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Bayesian analysis and classification of two
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tests without a gold standard
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This work is motivated by a problem in reconciling two quantitative ELISA tests for an antibody to an RNA virus

in a situation without a gold standard and where false negaties may occur. False negatives occur when access
of the antibody to the binding site is blocked. Based on the nolanism of the assay, a mixture of four bivariate
normal distributions is proposed with the mixture probabilities depending on a two-stage latent model including
the prevalence of the antibody in the population and the prolabilities of blocking on each test. Because there is prior
information on the prevalence of the antibody, and also on th probability of false negatives, a Bayesian analysis
is used. The dependence between the two tests is also modei@de consistent with the biological mechanism.
Bayesian decision theory is utilized for classification. Th proposed method is applied to the motivating data set
to classify the data into two groups: those with and those witout the antibody. Simulation studies describe the
properties of the estimation and the classification. Sensitity to the choice of the prior distribution is also addressd
by simulation. The same model with two levels of latent varibles is applicable in other testing procedures such as
guantitative polymerase chain reaction tests where falseagatives occur when there is a mutation in the primer
sequence. CopyrightC) 2010 John Wiley & Sons, Ltd.
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1. Introduction

In the absence of a diagnostic test with positive predictalee (PPV) and negative predictive value (NPV) extremely
close to one (a gold standard), combining multiple impértests to obtain a classification may be necessaly [
Reconciling the results of two imperfect quantitative EmeyLinked Immunosorbent Assay (ELISA) tests is addressed
here. Based on the biological mechanism underlying the,tagbarametric model is proposed with two levels of latent
variables. Prior information on the prevalence of the anibs, and the probability of false negatives on each testsgy
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incorporated through the prior information. When the autliles are present and no false negatives occur the dependenc
between the two results is incorporated through a positiveetation.

An Enzyme Linked Immunosorbent Assay, or ELISA, is a testtif@r presence of a specific binding site on a specific
antibody; a Polymerase Chain Reaction, or PCR, is a testégpitesence of a specific subsequence of the genetic material
of a virus or retrovirus (DNA or RNA respectively). In an EIASIf the binding site of the antibody of interest (Ab #2
in FigureA.1) on E2 protein is physically blocked by MAb #1 as explainedppendixA, then the result of the assay
will be consistent with no Ab #2 being present and theref@a lfalse negative. It is reasonable to assume that if a false
negative occurs then the quantitative result is not onlysist@nt with no antibody being present but also, conditiona
the false negative occurring, the false negative resutidspendent of the quantitative result of the other testeither
test is a false negative then the two quantitative resutisiasely related as they both quantify Ab #2. Similar argoise
result for real time PCR testing where the tests look for tiffeient subsequences of genetic coding on the virus: false
negatives occurring when there is a mutation in a targetegpEnce and mutations occur independently in the two target
sequences.

Statistical methods for diagnostic testing with no golahderd were addressed by Hui and Wal@&r They considered
the case where the false positive (negative) rate of botméwe test and the reference test is unknown. By applying
two tests simultaneously to individuals from two populatavith different prevalence of disease, and further assgmi
conditional independence, the sensitivity and specififityoth tests, together with the true prevalence in two paipars,
could be estimated by maximum likelihood (ML). The Hui-Végilimodel has been extensively discussed and extended
since it was proposed. VaceB] [discussed the impact of the conditional independence eestimates of the error rates
in the model, and Walter and Irwig] provided a thorough discussion of the method in differexttisgs. Joseph et ab]
developed Bayesian methods for the evaluation and impl&tien of the conditional independent tests. Hui and Zitu [
summarized many available methods for qualitative diagotesst evaluation, with special focus on estimating devisi
and specificity without assuming the conditional indeperwee The Hui-Walter model and its extensions have also been
applied to research in animal health as discussed by Ende[&.a'he conditional dependence is accommodated via
either a ML approach or a Bayesian approach, for example,lbgt@l. B], Yang and Beckerd], Dendukuri and Joseph
[10], Black and Craig 11]. These methods are applicable only to binary tests, andeneannot be directly utilized for
guantitative tests .

