) — g(za, y2)| : |1 — 22| < h, |y1 —
yo| < h,x1,29 € [L1,U1], 41,92 € [La, Us]}. Then w(g;h) is a monotone and subadditivity
function of A, that is, w(g;h1) < w(g;h1 + he) < w(g; h1) + w(g; he) for nonnegative hy
and hy. The monotonicity of w(g;h) is automatically true by the definition. The proof of
subadditivity is as follows.

For any (z1,y1) and (x2,ys) with |x; — 23] < hy + hy and |y; — ya| < hy + hg, we can find

(x3,y3) such that |x; — x3] < hy,|y1 — ys| < by and |xe — 23| < ho, |y2 — y3| < ho. Therefore,

for any |z1 — 23| < hy + he and |y; — yo| < hy + ha, we have

‘g($17y1) - 9(37273/2) §|g(:1:‘1,y1) - 9(1'37313)’ + |g(363,y3) - g(x27y2)|

< max |g(z1,y1) —g(xs,y3)| + max  [g(z3,y3) — g(w2,12)|

Tz —as|<hi |zo—z3|<h2
ly1—y3|<hi ly2—y3|<ha

=w(g; h1) + w(g; ha).

(8.2)

By (8.2), w(g; h1 + ha) < w(g; h1) +w(g; he) for nonnegative hy and ho, that is, subadditivity
of w(g; h) holds.

By choosing 71 < 7» < -+ < 7, in [L1,U;] and & < & < -+ < &, in [Le, Us], we can
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construct a linear combination of the tensor B-spline basis functions Ag to approximate the

smooth function g on [Ly, U;] X [La, Us] as follows.

Ag(z,y) =33 g(n, )N (@) NP (y)
i=1 j=1

For (£>Q) in [uj17uj1+1] X [/szﬂvszrl] S [LlaUl] X [L27U2]7

g(2,9) = Z Z g(r, NI @) N (g), (8.3)

i=j14+1-1 j=j2+1—1

due to the fact that the supports of the B-spline basis functions only cover a part of the

knot intervals. Since the B-spline basis functions sum to one, we have

J1
~ A PN L/ A
g(@,9) = g(&,9) > N(@)
i=j1+1-1
J1 J2
A 2,1/ 1,0/ A
=g(2,9) Y. { N <y>}N§> (2) (8.4)
i:j1+1—l j:j2+1—l

Z NN ().

i=j1+1-1 j=jo+1-I

Subtracting (8.3) from (8.4) yields,

g(@,9) = Ag(@,9) = > Y {gl@9) — g(m &N @) NP ().

i=j1+1—1 j=jo+1—1
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Hence,

J1 72
9, 9) — Aga, Dl < D Y g(@9) — g(r )N @) NP ()

i=j1+1—1 j=jo+1—1

< S a
_j1+{r—l?gxz‘§jl 19(2,9) — 9(7i, &)
Jat+1-1<j<j2

We specifically choose the sequences of {7;};_; and {{;}7_, as follows

w4 O g

Uj, Z:l+1,,p

\

/Ul + (jil)(/UlH»livl)? .] = ]‘) AR 7l7
§ = (8.6)

Uj, ]:l+1,,q,

Then (8.5) and (8.6) imply |, — w;| < |T| and |§; — v;| < |T| for ¢ = 1,...,p and
Jj=1,...,q. We also know |u; — 2| < wj,41 — uj—41 < UT| for j1 —1 < i < j; and
€ [ujy, ujya] and |vj — §] < vjp1 = Vs ST for jo —1 < j < jo and § € [vjy, Ujpra]-

Then for j; — 1 <i < j; and & € [u;,, uj, +1]

7 — 2| < L+ DIT],

and for j, — 1 < j < jo and g € [vj,, Vjy41]

& =9l < U+ DIT].
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Hence,

max_ |g(2,79) — g(7:,&;)| <max{|g(z1, 1) — g(w2,92)] :

