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Summary

The analysis of the joint distribution function with bivariate event time data is a

challenging problem both theoretically and numerically. This paper develops a tensor

spline-based sieve maximum likelihood estimation method to estimate the joint distri-

bution function with bivariate current status data. The I-spline basis functions are

used in approximating the joint distribution function in order to simplify the numerical

computation of constrained maximum likelihood estimation problem. The generalized

gradient projection algorithm is used to compute the constrained optimization problem.

The proposed tensor spline-based nonparametric sieve maximum likelihood estimator

is shown to be consistent and the rate of convergence can be as good as n1/4 under some
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regularity conditions. The simulation studies with moderate sample sizes are carried

out to demonstrate that the finite sample performance of the proposed estimator is

generally satisfactory.

Key Words: Bivariate current status data, Constrained maximum likelihood es-

timation, Empirical process, Sieve maximum likelihood estimation, Tensor spline basis

functions

1 Introduction

In some applications, observation of random event time T is restricted to the knowledge

of whether or not T exceeds a random monitoring time C. This type of data is known as

current status data and sometimes referred to as interval censored data case 1. Current

status data arises naturally in many applications, see for example, in animal tumorigenic-

ity experiments by Hoel and Walburg (1972), and Finkelstein and Wolfe (1985); in social

demographic studies of the distribution of the age at weaning by Diamond, McDonald and

Shah (1986), Diamond and McDonald (1991), and Grummer-Strawn (1993); and in studies

of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)

by Shiboski and Jewell (1992), and Jewell, Malani and Vittinghoff (1994).

The univariate current status data has been thoroughly studied in literatures. Groeno-

boom and Wellner (1992) and Huang and Wellner (1995) studied the asymptotic properties

of the nonparametrc maximum likelihood estimator (NPMLE) of the distribution function

with current status data. Huang (1996) considered Cox proportional hazards model with

current status data and showed that the maximum likelihood estimator (MLE) of the regres-
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sion parameter is asymptotically normal with
√

n convergence rate, even through the MLE

of the baseline cumulative hazard function only converges at n1/3 rate.

Bivariate event time data occurs in many applications as well. For example, in an Aus-

tralian twin study (Duffy, Martin and Matthews, 1990), the researchers were interested

in times to a certain event such as a disease or a disease-related symptom in both twins.

NPMLE of the joint distribution function of the correlated event times with bivariate right

censored data was studied by Dabrowska (1988), Prentice and Cai (1992), Pruitt (1991). van

der Laan (1996) and Quale, van der Laan and Robins (2006). As an alternative, Kooperberg

(1998) developed a tensor spline estimation of the logarithm of joint density function with

bivariate right censored data. Shih and Louis (1995) proposed a two-stage semiparametric

estimation procedure for the association parameter for bivariate right censored data, in which

the joint distribution of the two event times is assumed to follow a bivariate Copula model

(Nelsen, 2006): first the nonparametric estimates of the marginal distributions are obtained

and then the association parameter is estimated by the maximum pseudo-likelihood method.

For bivariate interval censored data, a nonparametric maximum likelihood estimation

method can be generalized from the univariate case. For the NPMLE, one needs to design

an efficient searching algorithm for the non-zero mass intersection rectangles (Betensky and

Finkelstein, 1999; Wong and Yu, 1999; Gentleman and Vandal, 2001; Maathuis, 2005). Sun,

Wang and Sun (2006) adopted the same idea used by Shih and Louis (1995) and proposed

a two-stage method to estimate the association parameter in Copula models for bivariate

interval censored data.

This paper studies bivariate current status data, a special type of bivariate interval

censored data. This data structure arises in the studies of two diseases in same subject or a
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common disease in two correlated subjects. Let (T1, T2) be the two event times of interest and

(C1, C2) the two corresponding random monitoring times. In this setting, the observation of

bivariate current status data consists of

X = (C1, C2, ∆1 = I(T1 ≤ C1), ∆2 = I(T2 ≤ C2)), (1.1)

where I(·) is the indicator function. Wang and Ding (2000) studied whether or not the onsets

of hypertension and diabetes are correlated for people in Taiwan. They adopted the same

idea used by Shih and Louis (1995) and Sun, Wang and Sun (2006) and proposed a two-

stage estimation of the association parameter of two event times with bivariate current status

data. This two-stage method facilitates an easy estimator of the joint distribution function

through Copula model as a by-product and is the only available method in literatures to

estimate the joint distribution function with bivariate current status data. In a study on

HIV transmission, Jewell, van der Laan and Lei (2005) investigated the relationship between

the time to HIV infection to the partner and the time to diagnosis of AIDS for the index case

by estimating smooth functionals of the marginal distribution functions. For both examples,

the bivariate event times have the same monitoring time, that is C1 = C2 = C. Hence,

the joint distribution function can be only studied on the diagonal, that is, only F (c, c) is

estimable. This paper proposes a tensor spline-based sieve maximum likelihood estimation

of the joint distribution function with bivariate current status data in a general scenario in

which C1 and C2 are allowed to be different and hence the method is more applicable in

practice.

The rest of the paper is organized as follows. Section 2 characterizes the spline-based
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sieve MLE τ̂n = (F̂n, F̂n,1, F̂n,2), where F̂n is the tensor spline-based estimator of the joint

distribution function, F̂n,1 and F̂n,2 are the spline-based estimators of the two corresponding

marginal distribution functions. Section 3 presents two asymptotic properties (consistency

and convergence rate) of the proposed spline-based sieve MLE. Section 4 discusses the com-

putation of the spline-based estimator. Section 5 carries out a set of simulation studies to

examine the finite sample performance of the proposed method and compare the proposed

method with the method extended from Wang and Ding (2000)’s idea. Section 6 summa-

rizes our findings and discusses some related problems. Section 7 provides the proofs of the

lemmas and theorems stated in the early sections. Finally, some technical lemmas required

by the proofs of the asymptotic properties are developed in Section 8.

2 Tensor Spline-based Sieve Maximum Likelihood Es-

timation Method

2.1 Spline-based Maximum Likelihood Estimation

Consider a sample of n i.i.d. bivariate current status data (1.1), {(c1,k, δ1,k, c2,k, δ2,k) : k =

1, 2, · · · , n}. Suppose that (T1, T2) and (C1, C2) are independent and (C1, C2) are non-

informative to (T1, T2). Then the log-likelihood for the observed data can be expressed
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by

ln(·; data) =
n∑

k=1

{δ1,kδ2,k log P (T1 ≤ c1,k, T2 ≤ c2,k)

+ δ1,k(1− δ2,k) log P (T1 ≤ c1,k, T2 > c2,k)

+ (1− δ1,k)δ2,k log P (T1 > c1,k, T2 ≤ c2,k)

+ (1− δ1,k)(1− δ2,k) log P (T1 > c1,k, T2 > c2,k)}.

(2.1)

Denote F the joint distribution function of event times (T1, T2) and F1 and F2 the

marginal distribution functions of F , respectively, the log-likelihood (2.1) can be rewritten

as

ln(F, F1, F2; data) =
n∑

k=1

{δ1,kδ2,k log F (c1,k, c2,k)

+ δ1,k(1− δ2,k) log(F1(c1,k)− F (c1,k, c2,k))

+ (1− δ1,k)δ2,k log(F2(c2,k)− F (c1,k, c2,k))

+ (1− δ1,k)(1− δ2,k) log(1− F1(c1,k)− F2(c2,k)

+ F (c1,k, c2,k))}.

(2.2)

A class of real-valued functions is defined in a bounded region [L1, U1]× [L2, U2] as

F = {(F (s, t), F1(s), F2(t)) : for (s, t) ∈ [L1, U1]× [L2, U2]},
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where F , F1 and F2 satisfy the following conditions in (2.3):

0 ≤ F (s, t),

F (s′, t) ≤ F (s′′, t),

F (s, t′) ≤ F (s, t′′),

[F (s′′, t′′)− F (s′, t′′)]− [(F (s′′, t′)− F (s′, t′)] ≥ 0,

F1(s)− F (s, t) ≥ 0

F2(t)− F (s, t) ≥ 0,

[F1(s
′′)− F1(s

′)]− [F (s′′, t)− F (s′, t)] ≥ 0,

[F2(t
′′)− F2(t

′)]− [F (s, t′′)− F (s, t′)] ≥ 0,

[1− F1(s)]− [F2(t)− F (s, t)] ≥ 0,

(2.3)

for s′ ≤ s′′ with s′ and s′′ on [L1, U1], and t′ ≤ t′′ with t′ and t′′ on [L2, U2].

It can be easily argued that if F is a joint distribution function and F1 and F2 are

its two corresponding marginal distribution functions, (F, F1, F2) ∈ F . Throughout this

paper, F0, F0,1 and F0,2 are denoted for the true joint and marginal distribution functions,

respectively. Hence the NPMLE of (F0, F0,1, F0,2) is defined as

(F̂n, F̂n,1, F̂n,2) = arg max(F,F1,F2)∈F ln(F, F1, F2; data). (2.4)

The conventional NPMLE maximizes (2.2) over F with respect to F (c1,k, c2,k), F1(c1,k)

and F2(c2,k) for k = 1, . . . , n. The study of the conventional NPMLE with bivariate current

status data is both numerically and theoretically challenging. Compare the NPMLE with its
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univariate counterpart developed by Groenoboom and Wellner (1992), the computation of

the NPMLE for Problem (2.4) is much more involved in view of the constraints of F given in

(2.3). The NPMLE method adopted by Maathius (2005) may be applied to Problem (2.4),

but this type of methods may not necessarily produce a unique NPMLE as pointed out by

Maathius (2005). While the asymptotic properties of the NPMLE with univariate current

status data were thoroughly investigated by Groenoboom and Wellner (1992) and Huang

and Wellner (1995), they are much harder to study for bivariate current status data, mainly

due to the difficulty in evaluating the entropy of F (Song and Wellner, 2002).

To overcome the difficulties in Problem (2.4), the spline-based sieve maximum likelihood

estimation procedure is proposed. The main idea of the spline-based sieve method is to

solve Problem (2.4) in a subclass of F but “approximating” to F asymptotically, with the

advantage that the estimator to be found in this subclass is easy to compute and analyze. The

univariate spline-based sieve MLEs for various models were developed by Shen (1998), Lu,

Zhang and Huang (2007, 2009) and Zhang, Hua and Huang (2010). In terms of estimating

bivariate functions, the tensor spline (De Boor, 2001) estimation has been studied by Stone

(1994) in nonparametric regression setting, by Koo (1996) and Scott (1992) in estimating a

multivariate density function without censoring, and as noted in Section 1, by Kooperberg

(1998) in estimating the density function of bivariate event times subject to right censoring.

Recently, an application of the tensor B-spline estimation of a bivariate monotone function

has also been investigated by Wang and Taylor (2004) in a biomedical study.

In this paper, we propose a partially monotone tensor spline estimation of the bivariate

distribution function. To solve Problem (2.4), the unknown joint distribution function is

estimated by a linear combination of the tensor spline basis functions and its two marginal
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distribution function are also independently estimated by linear combinations of spline basis

functions in the same way given by Lu, Zhang and Huang (2007, 2009) and Zhang, Hua and

Huang (2010). Then maximizing the log likelihood with respect to the unknown functions

converts to maximizing the sieve log likelihood with respect to the unknown spline coefficients

subjecting to corresponding inequality constraints.

2.2 B-spline-based Estimation

In this section, the spline-based sieve maximum likelihood estimation problem is reformulated

as a constrained optimization problem with respect to the coefficients of the B-spline basis

functions.