For a quantitative assay, the sensitivity and specificeycamputed based on a certain classification rule with afpeci
threshold value. The two accuracy indices are dependent@ghoice of the classification rule. Therefore, when the
true disease status is unknown and there is no gold standaral imperfect binary reference test, as in our motivating
problem, itis necessary to establish a classification ddiekt al. 1 2] proposed estimation of the sensitivity and specificity
pointwise over the whole range of cutoff values by the ML roettof the Hui-Walter model. However, the estimated
receiver operating characteristic (ROC) curve obtaineddnnecting all the estimated (sensitivity, 1-specificitg)ues
is not necessarily monotonic. Henkelman et &B][used a mixture of multivariate normal latent model to estienthe
ROC curve for ordinal-scale tests, and Choi et &) pdopted the same parametric model and used the Bayesiananet
to estimate the ROC curve for continuous-scale tests. Bsitmated curves are guaranteed to be monotone increasing.
To release the normality assumption, Hall and Zho§] proposed a nonparametric estimator for the ROC curves of
continuous tests based on the conditional independengmptisn. Zhou et al.]6] applied this estimator to estimate the
ROC curves for ordinal tests in the absence of a gold stantfahére is an imperfect binary test, the ROC curve of the a
continuous test can be estimated by comparing to the bieatyusing a Bayesian approadfY]. This approach assures
the monotonicity of the ROC curve without any assumptiogsrding to the distributions of the test results.

All of the aforementioned methods primarily focus on estinmgithe ROC curve to evaluate the tests. There is little
guidance available on how to obtain a gold standard, or at Eaimperfect classification with multiple quantitatiests.

The main objective of this paper is to develop a model and atetbr combining multiple continuous tests and deriving
a classification rule. Sectiod proposes the two-level latent model and Sectioterives the decision rule to classify
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samples. The results of the analysis of samples from 10@stshg¢ach tested by two methods are presented in Section
along with a prior distribution based on previous data. Aeseof simulation studies is provided in SectignSection6

is a discussion of the model’s strengths and limitationsxflains how the model is also applicable to data from mieltip
gquantitative (real time) PCRs. Appendixgives a biological motivation for the presence of false tigga but not false
positives and the background of samples in the example. AR provides details of a sensitivity analysis for the
motivating data set.

2. Statistical Model

2.1. Notation, Assumptions and Model

For thek!* samplek = 1,2,...,n, and thei*” test,i = 1,2, let Y}, be the observable resulk;, X, are binary latent
variables as below:

v 1 if the GBV-C E2 antibodies are present in the blood sample
b 0 if the GBV-C E2 antibodies are absent in the blood sample

. 1 if X = 1 and the binding site for teston samplek is accessible.
R 0 if X =1 and the binding site for teston samplék is blocked.

X = 0,if X =0.

Assume that if antibodies are presefit,(= 1) and both tests have accessible binding sites. (= Xor = 1), thenYi,
andYs; are positively correlated. If antibodies are present blgadt one binding site is inaccessible, thép and Yz,
are independent. Similarly, if there are no antibodiesgnmesX, = 0, thenY;, andYs, are independent and have the
identical distribution as when antibodies are present btft binding sites are inaccessiblg,( = 1 andX;; = Xo, = 0).
The joint distribution ofY;, andY3, conditioning on any combination df,, and X5, is assumed to be bivariate normal.
HenceY;, andYs, are jointly distributed as a mixture of four bivariate nofmistributions conditioning ok, and Xy,
k=1,...,n. The four distributions are defined:

Yk 2
1k Xip=Xopr=1, X =1 ~ 9ip pUll;‘UQP 7
Yax pPo1PO2P o5p
Y1k 9 0
o) X = X =0 ~N N 7 OiN 5 ’

Yor H2N 0 o3y

Y1k

Yor

Y 5 0

1k X1:=0, Xop, =1X,=1 ~N HIN 7 OiN X ,
Yo H2p 0 o5p

where the meang; and sy denote the means déf;, andYs, when either antibodies are absent (true negatives) or
antibodies are present but binding site 1 or 2 respectigdlyaccessible (false negatives). The meansandyu.p denote

the mean responses when antibodies are present and cambasadl on the biological mechanisms, the high test result
values should correspond to higher chance of being “p@sithlence we set a constraint thate > 11y andusp > pon.