G1H1—I<i<jy
Jo+1-1<j<ja
8.7
o1 —aal <+ DTy — el < @+ 0Ty &7
=w(g; L+ 1)|T]) = (I + Dw(g; [T,
where the last inequality is due to the subadditivity property of w(g;h).
(8.7) implies that
lg = Agllo = sup |g(x,y) — Ag(z,y)| < (I + Dw(g; |T),
L1 <z<U;
La<y<Us
which means the distance between g and
dlg ) = inf llg = £ < (1 + Dlgs 7)), 59

where 1);; denotes the set of all linear combinations of the tensor B-spline basis functions
with order [ for every basis function. Because the distance of function ¢ from 1/;; is the same

as the distance of the function g — f from vy, for f € 1);,, (8.8) implies

d(g, Y1) = d(g — f,vn) < I+ Dw(g — f,|T]). (8.9)
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Furthermore, since g has bounded partial derivatives, then

wlg—=f1T)) = max |(g— )@, y1) — (9= f)(z2,52)]

|z1—22|<|T|
ly1 —y2|<|T|

< ,nax (g = )@, y1) — (9 — f)(z1,92)]

max (g — f)(@1,92) — (9 — f)(z1,92)]

|21 —z2|<|T
g —f) g —f)
<t e

.

Therefore, by (8.9)

(8.10)

o < 0 (Ha@@; f)Hoo . Ha<g— f)Hoo) .

ox

Since ¢y = {‘3—5 SIS wl,z} and Y;_1; = {Bz f €}, (8.10) implies

d(g,v11) < (l+1)yT|{ (gg Ui U) (g_g””“—l)}‘ (8.11)

Iterating the same derivation for (8.11) leads to

d(g, ¥1,)

w1 awflg ov 1
< KT { <8 o 1,¢l w+1l> +d (m;¢lw+2,l1) - +d (Wﬂ/ﬁz w+1)}

o awl 8111719
< K17 o (S11) 4o (o 71) + 0 (S im)

0%q o%g o%q
< K|T* . ZJ
R o I e R o
w g
< K’T| 0I<nn?§w &Cmayw*m

o4



]

Lemma 8.3. Let p, = O(n") and ¢, = O(n¥). If C2, C3 and C6 hold, there exists T,, =
(B, By Fro) € Q, such that ||F, — Follee < K(n7), [|[Fo1 — Foillee < K(n™) and

[ Fr2 — Fozllo < K(n7P7).

Proof. Suppose the spline coefficients of F,,, F,,; and F, 5 are chosen as «;; = Fo(7;,&;),
Bi = Foa(m;) and v; = Fyo(§;), where 7, ¢ = 1,...,p, and &, j = 1,...,q, are defined
by (8.5) and (8.6) in the proof of Lemma 8.2. With C3, C6, Jackson Theorem in De
boor (2001, pl49) and Lemma 8.2, it is easily seen that that ||F, — Fpllee < K(n7?Y),
|1 En1 — Foilloo < K(n7P), and || Fo — Fo2llee < K(n7PY).

To complete the proof, it remains to show that «;;, 3; and ~; satisfy the conditions in

(3.1).
(i) a1q = Fo(m,&1) > 0.
(i) a1 — ary = Fo(m,&41) — Fo(m,€5) > 0.

(iil) 1,1 — @iy = Fo(Ti1, &) — Fo(m,61) > 0.

(iv) (1,41 0i11,5) = (@i 41 =Cig) Qi1 41— 0411+,
- (Tit1—Ti)(€j+1—&)

. (u . (v)
ming, Ail min g, Ajl
l ]
_ Fo(mit1€i1)=Fo(mingiv1) = Fo(riv1,65)+Fo(Ti ;)
(Ti+1=7)(§4+1—&)

. 02
Z mlnSE[Ll,Ul] ggé?t) - bQ, by 02
te[L27U2]

(V) ﬁl — Qlg, = F0,1<7—1) - F()(ThglIn) Z 0.

(Vi) Biv1 = Bi — (Qiy1.g0 — Qig,) = Fou(Ti1) — Fou(7i) — (Fo(7ir1,8q.) — Fo(7i,64,)) = 0.