Suppose two sets of the normalized B-spline basis functions of order l (Schumaker, 1981),

{N (1),l
i (s)}pn

i=1 and {N (2),l
j (t)}qn

j=1 are constructed in [L1, U1]× [L2, U2] with the knot sequence

{ui}pn+l
i=1 satisfying L1 = u1 = · · · = ul < ul+1 < · · · < upn < upn+1 = upn+l = U1 and knot

sequence {vj}qn+l
j=1 satisfying L2 = v1 = · · · = vl < vl+1 < · · · < vqn < vqn+1 = vqn+l = U2,

where pn = O(nv) and qn = O(nv) for some 0 < v < 1.
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Define

Ωn = {τn = (Fn, Fn,1, Fn,2) : Fn(s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t),

Fn,1(s) =

pn∑
i=1

βiN
(1),l
i (s),

Fn,2(t) =

qn∑
j=1

γjN
(2),l
j (t),

with α = (α1,1, · · · , αpn,qn), β = (β1, · · · , βpn), and γ = (γ1, · · · , γqn)

subject to the following conditions in (2.5)},

α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0 for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0,

(βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

γ1 − αpn,1 ≥ 0,

(γj+1 − γj)− (αpn,j+1 − αpn,j) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(2.5)

To obtain the tensor B-spline-based sieve likelihood with bivariate current status data,

(F, F1, F2) = (Fn, Fn,1, Fn,2) = τn ∈ Ωn is substituted into (2.2) to result in
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l̃n(α, β, γ; data) =
n∑

k=1

{
δ1,kδ2,k log

pn∑
i=1

qn∑
j=2

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

+ δ1,k(1− δ2,k) log

{
pn∑
i=1

βiN
(1),l
i (c1,k)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}

+ (1− δ1,k)δ2,k log

{
qn∑

j=1

γjN
(2),l
j (c2,k)

−
pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}

+ (1− δ1,k)(1− δ2,k) log

{
1−

pn∑
i=1

βiN
(1),l
i (c1,k)

−
qn∑

j=1

γjN
(2),l
j (c2,k) +

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (c1,k)N

(2),l
j (c2,k)

}}
.

(2.6)

Hence, the proposed sieve MLE with the B-spline basis functions is the maximizer of

(2.6) over Ωn.

Lemma 2.1. Class Ωn ⊂ F .

Remark 2.1. Lemma 2.1 implies that the spline-based sieve MLE in Ωn is the MLE in a

sub-class of F . The spline-based sieve MLE may have good asymptotic properties if this

sub-class “approximates” to F as n →∞.

3 Asymptotic Properties

In this section, we describe the asymptotic properties of the tensor spline-based sieve MLE of

the joint distribution function with bivariate current status data. The study of asymptotic
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properties of the proposed sieve estimator requires some regularity conditions, regarding

the event times, observation times and the choice of the knot sequences . The following

conditions sufficiently guarantee the results in the forthcoming theorems.

Regularity Conditions:

C1. Both ∂F0(s,t)
∂s

and ∂F0(s,t)
∂t

have positive lower bounds in [L1, U1]× [L2, U2].

C2. ∂2F0(s,t)
∂s∂t

has a positive lower bound b0 in [L1, U1]× [L2, U2].

C3. F0(s, t) has continuous mixed derivatives of order p, ∇p
mF0 = ∂pF0(s,t)

∂smtp−m for m = 1, 2, . . . , p,

in [L1, U1] × [L2, U2]; F0,1(s) has continuous derivative dpF0,1(s)

dsp on [L1, U1]; and F0,2(t)

has continuous derivative dpF0,2(t)

dtp
on [L2, U2].

C4. The observation times (C1, C2) follow a bivariate distribution only taking values in

[l1, u1]× [l2, u2], with l1 > L1, u1 < U1, l2 > L2, and u2 < U2.

C5. The density of (C1, C2)’s distribution has a positive lower bound in [l1, u1]× [l2, u2].

C6. Knot sequences {ui}pn+l
i=1 and {vj}qn+l

j=1 of the B-spline basis functions {N (1),l
i }pn

i=1 and

{N (2),l
j }qn

j=1, respectively, satisfy that both
mini ∆

(u)
i

maxi ∆
(u)
i

and
minj ∆

(v)
j

maxj ∆
(v)
j

have positive lower

bounds which are not greater than 1, where ∆
(u)
i = ui+1 − ui for i = l, . . . , pn and

∆
(v)
j = vj+1 − vj for j = l, . . . , qn.

Remark 3.1. C1 implies that dF0,1(s)

ds
and dF0,2(t)

dt
have positive lower bounds on [L1, U1] and

[L2, U2], respectively. C3 implies that both ∂F0(s,t)
∂s

and ∂F0(s,t)
∂t

have positive upper bounds in

[L1, U1] × [L2, U2];
dF0,1(s)

ds
and dF0,2(t)

dt
have positive upper bounds on [L1, U1] and [L2, U2],

respectively.
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Let

Ωn,1 = {τ = (Fn, Fn,1, Fn,2) :Fn(s, t) =

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t),

Fn,1(s) =

pn∑
i=1

βiN
(1),l
i (s),

Fn,2(t) =

qn∑
j=1

γjN
(2),l
j (t),

with α = (α1,1, · · · , αpn,qn), β = (β1, · · · , βpn),

and γ = (γ1, · · · , γqn)

subject to the following conditions in (3.1)},

α1,1 ≥ 0,

α1,j+1 − α1,j ≥ 0 for j = 1, . . . , qn − 1,

αi+1,1 − αi,1 ≥ 0 for i = 1, . . . , pn − 1,

(αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥
b0 mini1:l≤i1≤pn ∆

(u)
i1

minj1:l≤j1≤qn ∆
(v)
j1

l2

for i = 1, . . . , pn − 1, j = 1, . . . , qn − 1,

β1 − α1,qn ≥ 0,

(βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0 for i = 1, . . . , pn − 1,

γ1 − αpn,1 ≥ 0,

(γj+1 − γj)− (αpn,j+1 − αpn,j) ≥ 0 for j = 1, . . . , qn − 1,

βpn + γqn − αpn,qn ≤ 1.

(3.1)

Remark 3.2. Note that Ωn,1 is a sub-class of Ωn. We propose to find the estimator in
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Ωn,1 mainly due to the technique convenience in justifying the asymptotic properties. In

computation, the relaxation parameter b0 can be chosen small enough that would not result

in a different estimator from the one found in Ωn defined in section 2.

We study the asymptotic properties in the feasible region for observation times: [l1, u1]×

[l2, u2]. Let Ω
′
n = {τn(s, t) : τ ∈ Ωn,1, for (s, t) ∈ [l1, u1] × [l2, u2]} and let τ0(s, t) =

(F0(s, t), F0,1(s), F0,2(t)) with (s, t) ∈ [l1, u1] × [l2, u2]. Under C4, the maximization of

l̃n(α, β, γ; data) over Ωn,1 is actually the maximization of l̃n(α, β, γ; data) over Ω
′
n. Through-

out the study of the asymptotic properties, we denote τ̂n as the maximizer of l̃n(α, β, γ; data)

over Ω
′
n.

Suppose the Lr(Q)-norm associated with probability measure Q is denoted by ‖f‖Lr(Q) =

(Q|f |r)1/r = (
∫ |f |rdQ)1/r. In the following, the Lr(PC1,C2)-norm, Lr(PC1)-norm and Lr(PC2)-

norm are denoted as Lr-norm associated with the joint and marginal probability measures

of observation times (C1, C2), and Lr(P )-norm is denoted as the Lr-norm associated with

the joint probability measure P of observation and event times (T1, T2, C1, C2).

Based on the L2-norms, the distance between τn = (Fn, Fn,1, Fn,2) ∈ Ω
′
n and τ0 =

(F0, F0,1, F0,2) is defined as

d(τn, τ0) = (‖Fn − F0‖2
L2(PC1,C2

) + ‖Fn,1 − F0,1‖2
L2(PC1

) + ‖Fn,2 − F0,2‖2
L2(PC2

))
1/2.

Theorem 3.1. Suppose C2-C6 hold, and pn = O(nv), qn = O(nv) for v < 1, that is, the

numbers of interior knots of knot sequences {ui}pn+l
1 and {vj}qn+l

1 are both in the order of nv

for v < 1. Then

d(τ̂n, τ0) →p 0, as n →∞.
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Theorem 3.2. Suppose C1-C6 hold, and pn = O(nv), qn = O(nv) for v ≤ 1
4p

, that is, the

numbers of interior knots of knot sequences {ui}pn+l
1 and {vj}qn+l

1 are both in the order of nv

for v ≤ 1
4p

. Then

d(τ̂n, τ0) = Op(n
−min{pv,(1−2v)/3}).

4 Computation of the Spline-Based Sieve MLE

We propose to compute the sieve MLE using I-splines for which the I-spline basis functions

are defined by

I l
i(s) =





0, i > j,

∑j
m=i(um+l+1 − um)M l+1

m (s)/(l + 1), j − l + 1 ≤ i ≤ j,

1, i < j − l + 1,

(4.1)

for uj ≤ s < uj+1, where M l
ms are the M -spline basis functions of order l studied by Curry

and Schoenberg (1966) and can be calculated recursively by

M1
i (s) =

1

ui+1 − ui

, ui ≤ s < ui+1,

M l
i (s) =

l[(s− ui)M
l−1
i (s) + (ui+l − s)M l−1

i+1 (s)]

(l − 1)(ui+l − ui)
.

By the relationship between the B-spline basis functions and the M -spline basis functions

(Schumaker, 1981), it can be easily argued that the I-spline basis function defined by (4.1)
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can be expressed by a summation of the B-spline basis functions, that is

I l−1
i (s) =

pn∑
m=i

N l
m(s). (4.2)

Therefore, the spline-based sieve estimation can be re-parameterized by the I-spline basis

functions. Let

Θn = {τn = (Fn, Fn,1, Fn,2) : Fn(s, t) =

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t),

Fn,1(s) =

pn∑
i=1

{
qn∑

j=1

ηi,j + ωi}I(1),l−1
i (s),

Fn,2(t) =

qn∑
j=1

{
pn∑
i=1

ηi,j + πj}I(2),l−1
j (t)

with η = (η1,1, · · · , ηpn,qn), ω = (ω1, · · · , ωpn), and π = (π1, · · · , πqn)

subject to the following conditions in (4.3)},

ηi,j ≥ 0 for i = 1, · · · , pn, j = 1, · · · , qn,

ωi ≥ 0, i = 1, . . . , pn,

πj ≥ 0, j = 1, . . . , qn,

pn∑
i=1

qn∑
j=1

ηi,j +

pn∑
i=1

ωi +

qn∑
j=1

πj ≤ 1.

(4.3)
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Then the log likelihood with the I-spline basis functions is given by

l̃n(η, ω, π; ·) =
n∑

k=1

{
δ1,kδ2,k log

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)

+ δ1,k(1− δ2,k) log

{
pn∑
i=1

[
qn∑

j=1

ηi,j + ωi

]
I

(1),l−1
i (C1,k)

−
pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)

}

+ (1− δ1,k)δ2,k log

{
qn∑

j=1

[
pn∑
i=1

ηi,j + πj

]
I

(2),l−1
j (c2,k)

−
pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)

}

+ (1− δ1,k)(1− δ2,k) log

{
1−

pn∑
i=1

[
qn∑

j=1

ηi,j + ωi

]
I

(1),l−1
i (c1,k)

−
qn∑

j=1

[
pn∑
i=1

ηi,j + πj

]
I

(2),l−1
j (c2,k)

+

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (c1,k)I

(2),l−1
j (c2,k)

}}
.

(4.4)

and the spline-based sieve MLE maximizes (4.4) over Θn.

Lemma 4.1. Class Θn is equivalent to Ωn .

Remark 4.1. Lemma 2 indicates that the I-spline-based sieve MLE is the same as the B-

spline-based sieve MLE and it is advocated in numerical computation due to the simplicity

of the constraints in class Θn.

Given pn and qn, the proposed sieve estimation problem described above is actually a

restricted parametric maximum likelihood estimation problem with respect to the coeffi-

cients of the I-spline and the tensor I-spline basis functions. Jamshidian (2004) generalized

the gradient projection algorithm originally proposed by Rosen (1960) using a weighted L2
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norm ‖x‖ = x′Wx with a positive definite matrix W for the restricted maximum likeli-

hood estimation problems. Lu, Zhang and Huang (2007, 2009) and Zhang, Hua and Huang

(2010) implemented the generalized gradient projection algorithm for the spline-based sieve

maximum likelihood estimation problem with panel count data and interval censored data,

respectively. The algorithm adopted by Zhang, Hua and Huang (2010) is modified to com-

pute the proposed tensor I-spline-based sieve estimator.

Let ˙̃l(θ) and H(θ) be the gradient and Hessian matrix of the log likelihood given by (4.4)

with respect to θ = (θ1, θ2, · · · , θpn·qn+pn+qn) = (η, ω, π), respectively. Note that H(θ) may

not be negative definite for every θ. During the numerical iterations, if H(θ) is negative

definite, we use W = −H(θ); otherwise use W = −H(θ) + γI, where I is identity matrix

and γ > 0 is chosen sufficiently large to guarantee W being positive definite. During the

numerical computation, the index set of active constraints is denoted as A = {i1, i2, · · · , ir},

that is, for j = 1, 2, · · · , r,

(i) if ij ≤ pn · qn + pn + qn, then θij = 0,

(ii) if ij = pn · qn + pn + qn + 1, then
∑pn·qn+pn+qn

i=1 θi = 1.