(vil) v1 — ap, 1 = Fo2(&1) — Fo(mp,.&1) > 0.
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(viil) vjp1 = — (i1 — Qo) = Foo(§511) — Fou(&5) — (Fo(Tp,s Eiv1) — Fo(7p,,&5)) > 0.
(1X> ]‘ - ﬁpn - fy‘In + apn»Qn = 1 - Fo,l(Tpn) - F012(§Qn) + FO(TZNHS%L) Z O
]

Lemma 8.4. Let S be a sphere in R™ with radius (n*/?c) | that is, S = {x = (11,...,7,) €
R™: " a7 <no*}. Let || - |l be the usual Log-norm in R™. Then log N (e, S, || - ||oo) <

]

Knlog (a/e), for some constant K >0 and € < o.

Proof. The proof follows along the same lines as for the proof of Lemma 5 in Shen and Wong

(1994). 0

Lemma 8.5. ©; = {¢ : ¢(s,t) = S0 30 aiy NV (s)NP(1), 6]l < 6}, where 0 <
a1 <ag; <o <y forg=1,...,qand 0 < o1 <0 < - < fori=1,...,p,
{Ni(l)’l i and {NJ@)’Z -1 are two sets of B-spline basis functions with the knot sequence
{u; fif satisfying Ly = up = - = wp < wpgq < -0 < Up < Upyr = -+ = Upyy = Uy and the
knot sequence {v;}4! satisfying Ly = vy = -+ = 0, < vy < -+ < Vg < Vg = -+ = Vgyy =

U,, respectively. Then log Njj(€,0,] - ||o) < Kpqlog(d/e), for some constant K > 0 and

€< 0.

Proof. For any ¢ € ©4, we have

(6(U1,U3))? = (0 NV U NP U))? = o

U

since the B-spline basis functions sum to one and their supports only cover a part of the knot

intervals. Then |[¢[%, = o2, > piq P20 ai; and ¢[%, < 2. Hence, for the coefficients
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(O[Lly e aap,q) of ¢7

P g
> ) ol < pallglls < pgd®. (8.12)
i=1 j=1

Let
P g
S = {Q: (al,ly"' aapq) : Z O‘?j Spq(SQ}
i=1 j=1
Lemma 8.4 indicates that there exist e-balls By, By, - - - ,B[(g);{pq] centered at ot =
pq 5VKpq $)VKpq
(0‘827 T 7051572)7 Q(Q) - (OéfL T 7051(0?;% Ty Q([(g)K D= (ag,(lg) ])7 T 7a1(0[751€) ]))7 respec-

tively, which cover S.

Let

Z Z o k)N (2)’l(t)

i=1 j=1

and

V=il - oW < cand g e W)

for k= 1,--+,[(2)"7], where ¥ = {y : (s,t) = 327, i= 10%3N(1)7l(3)
{\Ifgk) k=1, [(%)qu]} constitute a set of e-balls for .

In what follows, we show that {¥'" : k=1, ... [(2)KP]} cover O.

(2).1
N;7(t)}. Then

For any (s, t) = Y7 > 27 1a”N(1) ‘(s )Nj@)’l(t) € Oy, its coefficients a = (a1, -+ , pq) €

=1

S by (8.12). By the fact that e-balls By, By, -+, Bjayxpa cover S, there exists m with

1 <m < [(2)KP9), such that

la —a™|j = max |a;; — a™| <e.
p %

=

[
J »"'7(1
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Hence, for any (s,t) € [Ly, U;] X [Ls, Us],

m l 2),1
w”@wwwmzz — i) ) NI () NP ()
i=1 j=1

P q
< max| —a”| N(1 ‘(1)

=1, v
]1 i=1 j=1

= max ]04 — o ] <e
=1,
j:L--wq

And it follows that

[ = || <e.
This implies that {\Ifgk) k=1, [(%)qu]} cover Os. Hence the e-covering number of Oy
is bounded by [(2)%79], or log N (e, Os, || - [|) < Kpglog(s/e). It is obvious that
N{j (26,05, [ - lloo) < N(€,Os, || - [loo)-
Therefore, it follows that

log Nyj(€, 05, || - |oo) < Kpglog(d/e).

]

Lemma 8.6. ©; = {6 1 6(s) = 7, AN/(3). [0l < 0}, where 0 < f, < By < -,
{N}P_, are the B-spline basis functions with the knot sequence {u;}5~" 1 satisfying L = u; =
=y < Uy < s < Uy < Upgpy = oo = Upy = U, Then log Njj(€,05, || - [[oo) <

Kplog(d/e), for some constant K >0 and € < 4.
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Proof. The proof is exactly along the same lines of those for Lemma 8.5, and thus is omitted.