Suppose the indexes in A are in ascending order and ir = pn · qn + pn + qn + 1, then the
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working matrix corresponding to set A could have the following form,

A =




0 · · · 0 −1 0 0 0 · · · 0

0 · · · 0 0 −1 0 0 · · · 0

0 · · · 0 0 0 −1 0 · · · 0

...
. . .

...
...

...
...

...
. . .

...

1 · · · 1 1 1 1 1 · · · 1




r×(pn·qn+pn+qn)

.

The generalized gradient projection algorithm is implemented in the following steps:

Step 1. (Computing the feasible search direction) Compute

d = (d1, d2, · · · , dpn·qn+pn+qn) = {I −W−1AT (AW−1AT )−1A}W−1 ˙̃l(θ).

Step 2. (Forcing the updated θ to fulfill the constraints) Compute

γ =





min{mini:di<0{− θi

di
}, 1−∑pn·qn+pn+qn

i=1 θi∑pn·qn+pn+qn
i=1 di

}, if
∑pn·qn+pn+qn

i=1 di > 0,

mini:di<0{− θi

di
}, else.

Doing so guarantees that θi + γdi ≥ 0 for i = 1, 2, · · · , pn · qn + pn + qn, and

∑pn·qn+pn+qn

i=1 (θi + γdi) ≤ 1.

Step 3. (Updating the solution by Step-Halving line search) Find the smallest integer k start-

ing from 0 such that

l̃n(θ + (1/2)kγd; ·) ≥ l̃n(θ; ·).
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Replace θ by θ̃ = θ + min{(1/2)kγ, 0.5}d.

Step 4. (Updating the active constraint set and working matrix) If k = 0 and γ ≤ 0.5, modify

A by adding indexes of all the newly active constraints to A and accordingly modify

the working matrix A.

Step 5. (Checking the stopping criterion) If ‖d‖ ≥ ε, for small ε, go to Step 1. otherwise

compute λ = (AW−1AT )−1AW−1 ˙̃l(θ).

(i) If λj ≥ 0 for all j, set θ̂ = θ and stop.

(ii) If there is at least one j such that λj < 0, let j∗ = arg minj:λj<0{λj}, then

remove the index ij∗ from A and remove the j∗th row from A and go to Step

1.

5 Simulation Studies

Copula models are often used in studying bivariate event time data (Shih and Louis, 1995;

Wang and Ding, 2000; Sun, Wang and Sun, 2006; Zhang, Zhang, Chaloner, and Stapleton,

2010)

We consider bivariate Clayton Copula function

Cα(u, v) = (u(1−α) + v(1−α) − 1)
1

1−α ,

with α > 1. For the Clayton Copula, a larger α corresponds to a stronger positive association

between the two marginal distributions. The association parameter α and Kendall’s τ for
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the Clayton Copula, are related by τ = α−1
α+1

.

In the simulation studies, We compare the proposed sieve MLE to the semiparametric

maximum pseudo-likelihood estimator based on the method studied by Wang and Ding

(2000) under Clayton Copula model for the finite sample performance. The semiparametric

maximum pseudo-likelihood estimator of the bivariate distribution function is constructed

as follows: First, the NPMLEs of the two marginal distribution functions are computed

using Convex Minorant Algorithm (Gnoeneboom and Wellner, 1992) and the association

parameter α is estimated by the maximum pseudo-likelihood method. Then, the NPMLEs

of the marginal distribution functions and the maximum pseudo-likelihood estimator of the

association parameter are plugged into the Clayton Copula model to form the semiparametric

maximum pseudo-likelihood estimator of the joint distribution function.

The proposed sieve MLE and the semiparametric maximum pseudo-likelihood estimator

are evaluated with various combinations of Kendall’s τ (τ = 0.25, 0.75) and sample sizes

(n = 100, 200). Under each of the four settings, the Monte-Carlo simulation with 500

repetitions is conducted and the cubic (l=4) I-spline basis functions are used in the proposed

sieve estimation method. The event times (T1, T2), monitoring times (C1, C2), and the knots

selection of the cubic I-spline basis functions are specified as follows:

(i) (Event times) (T1, T2) are generated from the Clayton copula with the two marginal dis-

tributions being exponential with the rate parameter 0.5. Under this setting, Pr(Ti ≥

5) < 0.1 for i = 1, 2 and [L1, U1]× [L2, U2] is chosen to be [0, 5]× [0, 5].

(ii) (Censoring times) Both C1 and C2 are generated independently from the uniform dis-

tribution on [0.0201, 4.7698] (Pr(0 < Ti < 0.0201) = Pr(4.7698 < Ti < 5) = 0.01, for
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i = 1, 2). The observation region [l1, u1] × [l2, u2]=[0.0201, 4.7698] × [0.0201, 4.7698] is

inside [0, 5]× [0, 5] and the distribution functions are bounded away from 0 and 1 inside

the observation region.

(iii) (Knots selection) Theorem 3.2 implies that the proposed sieve estimator converges at a

rate not faster than n1/4, and the rate of convergence reaches n1/4 for p ≥ 2 and v = 1
4p

. If p = 2, then v = 1/8 and the number of subintervals made of the knot sequence

could be chosen as n1/8. This choice of the number of knots is mainly of interest for the

asymptotic properties when n is very large. In practice, for the number of interior knots

mn, mn+1 is often chosen as the closest integer to n1/3 that was used by Lu, Zhang and

Huang (2007, 2009) and Zhang, Hua and Huang (2010). For moderate sample sizes,

say n = 100, 200, our experiments show that such mn is a reasonable choice for the

number of interior knots and hence the number of spline basis functions is determined

by pn = qn = mn +4 in our computation. Therefore, we choose 4 and 5 as the numbers

of interior knots for sample size 100 and 200, respectively. Two end knots of all knot

sequences are chosen to be 0 and 5. For each sample of bivariate observation times

(C1, C2), the interior knots of {I(1),3
i }pn

i=1 and {I(2),3
j }qn

j=1 are allocated at the k/(mn +1)

quantiles, k = 1, . . . , mn of the sample of C1 and the sample of C2, respectively.

Table 1 and 2 display the estimation biases (Bias) and the square roots of the mean

square errors (MSE1/2) from the Monte-Carlo simulation of 500 repetitions for both the

proposed sieve MLE and the semiparametric maximum pseudo-likelihood estimator of the

bivariate distribution function at the 9 pairs of time points (s1, s2) with different sample

sizes and different values of Kendall’s τ . Table 3 calculates the average estimation bias and
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the average square root of the mean square error for 2209 values of (s1, s2) with both s1 and

s2 uniformly taking 47 values from 0.1 to 4.7. It appears that the bias and the mean square

error of the proposed sieve MLE may be a little larger at some points near the boundary

than its counterpart, it outperforms its counterpart because of smaller overall bias and mean

square error (Table 3). It is also noted that mean square error of the proposed sieve MLE

noticeably decreases as sample size increases from 100 to 200.

For sample size n = 200, the estimation biases of the joint distribution function from

the same Monte-Carlo simulation for both estimation methods are graphically presented in

Figure 1 and 2 with Kendall’s τ = 0.25 and 0.75, respectively. These figures clearly indicate

that the bias of the proposed sieve MLE is noticeably smaller than that of the semiparametric

maximum pseudo-likelihood estimation inside the closed region [0.1, 4.7]× [0.1, 4.7], but the

bias of the proposed sieve MLE near the origin increases as Kendall’s τ increases. As the

by-product of the estimation methods, the estimates of the marginal distribution function of

T1 from the same Monte-Carlo simulation for both the proposed sieve MLE (Sieve) and the

NPMLE using Convex Minorant Algorithm (Nonparametric) are also computed and plotted

in Figure 3 along with the true marginal distribution function (True). Figure 3 clearly

indicates that the bias of the proposed sieve MLE for the marginal distribution function is

generally smaller than that of the NPMLE, particularly near the two end points of interval

[0.1, 4.7].
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Figure 1: Comparison of the bias between the proposed spline-based sieve estimator (left) and the
semiparametric maximum pseudo-likelihood estimator (right) for the joint distribution function
when sample size n = 200, Kendall’s τ = 0.25

1
2

3
4

1
2

3
4

−0.10

−0.05

0.00

0.05

0.10

T1
T2

1
2

3
4

1
2

3
4

−0.10

−0.05

0.00

0.05

0.10

T1
T2

Figure 2: Comparison of the bias between the proposed spline-based sieve estimator (left) and the
semiparametric maximum pseudo-likelihood estimator (right) for the joint distribution function
when sample size n = 200, Kendall’s τ = 0.75
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Figure 3: Comparisons of the estimated marginal distributions of T1 between the proposed spline-
based sieve estimation method and the nonparametric maximum likelihood method when sample
size n = 200 (left: kendall’s τ = 0.25; right: kendall’s τ = 0.75)
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Table 1: Comparisons of the pointwise bias and square root of mean square error between the pro-
posed spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator
when Kendall’s τ = 0.25

Sample Size n = 100

T1
T2

0.1 1.6 4.6

0.1
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 5.47e-3 -1.90e-2 Bias 1.99e-2 -3.69e-2 Bias 3.11e-2 -3.95e-2
MSE1/2 3.21e-2 1.90e-2 MSE1/2 6.74e-2 4.86e-2 MSE1/2 7.81e-2 5.42e-2

1.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 1.50e-2 -4.06e-2 Bias -5.20e-2 1.02e-3 Bias -3.08e-2 2.81e-3
MSE1/2 6.37e-2 4.62e-2 MSE1/2 9.67e-2 1.02e-3 MSE1/2 8.57e-2 1.12e-1

4.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 2.52e-2 -4.39e-2 Bias -2.76e-2 1.15e-2 Bias -4.46e-3 1.01e-1
MSE1/2 7.27e-2 5.06e-2 MSE1/2 8.96e-2 1.22e-1 MSE1/2 7.22e-2 1.32e-1

Sample Size n = 200

T1
T2

0.1 1.6 4.6

0.1
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 3.32e-3 -1.86e-2 Bias 1.14e-2 -3.66e-2 Bias 1.67e-2 -3.90e-2
MSE1/2 2.35e-2 1.90e-2 MSE1/2 4.93e-2 4.56e-2 MSE1/2 5.37e-2 5.06e-2

1.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 5.39e-3 -3.69e-2 Bias -4.83e-2 1.45e-3 Bias -2.69e-2 1.68e-2
MSE1/2 4.22e-2 4.67e-2 MSE1/2 8.29e-2 7.26e-2 MSE1/2 6.70e-2 9.26e-2

4.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 1.19e-2 -3.80e-2 Bias -2.21e-2 1.21e-2 Bias -8.32e-3 7.76e-2
MSE1/2 4.83e-2 5.29e-2 MSE1/2 6.91e-2 9.32e-2 MSE1/2 5.75e-2 1.08e-1
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Table 2: Comparisons of the pointwise bias and square root of mean square error between the pro-
posed spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator
when Kendall’s τ = 0.75

Sample Size n = 100

T1
T2

0.1 1.6 4.6

0.1
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias -1.07e-2 -4.34e-2 Bias 2.86e-2 -4.19e-2 Bias 3.00e-2 -4.19e-2
MSE1/2 4.24e-2 4.34e-2 MSE1/2 7.85e-2 5.37e-2 MSE1/2 7.95e-2 5.38e-2

1.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 2.80e-2 -4.01e-2 Bias -5.63e-2 -4.72e-2 Bias -8.88e-3 -2.09e-2
MSE1/2 7.92e-2 5.66e-2 MSE1/2 9.65e-2 1.07e-1 MSE1/2 7.64e-2 1.20e-1

4.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 3.00e-2 -4.00e-2 Bias -1.02e-2 -1.98e-2 Bias -3.13e-2 7.84e-2
MSE1/2 8.09e-2 5.67e-2 MSE1/2 7.59e-2 1.15e-1 MSE1/2 7.01e-2 1.10e-1

Sample Size n = 200

T1
T2

0.1 1.6 4.6

0.1
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias -1.19e-2 -4.18e-2 Bias 1.95e-2 -3.82e-2 Bias 2.02e-2 -3.82e-2
MSE1/2 3.35e-2 4.41e-2 MSE1/2 5.50e-2 5.34e-2 MSE1/2 5.54e-2 5.35e-2

1.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 2.02e-2 -3.77e-2 Bias -5.11e-2 -2.26e-2 Bias -1.09e-2 -3.81e-3
MSE1/2 5.60e-2 5.20e-2 MSE1/2 7.72e-2 7.60e-2 MSE1/2 5.97e-2 8.82e-2

4.6
Sieve Pseudo Sieve Pseudo Sieve Pseudo

Bias 2.09e-2 -3.77e-2 Bias -1.18e-2 -4.64e-3 Bias -3.39e-2 5.31e-2
MSE1/2 5.62e-2 5.20e-2 MSE1/2 5.99e-2 9.30e-2 MSE1/2 6.07e-2 8.38e-2

Table 3: Comparisons of the overall bias and square root of mean square error between the proposed
spline-based sieve estimator and the semiparametric maximum pseudo-likelihood estimator

kendall’s τ
Sample Size

100 200

0.25
Sieve Pseudo Sieve Pseudo

Bias -1.08e-3 -7.71e-3 Bias -2.20e-3 -7.57e-3
MSE1/2 7.72e-2 1.04e-1 MSE1/2 5.98e-2 7.93e-2

0.75
Sieve Pseudo Sieve Pseudo

Bias -5.17e-3 -2.81e-2 Bias -4.63e-3 -1.88e-2
MSE1/2 7.42e-2 1.08e-1 MSE1/2 5.74e-2 8.27e-2
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6 Final Remarks

The estimation of the joint distribution function with bivariate event time data is a chal-

lenging problem in survival analysis. Development of sophisticated methods for this type

of problems is much needed for practice. In this paper, we develop a tensor spline-based

sieve maximum likelihood method for estimating the joint distribution function with bi-

variate current status data. This sieve estimation approach reduces the dimensionality of

the nonparametric maximum likelihood estimation problem substantially which makes the

nonparametric maximum likelihood estimation tractable numerically. Under mild regularity

conditions, we also show that the proposed spline-based sieve estimator is consistent and

could converge to the true joint distribution function at a rate of n1/4 if the true joint dis-

tribution function is smooth enough. The simulation studies indicate that the finite sample

performance of this proposed sieve estimation method is generally satisfactory and even

better than the semiparametric maximum pseudo-likelihood estimation method with the

Clayton copula model. It is also worth noting from our simulation studies that, for estimat-

ing the marginal distribution function in this bivariate event time setting, using the joint

estimation method as proposed in this article may yield a better estimator than the NPMLE

with only the marginal event time data. This fact may be general true as the joint estimation

method implicitly takes the potential correlation between two event times into consideration.

The proposed spline-based sieve estimation method can be readily extended to bivariate

right censored and bivariate interval censored data studied by for example, Dabrowska (1988)

and Kooperberg (1998), and by Maathuis (2005) and Sun, Wang and Sun (2006), respectively.
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7 Technical Proofs

For the rest of this paper, we denote K as a universal positive constant that may be different

from place to place and Pnf = 1
n

∑n
i=1 f(Xi), the empirical process indexed by f(X).

Proof of Lemma 2.1. (i) Since α1,1 ≥ 0, it is obvious that 0 ≤ Fn(s, t).

(ii) By Theorem 5.9 in Schumaker (1981), we have

∂Fn(s, t)

∂s
=

pn−1∑
i=1

qn∑
j=1

(l − 1)(αi+1,j − αi,j)

ui+l − ui+1

N
(1),l−1
i+1 (s)N

(2),l
j (t).

Then by the constraints αi+1,1 − αi,1 ≥ 0 and (αi+1,j+1 − αi+1,j) − (αi,j+1 − αi,j) ≥ 0,

we have αi+1,j − αi,j ≥ 0. Hence ∂Fn(s,t)
∂s

≥ 0 and it is followed by

Fn(s′, t) ≤ Fn(s′′, t). (7.1)

(iii) By the similar arguments as in (ii), it can be shown that

Fn(s, t′) ≤ Fn(s, t′′). (7.2)

(iv) By Theorem 5.9 in Schumaker (1981), we can derive

∂2Fn(s, t)

∂s∂t
=

pn−1∑
i=1

qn−1∑
j=1

(l − 1)2αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

(si+l − si+1)(tj+l − tj+1)
N

(1),l−1
i+1 (s)N

(2),l−1
j+1 (t).

(7.3)
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Then by the constraint (αi+1,j+1 − αi+1,j)− (αi,j+1 − αi,j) ≥ 0,

∂2Fn(s, t)

∂s∂t
≥ 0, or Fn(s′′, t′)− Fn(s′, t′) ≤ Fn(s′′, t′′)− Fn(s′, t′′).

(v) Since β1 − α1,qn ≥ 0 and (βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0, then βi − αi,qn ≥ 0. Hence,

Fn(s, t) ≤ Fn(s, U2) ≤ Fn,1(s). (7.4)

(vi) By the similar arguments as in (v), it can be shown that

Fn(s, t) ≤ Fn(U1, t) ≤ Fn,2(t). (7.5)

(vii) By Theorem 5.9 in Schumaker (1981) again, we have

dFn,1(s)

ds
=

pn−1∑
i=1

(l − 1)(βi+1 − βi)

ui+l − ui+1

N
(1),l−1
i+1 (s).

Then by the constraint (βi+1 − βi)− (αi+1,qn − αi,qn) ≥ 0,

∂(Fn,1(s)− Fn(s, t))

∂s
≥ 0, or Fn(s′′, t)− Fn(s′, t) ≤ Fn,1(s

′′)− Fn,1(s
′).

(viii) By the similar arguments as in (vii), it can be shown that Fn(s, t′′) − Fn(s, t′) ≤

Fn,2(t
′′)− Fn,2(t

′).

(ix) Since B-spline basis functions sum to one and their supports only cover a part of the
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knot intervals, then Fn,1(U1) = βpnN
(1),l
pn (U1) = βpn , Fn,2(U2) = γqnN

(2),l
qn (U2) = γqn ,

and Fn(U1, U2) = αpn,qnN
(1),l
pn (U1)N

(2),l
qn (U2) = αpn,qn . Hence,

Fn,2(U2)− Fn(U1, U2) = γqn − αpn,qn ≤ 1− βpn = 1− Fn,1(U1).

Moreover, dFn,1(s)

ds
≥ ∂Fn(s,t)

∂s
and dFn,2(t)

dt
≥ ∂Fn(s,t)

∂t
guarantee Fn,1(U1) − Fn,1(s) ≥

Fn(U1, U2)− Fn(s, U2) and Fn,2(U2)− Fn,2(t) ≥ Fn(U1, U2)− Fn(U1, t), respectively.

Hence,

1− Fn,1(s)− Fn,2(t) + Fn(s, t) ={1− Fn,1(U1) + Fn,1(U1)− Fn,1(s)}

− {Fn,2(t)− Fn(U1, t) + Fn(U1, t)− Fn(s, t)}

≥{Fn,2(U2)− Fn(U1, U2) + Fn(U1, U2)− Fn(s, U2)}

− {Fn,2(t)− Fn(U1, t) + Fn(U1, t)− Fn(s, t)}

={Fn,2(U2)− Fn,2(t)− Fn(U1, U2) + Fn(U1, t)}

+ {Fn(U1, U2)− Fn(s, U2)− Fn(U1, t) + Fn(s, t)}

≥0.

(7.6)

Proof of Theorem 3.1. We show τ̂n is an consistent estimator by verifying the three condi-

tions of Theorem 5.7 in van der Vaart (1998).
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For (s, t) ∈ [l1, u1]× [l2, u2] we define Ω by

Ω = {τ(s, t) = (F (s, t), F1(s), F2(t)) : τ satisfies the following conditions (a) and (b)},

(a) F (s, t) is nondecreasing in both s and t, F1(s) − F (s, t) is nondecreasing in s but

nonincreasing in t, F2(t) − F (s, t) is nondecreasing in t but nonincreasing in s, and

1− F1(s)− F2(t) + F (s, t) is nonincreasing in both s and t,

(b) F (s, t) ≥ b1, F1(s)−F (s, t) ≥ b2, F2(t)−F (s, t) ≥ b3, and 1−F1(s)−F2(t)+F (s, t) ≥ b4,

for b1 > 0, b2 > 0, b3 > 0 and b4 > 0.

Lemma 8.1 indicates that there exist b1 > 0, b2 > 0, b3 > 0 and b4 > 4 small enough to

guarantee that τ0 ∈ Ω and Ω
′
n ∈ Ω under C2 and C6. We suppose b1, b2, b3 and b4 in above

Condition (b) are chosen small enough such that Ω contains both τ0 and Ω
′
n .

The class of functions made by the log of density for single observation (s, t) is defined

as L = {l(τ) : τ ∈ Ω}, where

l(τ) =δ1δ2 log F (s, t) + δ1(1− δ2) log[F1(s)− F (s, t)]

+ (1− δ1)δ2 log[F2(t)− F (s, t)]

+ (1− δ1)(1− δ2) log[1− F1(s)− F2(t) + F (s, t)],

with δ1 = 1[T1≤s], δ2 = 1[T2≤t]. We denote M(τ) = Pl(τ) and Mn(τ) = Pn(l(τ)).
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(i) First, we verify the condition:

sup
τ∈Ω

|Mn(τ)−M(τ)| →p 0.

It suffices to show that L is a P -Clivenko-Cantelli, since

sup
τ∈Ω

|Mn(τ)−M(τ)| = sup
l(τ)∈L

|(Pn − P )l(τ)| →p 0.

Let A1 = { log F (s,t)
log b1

: τ = (F, F1, F2) ∈ Ω}, and G1 = {1[l1,s]×[l2,t], l1 ≤ s ≤ u1, l2 ≤ t ≤ u2}.

By Conditions (a) and (b), we know 0 ≤ log F (s,t)
log b1

≤ 1 and log F (s,t)
log b1

is nonincreasing in both

s and t. Therefore A1 ⊆ sconv(G1), the closure of the symmetric convex hull of G1 (van der

Vaart and Wellner, 1996). Hence Theorem 2.6.7 in van der Vaart and Wellner (1996) implies

that

N(ε,G1, L2(QC1,C2)) ≤ K

(
1

ε

)4

, (7.7)

for any probability measure QC1,C2 for (C1, C2), by the fact that V (G1) = 3 and the envelop

function of G1 is 1. (7.7) is followed by

log N(ε, sconv(G1), L2(QC1,C2) ≤ K

(
1

ε

)4/3

,

using the result of Theorem 2.6.9 in van der Vaart and Wellner (1996). Hence

log N(ε, A1, L2(QC1,C2) ≤ K

(
1

ε

)4/3

. (7.8)
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Let

A
′
1 = {δ1δ2 log F (s, t) : τ = (F, F1, F2) ∈ Ω}.

Suppose the centers of ε-balls of A1 are fi, i = 1, 2, . . . , [K(1
ε
)4/3], then for any joint

probability measure Q for (T1, T2, C1, C2)

‖δ1δ2 log F − δ1δ2 log b1fi‖2
L2(Q)

= Q

[
δ1δ2 log b1

(
log F

log b1

− fi

)]2

= E

[
1[T1<C1,T2<C2] log b1

(
log F (C1, C2)

log b1

− fi(C1, C2)

)]2

= E

{
E

{[
1[T1<C1,T2<C2] log b1

(
log F (C1, C2)

log b1

− fi(C1, C2)

)]2

|C1, C2

}}

= EC1,C2

[
F0(C1, C2) log b1

(
log F (C1, C2)

log b1

− fi(C1, C2)

)]2

≤ EC1,C2

[
log b1

(
log F (C1, C2)

log b1

− fi(C1, C2)

)]2

= (log b1)
2

∥∥∥∥
log F

log b1

− fi

∥∥∥∥
2

L2(QC1,C2
)

.

Let b̂1 = − log b1 then δ1δ2 log b1fi, i = 1, 2, . . . , [K(1
ε
)4/3] are the centers of εb̂1-balls of

A
′
1. Hence by (7.8) we have log N(εb̂1, A

′
1, L2(Q)) ≤ K

(
1
ε

)4/3
, and it follows that

∫ 1

0

sup
Q

√
log N(εb̂1, A

′
1, L2(Q))dε ≤

∫ 1

0

√
K

(
1

ε

)2/3

dε < ∞.

It is obvious that the envelop function of A
′
1 is b̂1, therefore A

′
1 is a P -Donsker, by

Theorem 2.5.2 in van der Vaart and Wellner (1996).
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Let

A
′
2 = {δ1(1− δ2) log(F1(s)− F (s, t)) : τ = (F, F1, F2) ∈ Ω}

A
′
3 = {(1− δ1)δ2 log(F2(t)− F (s, t)) : τ = (F, F1, F2) ∈ Ω}

and

A
′
4 = {(1− δ1)(1− δ2) log(1− F1(s)− F2(t)− F (s, t)) : τ = (F, F1, F2) ∈ Ω}

By the similar arguments in showing A
′
1 to be a P -Donsker, it can be shown that A

′
2, A

′
3

and A
′
4 are all P -Donsker classes. So L is P -Donsker as well. Since P -Donsker is also

P -Clivenko-Cantelli, it then follows that supl(τ)∈L |(Pn − P )l(τ)| →p 0.