]

Remark 8.1. In the proof of Theorem 3.2 (convergence rate), we use the fact that § < 1,
then it is obvious that log Nij(€, Os, || - [|o) < Kpgqlog(1/e€) by both Lemma 8.5 and Lemma

8.0.

Lemma 8.7. Ag(s,t) and A(s,t) are both partially nondecreasing functions in the domain
(L1, Us] x [La, Us| and they satisfy ||A — Ao,y < 1. If the following conditions (1) and (2)
hold, then there exists constant K independent of A such that

sup [As 1) = No(s,1)] < (n/K)'/2.

(s,t)€[L1,U1]%x[L2,Us]

(1) Ao(s,t) is differentiable in both s and t and there ezists a constant 0 < fo < oo such that

1/ fo < O0Ao(s,t)/0s < fo and 1/ fo < OAo(s,t)/0t < fo for any (s,t) € [Ly, Uy] X [La, Us).

% u(st)

(2) The probability measure p associated with La-norm has mized derivative =5 5= satisfying
% > ¢g for some positive cg.
Proof. Suppose that (s',t') € [Ly, U] X [La, Us] satisfies
|A(s, 1) — Ao($', )] > (1/2) sup [A(s,t) — Ao(s,t)| =&/2.

(s,t)E[Ll,Ul] X [LQ,UQ}

Then either A(s',t") > Ao(s',t') +£/2 or Ag(s',t') > A(s',t') + £/2. In the following, we only
show the inequality for the first case, A(s',t") > Ao(s', ') +&/2, as the arguments are parallel

for the second case.
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There exists h satisfying (s’ + h,t' + h) = (s”,t"), such that Ag(s”,t") = Ag(s',t') + £/2.

Then

> / {A(s.8) — Aols, )} 2dpu(s. 1)

//s (selLrUhI(La, U2]{A(S 1) — Ao(s, t )}28 M(

//{Ast — No(s, 1)} a(at>ddt
> / / () = (s ) 5D gy

tl/
> co/ / {Ao(s",t") — Ao(s,t)}2dsdt

i t)d dt

Ao S//t 1
=c Ao(s", ") — x)}? dxdt
0/ /A (s',t) t ) )} 3A0(3»t)/63|s:f;1(x)

" AO S"t
2ol [ [ el ) — v
Ao(s',t)

= (co/ fo) /t {(Ao(s",1") = No(s',1))*/3 — (Mo(s”,t") — Ao(s",1))*/3}dt,

where # = f;(s) = Ag(s,t). Therefore, by a® — b* = (a — b)(a® + ab + V*) > (a

for ab(a — b) > 0, it follows that

Co

72 g [ () = Aol 1)

[(Ao(s”,t") — Ao(s',1))? + (Ao(s”, ") — Ao(s”,1))?]dt.

Using Taylor expansion, there exists w € (s',s”), such that

Ao(s",t) — Ao(s',t) = (OAo(w, t)/Ds)h > h/ fo.
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Using Taylor expansion along s and ¢, respectively, we have

€/2 = No(s" ") — No(s', 1)
= Ao(s",t") — Ao(s", ') 4+ Ao(s", ') — Ag(s', 1) (8.15)

< 2h fo.

Combining (8.14) and (8.15) yields,
(8.16)
Finally, substituting (8.16) into (8.13), we obtain

c é_ '
P2 ggpr [ Il 1) = Aol )7 + (Aol 1) — Ao(s”, 1))
0 Jt

Cof '
A (SH,t/l)

COf 0 "nogn 2 1

- (AO(S ) ) - :E)

12f03 Ao(s”,t’) aAO(S”, t)/at’t:gs—”l(x)

Ao(s”,t")

Vv

(Ao(s”, ") — Ao(s”,t))dt

dx

Cof
].2]‘?6L Ao(s",t’)

_ %}%(AO(SHJH) . AO(S//,t/))S/?)

0054

2304 f10°

v

(Ao(s",t") — x)dx

v

where z = gy/(t) = Ag(s”,t). This yields the stated conclusion with K = 1/c/(2304f2°). O
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