(ii) Second, we verify

M(τ0)−M(τ) ≥ Kd(τ0, τ)2,

for any τ ∈ Ω. Note that

M(τ0)−M(τ) = P{l(τ0)− l(τ)}

=P

{
δ1δ2 log

F0

F
+ δ1(1− δ2) log

F0,1 − F0

F1 − F
+ (1− δ1)δ2 log

F0,2 − F0

F2 − F

+(1− δ1)(1− δ2) log
1− F0,1 − F0,2 + F0

1− F1 − F2 + F

}
,

=PC1,C2

{
F0 log

F0

F
+ (F0,1 − F0) log

F0,1 − F0

F1 − F
+ (F0,2 − F0) log

F0,2 − F0

F2 − F

+(1− F0,1 − F0,2 + F0) log
1− F0,1 − F0,2 + F0

1− F1 − F2 + F

}
,
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it follows that

M(τ0)−M(τ) =PC1,C2

{
Fm

(
F0

F

)
+ (F1 − F )m

(
F0,1 − F0

F1 − F

)

+ (F2 − F )m

(
F0,2 − F0

F2 − F

)

+(1− F1 − F2 + F )m

(
1− F0,1 − F0,2 + F0

1− F1 − F2 + F

)}
,

(7.9)

where m(x) = x log(x)− x + 1 ≥ (x− 1)2/4 for 0 ≤ x ≤ 5.

Since F has positive upper bound,

PC1,C2

{
Fm

(
F0

F

)}
≥ PC1,C2

{
F

(
F0

F
− 1

)2

/4

}
≥ KPC1,C2(F0 − F )2

= K‖F0 − F‖2
L2(PC1,C2

).

(7.10)

Similarly, we can easily show that

PC1,C2

{
(F1 − F )m

(
F0,1 − F0

F1 − F

)}
≥ K‖(F0,1 − F1)− (F0 − F )‖2

L2(PC1,C2
), (7.11)

PC1,C2

{
(F2 − F )m

(
F0,2 − F0

F2 − F

)}
≥ K‖(F0,2 − F2)− (F0 − F )‖2

L2(PC1,C2
), (7.12)

and

PC1,C2

{
(1− F1 − F2 + F )m

(
1− F0,1 − F0,2 + F0

1− F1 − F2 + F

)}

≥K‖(1− F0,1 − F0,2 + F0)− (1− F1 − F2 + F )‖2
L2(PC1,C2

).

(7.13)
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So combining (7.10), (7.11), (7.12) and (7.13) results in

M(τ0)−M(τ) ≥K
(
‖F0 − F‖2

L2(PC1,C2
) + ‖(F0,1 − F1)− (F0 − F )‖2

L2(PC1,C2
)

+‖(F0,2 − F2)− (F0 − F )‖2
L2(PC1,C2

)

)

Let f1 = ‖F0 − F‖2
L2(PC1,C2

), f2 = ‖F0,1 − F1‖2
L2(PC1

), and f3 = ‖F0,2 − F2‖2
L2(PC2

).

If f1 is the largest among f1, f2, f3, then

M(τ0)−M(τ) ≥ Kf1 ≥ (K/3)(f1 + f2 + f3). (7.14)

If f2 is the largest, then

M(τ0)−M(τ) ≥ K[f1 + (f2 − f1)] ≥ Kf2 ≥ (K/3)(f1 + f2 + f3). (7.15)

If f3 is the largest, then

M(τ0)−M(τ) ≥ K[f1 + (f3 − f1)] ≥ Kf3 ≥ (K/3)(f1 + f2 + f3). (7.16)

Therefore, by (7.14), (7.15) and (7.16), it follows that

M(τ0)−M(τ) ≥ Kd(τ0, τ)2.

(iii) Finally, we verify Mn(τ̂n)−Mn(τ0) ≥ −op(1).

Lemma 8.3 indicates that there exists τn = (Fn, Fn,1, Fn,2) in Ω
′
n such that for τ0 =
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(F0, F0,1, F0,2), ‖Fn − F0‖∞ ≤ K(n−pv), ‖Fn,1 − F0,1‖∞ ≤ K(n−pv), and ‖Fn,2 − F0,2‖∞ ≤

K(n−pv). Since τ̂n maximizes Mn(τ) in Ω
′
n, Mn(τ̂n)−Mn(τn) > 0. Hence,

Mn(τ̂n)−Mn(τ0) =Mn(τ̂n)−Mn(τn) +Mn(τn)−Mn(τ0) ≥Mn(τn)−Mn(τ0)

=Pn(l(τn))− Pn(l(τ0)) = (Pn − P ){l(τn)− l(τ0)}+ P{l(τn)− l(τ0)}.

(7.17)

Define

Ln ={l(τn) : τn = (Fn, Fn,1, Fn,2) ∈ Ω
′
n, ‖Fn − F0‖∞ ≤ K(n−pv),

‖Fn,1 − F0,1‖∞ ≤ K(n−pv), ‖Fn,2 − F0,2‖∞ ≤ K(n−pv)}

Since (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2), then for any l(τn) ∈ Ln, we have

P{l(τn)− l(τ0)}2 ≤4P

(
δ1δ2 log

Fn

F0

)2

+ 4P

(
δ1(1− δ2) log

Fn,1 − Fn

F0,1 − F0

)2

+ 4P

(
(1− δ1)δ2 log

Fn,2 − Fn

F0,2 − F0

)2

+ 4P

(
(1− δ1)(1− δ2) log

1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

)2

≤4PC1,C2

(
log

Fn

F0

)2

+ 4PC1,C2

(
log

Fn,1 − Fn

F0,1 − F0

)2

+ 4PC1,C2

(
log

Fn,2 − Fn

F0,2 − F0

)2

+ 4PC1,C2

(
log

1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

)2

(7.18)

The facts that ‖Fn − F0‖∞ ≤ K(n−pv) and that F0 has a positive lower bound result in

1/2 < Fn

F0
< 2 for large n. It can be easily shown that if 1/2 ≤ x ≤ 2, | log(x)| ≤ K|x − 1|.
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Hence
∣∣∣log Fn

F0

∣∣∣ ≤ K
∣∣∣Fn

F0
− 1

∣∣∣ and it follows that

PC1,C2

∣∣∣∣log
Fn

F0

∣∣∣∣
2

≤KPC1,C2

∣∣∣∣
Fn

F0

− 1

∣∣∣∣
2

≤ KPC1,C2|Fn − F0|2

≤K(n−pv)2 → 0.

(7.19)

The similar arguments yield to

PC1,C2

∣∣∣∣log
Fn,1 − Fn

F0,1 − F0

∣∣∣∣
2

≤KPC1,C2|(Fn,1 − Fn)− (F0,1 − F0)|2

≤K(n−pv)2 → 0,

(7.20)

PC1,C2

∣∣∣∣log
Fn,2 − Fn

F0,2 − F0

∣∣∣∣
2

≤KPC1,C2|(Fn,2 − Fn)− (F0,2 − F0)|2

≤K(n−pv)2 → 0,

(7.21)

and

PC1,C2

∣∣∣∣log
1− Fn,1 − Fn,2 + Fn

1− F0,1 − F0,2 + F0

∣∣∣∣
2

→ 0. (7.22)

Combining (7.18), (7.19), (7.20), (7.21) and (7.22) results in P{l(τn)− l(τ0)}2 → 0, as n →

∞. Hence

ρP{l(τn)−l(τ0)} = {varP [l(τn)−l(τ0)]}1/2 ≤ {P{[l(τn)−l(τ0)]
2}1/2 → 0, as n →∞. (7.23)

Since L is shown a P -Donsker in the proof of (i), Corollary 2.3.12 of van der Vaart and
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Wellner (1996) indicates that

(Pn − P ){l(τn)− l(τ0)} = op

(
n−1/2

)
, (7.24)

by the fact that both l(τn) and l(τ0) are in L and (7.23).

In addition,

|P{l(τn)− l(τ0)}| ≤P |l(τn)− l(τ0)|

≤K
{
P [l(τn)− l(τ0)]

2
}1/2 → 0, as n →∞.

Therefore P (l(τn)− l(τ0)) ≥ −o(1) as n →∞. Hence,

Mn(τ̂n)−Mn(τ0) ≥ op(n
−1/2)− o(1) ≥ −op(1).

This completes the proof of d(τ̂n, τ0) → 0 in probability.

Proof of Theorem 3.2. We derive the rate of convergence by verifying the conditions of The-

orem 3.4.1 of van der Vaart and Wellner (1996). To apply the theorem to this problem,

we denote Mn(τ) = M(τ) = Pl(τ) and dn(τ1, τ2) = d(τ1, τ2). The maximizer of M(τ) is

τ0 = (F0, F0,1, F0,2).

(i) We first verify that for δ > 0,

sup
δ/2<d(τ,τ0)≤δ,τ∈Ω′n

(M(τ)−M(τ0)) ≤ −Kδ2
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By the proof of consistency, we have already established that for any τ ∈ Ω, M(τ0)−M(τ) ≥

Kd2(τ, τ0) and it directly results in the above inequality.

(ii) We will find a function ψ(·) such that

E

{
sup

δ/2<d(τ,τ0)≤δ,τ∈Ω′n
Gn(τ − τ0)

}
≤ K

ψ(δ)√
n

and δ → ψ(δ)/δα is decreasing on δ, for some α < 2, and for rn ≤ δ−1, it satisfies

r2
nψ (1/rn) ≤ K

√
n for every n.

Let

Ln,δ = {l(τ)− l(τ0) : τ ∈ Ω
′
n and δ/2 < d(τ, τ0) ≤ δ}.

First, we evaluate the bracketing number of Ln,δ.

Let L∗n = {l(τ) : τ ∈ Ω
′
n}, Fn = {F : τ = (F, F1, F2) ∈ Ω

′
n}, Fn,1 = {F1 : τ =

(F, F1, F2) ∈ Ω
′
n}, and Fn,2 = {F2 : τ = (F, F1, F2) ∈ Ω

′
n}.

Lemma 8.5 indicates that there exist ε-brackets [FL
i , FU

i ], i = 1, 2, . . . , [(1/ε)Kpnqn ] to

cover Fn. Lemma 8.6 indicates there exist ε-brackets [F
(1),L
j , F

(1),U
j ], j = 1, 2, . . . , [(1/ε)Kpn ]

to cover Fn,1, and there exist ε-brackets [F
(2),L
k , F

(2),U
k ], k = 1, 2, . . . , [(1/ε)Kqn ] to cover Fn,2.

Let

lUi,j,k =δ1δ2 log FU
i + δ1(1− δ2) log(F

(1),U
j − FL

i ) + (1− δ1)δ2 log(F
(2),U
k − FL

i )

+ (1− δ1)(1− δ2) log(1− F
(1),L
j − F

(2),L
k + FU

i ),
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and

lLi,j,k =δ1δ2 log FL
i + δ1(1− δ2) log(F

(1),L
j − FU

i ) + (1− δ1)δ2 log(F
(2),L
k − FU

i )

+ (1− δ1)(1− δ2) log(1− F
(1),U
j − F

(2),U
k + FL

i ).

Then for any l(τ) ∈ L∗n ,there exist i, j, k, for i = 1, 2, . . . , [(1/ε)Kpnqn ],

j = 1, 2, . . . , [(1/ε)Kpn ] and k = 1, 2, . . . , [(1/ε)Kqn ], such that lLi,j,k ≤ l(τ) ≤ lUi,j,k and the

number of brackets [lLi,j,k, l
U
i,j,k]

′
s is bounded by (1/ε)Kpnqn · (1/ε)Kpn · (1/ε)Kqn .

Note that

‖ lUi,j,k − lLi,j,k ‖∞≤
∥∥∥∥log

FU
i

FL
i

∥∥∥∥
∞

+

∥∥∥∥∥log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

∥∥∥∥∥
∞

+

∥∥∥∥∥log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

∥∥∥∥∥
∞

+

∥∥∥∥∥log
1− F

(1),L
j − F

(2),L
j + FU

i

1− F
(1),U
j − F

(2),U
j + FL

i

∥∥∥∥∥
∞

Since for any τ ∈ Ω′
n, F has positive lower bound, then for small ε, FL

i can be made to

have positive lower bound as well. Combining with the fact that FU
i (s, t) is close to FL

i (s, t)

guarantees that 0 ≤ F U
i

F L
i
− 1 ≤ 1 for i = 1, 2, . . . , [(1/ε)Kpnqn ]. Note that by log x ≤ (x − 1)

for 0 ≤ (x− 1) ≤ 1, therefore log
F U

i

F L
i
≤ F U

i

F L
i
− 1.

Hence,

∥∥∥∥log
FU

i

FL
i

∥∥∥∥
∞
≤

∥∥∥∥
FU

i

FL
i

− 1

∥∥∥∥
∞
≤

∥∥∥∥
1

FL
i

(FU
i − FL

i )

∥∥∥∥
∞
≤ K

∥∥FU
i − FL

i

∥∥
∞ ≤ Kε.
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Similarly, by the definition of Ω′
n, we can easily show that

∥∥∥∥∥log
F

(1),U
j − FL

i

F
(1),L
j − FU

i

∥∥∥∥∥
∞
≤ Kε,

∥∥∥∥∥log
F

(2),U
k − FL

i

F
(2),L
k − FU

i

∥∥∥∥∥
∞
≤ Kε,

and ∥∥∥∥∥log
1− F

(1),L
j − F

(2),L
j + FU

i

1− F
(1),U
j − F

(2),U
j + FL

i

∥∥∥∥∥
∞
≤ Kε.

Hence, it follows that

N[ ]{ε,L∗n, ‖ ‖∞} ≤ (1/ε)Kpnqn+Kpn+Kqn ≤ (1/ε)Kpnqn

and N[ ]{ε,L∗n, L2(P )} ≤ (1/ε)Kpnqn , by the fact that L2-norm is bounded by L∞-norm.

Finally, by (Ln,δ + l(τ0)) ⊂ L∗n,

N[ ]{ε,Ln,δ, L2(P )} ≤ (1/ε)Kpnqn . (7.25)

Second, we show that P{L(τ)−L(τ0)}2 ≤ Kδ2 for any L(τ)−L(τ0) ∈ Ln,δ. Since for any

τ = (F, F1, F2) with d(τ, τ0) < δ, ‖F −F0‖L2(PC1,C2
) ≤ d(F, F0) ≤ δ. Then under C1, C3 and

C5, Lemma 8.7 indicates that for very small δ > 0, F and F0 are very close at every point in

[l1, u1] × [l2, u2]. Then the fact that F0 has a positive lower bound results in 1/2 < F
F0

< 2.
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Hence
∣∣∣log F

F0

∣∣∣ ≤ K
∣∣∣ F
F0
− 1

∣∣∣ and it follows that

PC1,C2

∣∣∣∣log
F

F0

∣∣∣∣
2

≤KPC1,C2

∣∣∣∣
F

F0

− 1

∣∣∣∣
2

≤ KPC1,C2 |F − F0|2 ≤ Kδ2.

Again by the definition of Ω′
n, we can similarly show that given a small δ > 0, when n is

large enough, the following inequalities are true,

PC1,C2

∣∣∣∣log
F1 − F

F0,1 − F0

∣∣∣∣
2

≤ Kδ2,

PC1,C2

∣∣∣∣log
F2 − F

F0,2 − F0

∣∣∣∣
2

≤ Kδ2,

and

PC1,C2

∣∣∣∣log
1− F1 − F2 + F

1− F0,1 − F0,2 + F0

∣∣∣∣
2

≤ Kδ2.

Hence for any l(τ)− l(τ0) ∈ Ln,δ, we have P{l(τ)− l(τ0)}2 ≤ Kδ2. It is obvious that Ln,δ

is uniformly bounded by the structure of the log likelihood, Lemma 3.4.2 of van der Vaart

and Wellner (1996) indicates that

EP ‖ Gn ‖Ln,δ
≤ KJ̃[ ]{δ,Ln,δ, L2(P )}

[
1 +

J̃[ ]{δ,Ln,δ, L2(P )}
δ2
√

n

]
,

where

J̃[ ]{δ,Ln,δ, L2(P )} =

∫ δ

0

√
1 + log N[ ]{ε,Ln,δ, L2(P )}dε ≤ K(pnqn)1/2δ1/2
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by (7.25). This gives ψ(δ) = (pnqn)1/2δ1/2 + (pnqn)/(δn1/2). It is easy to see that ψ(δ)/δ is

decreasing function of δ. Note that for pn = qn = nv,

n2pvψ(1/npv) = n2pvnvn−pv/2 + n2pvn2vn−1/2npv

= n1/2{n(3pv)/2−(1−2v)/2 + n3pv−(1−2v)}.

Therefore, if pv ≤ (1− 2v)/3, n2pvψ(1/npv) ≤ n1/2. Moreover,

n2(1−2v)/3ψ(1/n(1−2v)/3) = n2(1−2v)/3nvn−(1−2v)/6 + n2(1−2v)/3n2vn−1/2n(1−2v)/3

= 2n1/2.

This implies if rn = nmin{pv,(1−2v)/3}, r2
nψ(1/rn) ≤ Kn1/2.

(iii) Finally, we need to show thatM(τ̂n)−M(τ0) ≥ −Op (r−2
n ). Note that by (7.17),Mn(τ̂n)−

Mn(τ0) ≥ I1,n + I2,n, where I1,n = (Pn − P ){l(τn)− l(τ0)} and I2,n = M(τn)−M(τ0) for any

l(τn) ∈ Ln. Given by (7.24), I1,n = op(n
−1/2). Then if v ≤ 1

4p
, we have I1,n = op(n

−2pv). In

what follows, we show that M(τ0)−M(τn) ≤ O(n−2pv).

By (7.9),

M(τ0)−M(τn) =PC1,C2

{
Fnm

(
F0

Fn

)
+ (Fn,1 − Fn)m

(
F0,1 − F0

Fn,1 − Fn

)

+(Fn,2 − Fn)m

(
F0,2 − F0

Fn,2 − Fn

)

+(1− Fn,1 − Fn,2 + Fn)m

(
1− F0,1 − F0,2 + F0

1− Fn,1 − Fn,2 + Fn

)}
.

(7.26)

By the fact that m(x) = x log−x + 1 ≤ (x − 1)2 in the neighborhood of x = 1 and the
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definition of Ln,

PC1,C2

{
Fnm

(
F0

Fn

)}
≤KPC1,C2

{
F 2

n

(
F0

Fn

− 1

)2
}

= KPC1,C2(F0 − Fn)2

≤K‖F0 − Fn‖2
∞ = O

(
n−2pv

)
.

(7.27)

similarly, we can show that

PC1,C2

{
(Fn,1 − Fn)m

(
F0,1 − F0

Fn,1 − Fn

)}
≤K‖F0 − Fn‖2

∞ + K‖F0,1 − Fn,1‖2
∞

=O
(
n−2pv

)
,

(7.28)

PC1,C2

{
(Fn,2 − Fn)m

(
F0,2 − F0

Fn,2 − Fn

)}
≤K‖F0 − Fn‖2

∞ + K‖F0,2 − Fn,2‖2
∞

=O
(
n−2pv

)
,

(7.29)

and

PC1,C2

{
(1− Fn,1 − Fn,2 + Fn)m

(
1− F0,1 − F0,2 + F0

1− Fn,1 − Fn,2 + Fn

)}

≤ K‖F0 − Fn‖2
∞ + K‖F0,2 − Fn,2‖2

∞ + K‖F0,1 − Fn,1‖2
∞ = O

(
n−2pv

)
.

(7.30)

Combining (7.26), (7.27), (7.28), (7.29) and (7.30) results in M(τ0)−M(τn) ≤ O(n−2pv). and

it then follows that

Mn(τ̂n)−Mn(τ0) ≥ −O
(
n−2pv

)
+ op

(
n−2pv

)
= −Op

(
n−2pv

)

≥ −Op

(
n−2min{pv,(1−2v)/3}) = −Op

(
r−2
n

)
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Therefore, it follows by Theorem 3.4.1 in van der Vaart and Wellner (1996) that

rnd(τ̂n, τ0) = Op(1).

Proof of Lemma 4.1. Let αi,j =
∑i

m=1

∑j
n=1 ηm,n, βi =

∑i
m=1

{∑qn

j=1 ηm,j + ωm

}
and γj =

∑j
n=1 {

∑pn

i=1 ηi,n + πn}. It can be easily argued that condition (2.5) and (4.3) are equivalent.

By the relationship between the B-spline basis functions and the I-spline basis functions

given by (4.2), it follows that

pn∑
i=1

qn∑
j=1

αi,jN
(1),l
i (s)N

(2),l
j (t) =

pn∑
i=1

qn∑
j=1

ηi,jI
(1),l−1
i (s)I

(2),l−1
j (t),

pn∑
i=1

βiN
(1),l
i (s) =

pn∑
i=1

{
qn∑

j=1

ηi,j + ωi

}
I

(1),l−1
i (s),

and
qn∑

j=1

γjN
(2),l
j (t) =

qn∑
j=1

{
pn∑
i=1

ηi,j + πj

}
I

(2),l−1
j (t).

8 Technical Lemmas

Lemma 8.1. Suppose τ = τ0 or τ ∈ Ω
′
n, then under C2 and C6, the following two properties

hold for F (s, t), F1(s) and F2(t) with τ(s, t) = (F (s, t), F1(s), F2(t)).

(1) F (s, t) is nondecreasing in both s and t. F1(s) − F (s, t) is nondecreasing in s and
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nonincreasing in t. F2(t)− F (s, t) is nondecreasing in t direction and nonincreasing in

s. 1− F1(s)− F2(t) + F (s, t) is nonincreasing in both s and t.

(2) F (s, t), F1(s)− F (s, t), F2(t)− F (s, t) and 1− F1(s)− F2(t) + F (s, t) all have positive

lower bounds.

Proof. (i) First, we verify the two properties for τ = τ0.

Property (1) is obviously true by the properties of any joint distribution.

Under C2 and by (s, t) ∈ [l1, u1]× [l2, u2],

F (s, t) = F0(s, t) = P (T1 ≤ s, T2 ≤ t) ≥ P (L1 < T1 ≤ s, L2 < T2 ≤ t)

≥ (s− L1)(t− L2) min
s,t

∂2F0(s, t)

∂s∂t
≥ (l1 − L1)(l2 − L2)b0,

F1(s)− F (s, t) = F0,1(s)− F0(s, t) = P (T1 ≤ s, T2 > t) ≥ P (L1 < T1 ≤ s, t < T2 ≤ U2)

≥ (s− L1)(U2 − t) min
s,t

∂2F0(s, t)

∂s∂t
≥ (l1 − L1)(U2 − u2)b0,

F2(t)− F (s, t) = F0,2(t)− F0(s, t) = P (T1 > s, T2 ≤ t) ≥ P (s < T1 ≤ U1, L2 < T2 ≤ t)

≥ (U1 − s)(t− L2) min
s,t

∂2F0(s, t)

∂s∂t
≥ (U1 − u1)(l2 − L2)b0,

47



and

1− F1(s)− F2(t) + F (s, t) = 1− F0,1(s)− F0,2(t) + F0(s, t)

= P (T1 > s, T2 > t) ≥ P (s < T1 ≤ U1, t < T2 ≤ U2)

≥ (U1 − s)(U2 − t) min
s,t

∂2F0(s, t)

∂s∂t

≥ (U1 − u1)(U2 − u2)b0.

(ii) Second, we verify the two properties for τ ∈ Ω
′
n.

Lemma 2.1 indicates that Ω
′
n ⊂ F in [l1, u1] × [l2, u2], hence any τ = (F, F1, F2) ∈ Ω

′
n

satisfies property (1).

Under C6 and the 4th condition in (3.1), (7.3) in the proof of Lemma 2.1 results in

∂2F (s, t)

∂s∂t
≥min

i,j

αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

maxi1 ∆
(u)
i1

maxj1 ∆
(v)
j1

≥min
i,j

αi+1,j+1 − αi,j+1 − αi+1,j + αi,j

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

maxi1 ∆
(u)
i1

maxj1 ∆
(v)
j1

≥K.

(8.1)

(7.1) in the proof of Lemma 2.1 and (8.1) imply that for (s, t) ∈ [l1, u1]× [l2, u2]

F (s, t) ≥ F (s, t)− F (s, L2)− F (L1, t) + F (L1, L2) =

∫ L1

s

∫ L2

t

∂2F (x, y)

∂x∂y
dydx

≥ (s− L1)(t− L2) min
s,t

∂2F (s, t)

∂s∂t
≥ (l1 − L1)(l2 − L2)K.
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It follows by (7.4) and (7.2) in the proof of Lemma 2.1 and (8.1) that

F1(s)− F (s, t) ≥F (s, U2)− F (s, t) ≥ F (s, U2)− F (s, t)− F (L1, U2) + F (L1, t)

≥(l1 − L1)(U2 − u2)K.

Similarly, (7.5) and (7.1) in the proof of Lemma 2.1 and (8.1) result in

F2(t)− F (s, t) ≥(U1 − u1)(l2 − L2)K.

Finally, (7.6) in the proof of Lemma 2.1 and (8.1) result in

1− F1(s)− F2(t) + F (s, t) ≥F (U1, U2)− F (s, U2)− F (U1, t) + F (s, t)

≥(U1 − u1)(U2 − u1)K.

Lemma 8.2. Suppose g(x, y) is a bivariate function in closed region [L1, U1]× [L2, U2] with

the continuous mixed derivatives of order w, ∇w
mg = ∂wg(x,y)

∂xmyw−m for m = 1, 2, . . . , w. Then there

exists a bivariate function made of a linear combination of tensor B-spline basis functions,

Ag(x, y) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (x)N

(2),l
j (y), with order l ≥ w + 1 for every B-spline basis

function and {N (1),l
i }p

i=1 having knot sequence {ui}p+l
i=1 satisfying L1 = u1 = · · · = ul <

ul+1 < · · · < up < up+1 = · · · = up+l = U1, {N (2),l
j }q

j=1 having knot sequence {vj}q+l
j=1

satisfying L2 = v1 = · · · = vl < vl+1 < · · · < vq < vq+1 = · · · = vq+l = U2, such that for some
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constant K > 0

‖g − Ag‖∞ ≤ K|T |w(‖g‖w,∞),

where |T | = max{maxl≤i≤p(ui+1 − ui), maxl≤j≤q(vj+1 − vj)}, and

‖g‖w,∞ = max0≤m≤w

∥∥∥ ∂wg
∂xm∂yw−m

∥∥∥
∞

.

Proof. The proof of this lemma closely follows the arguments for justifying Jackson Theorem

in De Boor (2001, p149). We define ω(g; h) = max{|g(x1, y1)−g(x2, y2)| : |x1−x2| ≤ h, |y1−

y2| ≤ h, x1, x2 ∈ [L1, U1], y1, y2 ∈ [L2, U2]}. Then ω(g; h) is a monotone and subadditivity

function of h, that is, ω(g; h1) ≤ ω(g; h1 + h2) ≤ ω(g; h1) + ω(g; h2) for nonnegative h1

and h2. The monotonicity of ω(g; h) is automatically true by the definition. The proof of

subadditivity is as follows.

For any (x1, y1) and (x2, y2) with |x1− x2| ≤ h1 + h2 and |y1− y2| ≤ h1 + h2, we can find

(x3, y3) such that |x1 − x3| ≤ h1, |y1 − y3| ≤ h1 and |x2 − x3| ≤ h2, |y2 − y3| ≤ h2. Therefore,

for any |x1 − x2| ≤ h1 + h2 and |y1 − y2| ≤ h1 + h2, we have

|g(x1, y1)− g(x2, y2)| ≤|g(x1, y1)− g(x3, y3)|+ |g(x3, y3)− g(x2, y2)|

≤ max
|x1−x3|≤h1

|y1−y3|≤h1

|g(x1, y1)− g(x3, y3)|+ max
|x2−x3|≤h2

|y2−y3|≤h2

|g(x3, y3)− g(x2, y2)|

=ω(g; h1) + ω(g; h2).

(8.2)

By (8.2), ω(g; h1 +h2) ≤ ω(g; h1)+ω(g; h2) for nonnegative h1 and h2, that is, subadditivity

of ω(g; h) holds.

By choosing τ1 < τ2 < · · · < τp in [L1, U1] and ξ1 < ξ2 < · · · < ξq in [L2, U2], we can
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construct a linear combination of the tensor B-spline basis functions Ag to approximate the

smooth function g on [L1, U1]× [L2, U2] as follows.

Ag(x, y) =

p∑
i=1

q∑
j=1

g(τi, ξj)N
(1),l
i (x)N

(2),l
j (y)

For (x̂, ŷ) in [uj1 , uj1+1]× [vj2 , vj2+1] ∈ [L1, U1]× [L2, U2],

Ag(x̂, ŷ) =

j1∑

i=j1+1−l

j2∑

j=j2+1−l

g(τi, ξj)N
(1),l
i (x̂)N

(2),l
j (ŷ), (8.3)

due to the fact that the supports of the B-spline basis functions only cover a part of the

knot intervals. Since the B-spline basis functions sum to one, we have

g(x̂, ŷ) = g(x̂, ŷ)

j1∑

i=j1+1−l

N
(1),l
i (x̂)

= g(x̂, ŷ)

j1∑

i=j1+1−l

{
j2∑

j=j2+1−l

N
(2),l
j (ŷ)

}
N

(1),l
i (x̂)

= g(x̂, ŷ)

j1∑

i=j1+1−l

j2∑

j=j2+1−l

N
(1),l
i (x̂)N

(2),l
j (ŷ).

(8.4)

Subtracting (8.3) from (8.4) yields,

g(x̂, ŷ)− Ag(x̂, ŷ) =

j1∑

i=j1+1−l

j2∑

j=j2+1−l

{g(x̂, ŷ)− g(τi, ξj)}N (1),l
i (x̂)N

(2),l
j (ŷ).
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Hence,

|g(x̂, ŷ)− Ag(x̂, ŷ)| ≤
j1∑

i=j1+1−l

j2∑

j=j2+1−l

|g(x̂, ŷ)− g(τi, ξj)|N (1),l
i (x̂)N

(2),l
j (ŷ)

≤ max
j1+1−l≤i≤j1
j2+1−l≤j≤j2

|g(x̂, ŷ)− g(τi, ξj)|.

We specifically choose the sequences of {τi}p
i=1 and {ξj}q

j=1 as follows

τi =





u1 + (i−1)(ul+1−ul)

l
, i = 1, . . . , l,

ui, i = l + 1, . . . , p.

(8.5)

ξj =





v1 + (j−1)(vl+1−vl)

l
, j = 1, . . . , l,

vj, j = l + 1, . . . , q,

(8.6)

Then (8.5) and (8.6) imply |τi − ui| ≤ |T | and |ξj − vj| ≤ |T | for i = 1, . . . , p and

j = 1, . . . , q. We also know |ui − x̂| ≤ uj1+1 − uj1−l+1 ≤ l|T | for j1 − l < i ≤ j1 and

x̂ ∈ [uj1 , uj1+1] and |vj − ŷ| ≤ vj2+1 − vj2−l+1 ≤ l|T | for j2 − l < j ≤ j2 and ŷ ∈ [vj2 , vj2+1].

Then for j1 − l < i ≤ j1 and x̂ ∈ [uj1 , uj1+1]

|τi − x̂| ≤ (l + 1)|T |,

and for j2 − l < j ≤ j2 and ŷ ∈ [vj2 , vj2+1]

|ξj − ŷ| ≤ (l + 1)|T |.
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Hence,

max
j1+1−l≤i≤j1
j2+1−l≤j≤j2

|g(x̂, ŷ)− g(τi, ξj)| ≤max{|g(x1, y1)− g(x2, y2)| :

|x1 − x2| ≤ (l + 1)|T |, |y1 − y2| ≤ (l + 1)|T |}

=ω(g; (l + 1)|T |) = (l + 1)ω(g; |T |),

(8.7)

where the last inequality is due to the subadditivity property of ω(g; h).

(8.7) implies that

‖g − Ag‖∞ = sup
L1≤x≤U1
L2≤y≤U2

|g(x, y)− Ag(x, y)| ≤ (l + 1)ω(g; |T |),

which means the distance between g and ψl,l

d(g, ψl,l) = inf
f∈ψl,l

‖g − f‖ ≤ (l + 1)ω(g; |T |), (8.8)

where ψl,l denotes the set of all linear combinations of the tensor B-spline basis functions

with order l for every basis function. Because the distance of function g from ψl,l is the same

as the distance of the function g − f from ψl,l for f ∈ ψl,l, (8.8) implies

d(g, ψl,l) = d(g − f, ψl,l) ≤ (l + 1)ω(g − f, |T |). (8.9)
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Furthermore, since g has bounded partial derivatives, then

ω(g − f, |T |) = max
|x1−x2|≤|T |
|y1−y2|≤|T |

|(g − f)(x1, y1)− (g − f)(x2, y2)|

≤ max
|y1−y2|≤|T |

|(g − f)(x1, y1)− (g − f)(x1, y2)|

+ max
|x1−x2|≤|T |

|(g − f)(x1, y2)− (g − f)(x1, y2)|

≤
∥∥∥∥
∂(g − f)

∂y

∥∥∥∥
∞
|T |+

∥∥∥∥
∂(g − f)

∂x

∥∥∥∥
∞
|T |.

Therefore, by (8.9)

d(g, ψl,l) ≤ (l + 1)|T |
(∥∥∥∥

∂(g − f)

∂y

∥∥∥∥
∞

+

∥∥∥∥
∂(g − f)

∂x

∥∥∥∥
∞

)
. (8.10)

Since ψl,l−1 =
{

∂f
∂y

: f ∈ ψl,l

}
and ψl−1,l =

{
∂f
∂x

: f ∈ ψl,l

}
, (8.10) implies

d(g, ψl,l) ≤ (l + 1)|T |
{

d

(
∂g

∂x
, ψl−1,l

)
+ d

(
∂g

∂y
, ψl,l−1

)}
. (8.11)

Iterating the same derivation for (8.11) leads to

d(g, ψl,l)

≤ K|T |w−1

{
d

(
∂w−1g

∂xw−1
, ψl−w+1,l

)
+ d

(
∂w−1g

∂xw−2∂y
, ψl−w+2,l−1

)
+ · · ·+ d

(
∂w−1g

∂yw−1
, ψl,l−w+1

)}

≤ K|T |w−1

{
ω

(
∂w−1g

∂xw−1
, |T |

)
+ ω

(
∂w−1g

∂xw−2∂y
, |T |

)
+ · · ·+ ω

(
∂w−1g

∂yw−1
, |T |

)}

≤ K|T |w
{∥∥∥∥

∂wg

∂xw

∥∥∥∥
∞

+

∥∥∥∥
∂wg

∂xw−1∂y

∥∥∥∥
∞

+ · · ·+
∥∥∥∥
∂wg

∂yw

∥∥∥∥
∞

}

≤ K|T |w max
0≤m≤w

∥∥∥∥
∂wg

∂xm∂yw−m

∥∥∥∥
∞

.
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Lemma 8.3. Let pn = O(nv) and qn = O(nv). If C2, C3 and C6 hold, there exists τn =

(Fn, Fn,1, Fn,2) ∈ Ω
′
n, such that ‖Fn − F0‖∞ ≤ K(n−pv), ‖Fn,1 − F0,1‖∞ ≤ K(n−pv) and

‖Fn,2 − F0,2‖∞ ≤ K(n−pv).

Proof. Suppose the spline coefficients of Fn, Fn,1 and Fn,2 are chosen as αi,j = F0(τi, ξj),

βi = F0,1(τi) and γj = F0,2(ξj), where τi, i = 1, . . . , pn and ξj, j = 1, . . . , qn are defined

by (8.5) and (8.6) in the proof of Lemma 8.2. With C3, C6, Jackson Theorem in De

boor (2001, p149) and Lemma 8.2, it is easily seen that that ‖Fn − F0‖∞ ≤ K(n−pv),

‖Fn,1 − F0,1‖∞ ≤ K(n−pv), and ‖Fn,2 − F0,2‖∞ ≤ K(n−pv).

To complete the proof, it remains to show that αi,j, βi and γj satisfy the conditions in

(3.1).

(i) α1,1 = F0(τ1, ξ1) ≥ 0.

(ii) α1,j+1 − α1,j = F0(τ1, ξj+1)− F0(τ1, ξj) ≥ 0.

(iii) αi+1,1 − αi,1 = F0(τi+1, ξ1)− F0(τi, ξ1) ≥ 0.

(iv)
(αi+1,j+1−αi+1,j)−(αi,j+1−αi,j)

mini1
∆

(u)
i1

l

minj1
∆

(v)
j1

l

≥ αi+1,j+1−αi,j+1−αi+1,j+αi,j

(τi+1−τi)(ξj+1−ξi)

=
F0(τi+1,ξj+1)−F0(τi,ξj+1)−F0(τi+1,ξj)+F0(τi,ξj)

(τi+1−τi)(ξj+1−ξi)
≥ mins∈[L1,U1]

t∈[L2,U2]

∂2F0(s,t)
∂s∂t

= b0, by C2.

(v) β1 − α1,qn = F0,1(τ1)− F0(τ1, ξqn) ≥ 0.

(vi) βi+1 − βi − (αi+1,qn − αi,qn) = F0,1(τi+1)− F0,1(τi)− (F0(τi+1, ξqn)− F0(τi, ξqn)) ≥ 0.

(vii) γ1 − αpn,1 = F0,2(ξ1)− F0(τpn , ξ1) ≥ 0.
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(viii) γj+1 − γj − (αpn,j+1 − αpn,j) = F0,2(ξj+1)− F0,1(ξj)− (F0(τpn , ξj+1)− F0(τpn , ξj)) ≥ 0.

(ix) 1− βpn − γqn + αpn,qn = 1− F0,1(τpn)− F0,2(ξqn) + F0(τpn , ξqn) ≥ 0.

Lemma 8.4. Let S be a sphere in Rn with radius (n1/2σ) , that is, S = {x = (x1, . . . , xn) ∈

Rn :
∑n

i=1 x2
i ≤ nσ2}. Let ‖ · ‖∞ be the usual L∞-norm in Rn. Then log N(ε, S, ‖ · ‖∞) ≤

Kn log (σ/ε), for some constant K > 0 and ε < σ.

Proof. The proof follows along the same lines as for the proof of Lemma 5 in Shen and Wong

(1994).

Lemma 8.5. Θδ = {φ : φ(s, t) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t), ‖φ‖∞ < δ}, where 0 ≤

α1,j ≤ α2,j ≤ · · · ≤ αp,j for j = 1, . . . , q and 0 ≤ αi,1 ≤ αi,2 ≤ · · · ≤ αi,q for i = 1, . . . , p,

{N (1),l
i }p

i=1 and {N (2),l
j }q

j=1 are two sets of B-spline basis functions with the knot sequence

{ui}p+l
i=1 satisfying L1 = u1 = · · · = ul < ul+1 < · · · < up < up+1 = · · · = up+l = U1 and the

knot sequence {vj}q+l
1=1 satisfying L2 = v1 = · · · = vl < vl+1 < · · · < vq < vq+1 = · · · = vq+l =

U2, respectively. Then log N[ ](ε, Θ, ‖ · ‖∞) ≤ Kpq log(δ/ε), for some constant K > 0 and

ε < δ.

Proof. For any φ ∈ Θδ, we have

(φ(U1, U2))
2 = (αp,qN

(1),l
p (U1)N

(2),l
q (U2))

2 = α2
p,q,

since the B-spline basis functions sum to one and their supports only cover a part of the knot

intervals. Then ‖φ‖2
∞ = α2

p,q ≥ 1
pq

∑p
i=1

∑q
j=1 a2

i,j and ‖φ‖2
∞ ≤ δ2. Hence, for the coefficients
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(α1,1, · · · , αp,q) of φ,
p∑

i=1

q∑
j=1

α2
i,j ≤ pq‖φ‖2

∞ ≤ pqδ2. (8.12)

Let

S = {α = (α1,1, · · · , αpq) :

p∑
i=1

q∑
j=1

α2
ij ≤ pqδ2}.

Lemma 8.4 indicates that there exist ε-balls B1, B2, · · · , B[( δ
ε
)Kpq ] centered at α(1) =

(α
(1)
1,1, · · · , α

(1)
p,q), α(2) = (α

(2)
1,1, · · · , α

(2)
p,q), · · · , α([( δ

ε
)Kpq]) = (α

([( δ
ε
)Kpq ])

1,1 , · · · , α
([( δ

ε
)Kpq ])

p,q ), respec-

tively, which cover S.

Let

ψ(k)(s, t) =

p∑
i=1

q∑
j=1

α
(k)
i,j N

(1),l
i (s)N

(2),l
j (t)

and

Ψ
(k)
1 = {ψ : ‖ψ − ψ(k)‖ ≤ ε and ψ ∈ Ψ}

for k = 1, · · · , [( δ
ε
)Kpq], where Ψ = {ψ : ψ(s, t) =

∑p
i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t)}. Then

{Ψ(k)
1 : k = 1, · · · , [( δ

ε
)Kpq]} constitute a set of ε-balls for Ψ.

In what follows, we show that {Ψ(k)
1 : k = 1, · · · , [( δ

ε
)Kpq]} cover Θδ.

For any ψ(s, t) =
∑p

i=1

∑q
j=1 αi,jN

(1),l
i (s)N

(2),l
j (t) ∈ Θδ, its coefficients α = (α1,1, · · · , αp,q) ∈

S by (8.12). By the fact that ε-balls B1, B2, · · · , B[( δ
ε
)Kpq] cover S, there exists m with

1 ≤ m ≤ [( δ
ε
)Kpq], such that

‖α− α(m)‖∞ = max
i=1,··· ,p
j=1,··· ,q

|αi,j − α
(m)
i,j | ≤ ε.
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Hence, for any (s, t) ∈ [L1, U1]× [L2, U2],

|ψ(m)(s, t)− ψ(s, t)| =
∣∣∣∣∣

p∑
i=1

q∑
j=1

(α
(m)
i,j − αi,j)N

(1),l
i (s)N

(2),l
j (t)

∣∣∣∣∣

≤ max
i=1,··· ,p
j=1,··· ,q

|(α(m)
i,j − αi,j)|

p∑
i=1

q∑
j=1

N
(1),l
i (s)N

(2),l
j (t)

= max
i=1,··· ,p
j=1,··· ,q

|α(m)
i,j − αi,j| ≤ ε.

And it follows that

‖ψ(m) − ψ‖ ≤ ε.

This implies that {Ψ(k)
1 : k = 1, · · · , [( δ

ε
)Kpq]} cover Θδ. Hence the ε-covering number of Θδ

is bounded by [( δ
ε
)Kpq], or log N(ε, Θδ, ‖ · ‖∞) ≤ Kpq log(δ/ε). It is obvious that

N[ ](2ε, Θδ, ‖ · ‖∞) ≤ N(ε, Θδ, ‖ · ‖∞).

Therefore, it follows that

log N[ ](ε, Θδ, ‖ · ‖∞) ≤ Kpq log(δ/ε).

Lemma 8.6. Θδ = {φ : φ(s) =
∑p

i=1 βiN
l
i (s), ‖φ‖∞ < δ}, where 0 ≤ β1 ≤ β2 ≤ · · · βp,

{N l
i}p

i=1 are the B-spline basis functions with the knot sequence {ui}p+l
i=1 satisfying L = u1 =

· · · = ul < ul+1 < · · · < up < up+1 = · · · = up+l = U . Then log N[ ](ε, Θδ, ‖ · ‖∞) ≤

Kp log(δ/ε), for some constant K > 0 and ε < δ.
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Proof. The proof is exactly along the same lines of those for Lemma 8.5, and thus is omitted.

Remark 8.1. In the proof of Theorem 3.2 (convergence rate), we use the fact that δ ≤ 1,

then it is obvious that log N[ ](ε, Θδ, ‖ · ‖∞) ≤ Kpq log(1/ε) by both Lemma 8.5 and Lemma

8.6.

Lemma 8.7. Λ0(s, t) and Λ(s, t) are both partially nondecreasing functions in the domain

[L1, U1]× [L2, U2] and they satisfy ‖Λ−Λ0‖L2(µ) ≤ η. If the following conditions (1) and (2)

hold, then there exists constant K independent of Λ such that

sup
(s,t)∈[L1,U1]×[L2,U2]

|Λ(s, t)− Λ0(s, t)| ≤ (η/K)1/2.

(1) Λ0(s, t) is differentiable in both s and t and there exists a constant 0 < f0 < ∞ such that

1/f0 ≤ ∂Λ0(s, t)/∂s ≤ f0 and 1/f0 ≤ ∂Λ0(s, t)/∂t ≤ f0 for any (s, t) ∈ [L1, U1]×[L2, U2].

(2) The probability measure µ associated with L2-norm has mixed derivative ∂2µ(s,t)
∂s∂t

satisfying

∂2µ(s,t)
∂s∂t

≥ c0 for some positive c0.

Proof. Suppose that (s′, t′) ∈ [L1, U1]× [L2, U2] satisfies

|Λ(s′, t′)− Λ0(s
′, t′)| ≥ (1/2) sup

(s,t)∈[L1,U1]×[L2,U2]

|Λ(s, t)− Λ0(s, t)| ≡ ξ/2.

Then either Λ(s′, t′) ≥ Λ0(s
′, t′) + ξ/2 or Λ0(s

′, t′) ≥ Λ(s′, t′) + ξ/2. In the following, we only

show the inequality for the first case, Λ(s′, t′) ≥ Λ0(s
′, t′)+ξ/2, as the arguments are parallel

for the second case.
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There exists h satisfying (s′ + h, t′ + h) ≡ (s′′, t′′), such that Λ0(s
′′, t′′) = Λ0(s

′, t′) + ξ/2.

Then

η2 ≥
∫
{Λ(s, t)− Λ0(s, t)}2dµ(s, t)

=

∫ ∫

(s,t)∈[L1,U1]×[L2,U2]

{Λ(s, t)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt

≥
∫ t′′

t′

∫ s′′

s′
{Λ(s, t)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt

≥
∫ t′′

t′

∫ s′′

s′
{Λ0(s

′′, t′′)− Λ0(s, t)}2∂2µ(s, t)

∂s∂t
dsdt

≥ c0

∫ t′′

t′

∫ s′′

s′
{Λ0(s

′′, t′′)− Λ0(s, t)}2dsdt

= c0

∫ t′′

t′

∫ Λ0(s′′,t)

Λ0(s′,t)
{Λ0(s

′′, t′′)− x)}2 1

∂Λ0(s, t)/∂s|s=f−1
t (x)

dxdt

≥ (c0/f0)

∫ t′′

t′

∫ Λ0(s′′,t)

Λ0(s′,t)
{Λ0(s

′′, t′′)− x)}2dxdt

= (c0/f0)

∫ t′′

t′
{(Λ0(s

′′, t′′)− Λ0(s
′, t))3/3− (Λ0(s

′′, t′′)− Λ0(s
′′, t))3/3}dt,

where x = ft(s) ≡ Λ0(s, t). Therefore, by a3 − b3 = (a− b)(a2 + ab + b2) ≥ (a− b)(a2 + b2)

for ab(a− b) ≥ 0, it follows that

η2 ≥ c0

3f0

∫ t′′

t′
(Λ0(s

′′, t)− Λ0(s
′, t))

[(Λ0(s
′′, t′′)− Λ0(s

′, t))2 + (Λ0(s
′′, t′′)− Λ0(s

′′, t))2]dt.

(8.13)

Using Taylor expansion, there exists w ∈ (s′, s′′), such that

Λ0(s
′′, t)− Λ0(s

′, t) = (∂Λ0(w, t)/∂s)h ≥ h/f0. (8.14)
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Using Taylor expansion along s and t, respectively, we have

ξ/2 = Λ0(s
′′, t′′)− Λ0(s

′, t′)

= Λ0(s
′′, t′′)− Λ0(s

′′, t′) + Λ0(s
′′, t′)− Λ0(s

′, t′)

≤ 2hf0.

(8.15)

Combining (8.14) and (8.15) yields,

Λ0(s
′′, t)− Λ0(s

′, t) ≥ ξ

4f 2
0

. (8.16)

Finally, substituting (8.16) into (8.13), we obtain

η2 ≥ c0ξ

12f 3
0

∫ t′′

t′
[(Λ0(s

′′, t′′)− Λ0(s
′, t))2 + (Λ0(s

′′, t′′)− Λ0(s
′′, t))2]dt

≥ c0ξ

12f 3
0

∫ t′′

t′
(Λ0(s

′′, t′′)− Λ0(s
′′, t))2dt

=
c0ξ

12f 3
0

∫ Λ0(s′′,t′′)

Λ0(s′′,t′)
(Λ0(s

′′, t′′)− x)2 1

∂Λ0(s′′, t)/∂t|t=g−1
s′′ (x)

dx

≥ c0ξ

12f 4
0

∫ Λ0(s′′,t′′)

Λ0(s′′,t′)
(Λ0(s

′′, t′′)− x)2dx

=
c0ξ

12f 4
0

(Λ0(s
′′, t′′)− Λ0(s

′′, t′))3/3

≥ c0ξ
4

2304f 10
0

,

where x = gs′′(t) ≡ Λ0(s
′′, t). This yields the stated conclusion with K ≡

√
c0/(2304f 10

0 ).
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