To guarantee that the constraint holds, define new parasngterlog(u;p — pin) (i = 1,2). Parameters?,;, o3y, 02p

=

=

X =1, Xop =0, Xk1> ~
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andc?, are variances, constrained to be positive. The positivetadion betweery;;, andYsy, if both binding site are
accessible, is denoted bywith 0 < p < 1.

Denote the prevalence of E2 antibodies Pr(X; = 1), and denote the probability of the binding site being adbéss
intesti (i = 1, 2) if E2 antibodies are present as= Pr(X;, = 1| X = 1). Then assuming latent variabl&s, and Xy
are independent conditional 0, = 1, the mixture proportions are:

Pr(Xipy=Xop =1, Xp =1) = d1¢29,
Pr(Xq, = Xor = 0) =1 =¢1)(1 = ¢2)p+(1—-9),
Pr(Xi, =1, X =0, Xp =1) = ¢1(1 = ¢2)9,
Pr(X1, =0, Xor =1, X =1) =(1—¢1)pa0.

The unknown parameters are denoted)as (¢, ¢1, g2, pin, pan, b1, B2, 0n, O3y, Ot p, 03p, p)T. The valuesp, ¢1,
¢ are probabilities and are between 0 and 1, as is the cooejati

2.2. Parameter Estimation

2.2.1. Maximum Likelihood(ML) Estimationhe parameterg can be estimated by ML. The estimates (MLE) can be
found using numerical optimization and an iterative apphoas follows:

1. Choose a starting value fgr = (¢, ¢1, )T,

2. Maximize the log-likelihood as a function 6f, = (11~ p2n, 51, B2, 05 x, T, T ps T, p)T for that fixedy, .
3. Denote the results atg, |¢ and then maximize the log-likelihood as a function/qffor fixed ¢, = ¢, [, .

4. Denote the results as and use that as a starting value to repeat the steps abolthargstimates converge.

Note that without the constraint thatp > u;n for ¢ = 1,2, the likelihood may be multimodal. There is a lack of
identifiability without the constraint: the constraint teeps high values of either test to be "positive” and low e tio be
"negative”. See Sectiof for more discussion.

2.2.2. Bayesian Estimatiom the motivating data set, there is some prior informativailable and this is used in
constructing the prior distribution in Sectigh This prior distribution incorporates the constraint that > u;n for

1 =1,2. Because of the complexity of the model, it is impossible bdatm the marginal posterior distribution for
parameters analytically. The Markov Chain Monte-Carlo (Mi©) method is utilized to simulate samples from the
marginal posterior distribution of each parameter. We heespftware WinBUGSI1[g] to implement the MCMC method
and use the R packag®@WinBUGS[19] to call WinBUGS. Similar results were obtained from a selhtained R 19|
program. Code is available in Appendix

3. Statistical Decision Rule

The classification decision is chosen after observing tieegaof the random variablé§ andY,; and computing the
posterior distribution, denotgdv|data). The observed quantitative test resifisandY- provide information about the
parameterg. For a new sample with test results;, Z), let the loss of classifying this sample as negative if inigact
positive beL; and the loss of classifying this sample as positive if it igateve beL,, as illustrated in Tablé.

The posterior probability of E2 antibodies being present(ft, 7Z>), Pr(X = 1|71, Z»,data), abbreviated taP PP,
is:

Www.sim.org Copyright©) 2010 John Wiley & Sons, Ltd. Statist. Med201Q 001-27
Prepared usingimauth.cls



Statistics
iIn Medicine

J. ZHANGET AL.

Table 1.Loss function in the decision function.

Classification Positive  Classification Negative
Antibodies are present 0 L
Antibodies are absent Lo 0

PPP = Pr(X = 1|21, Zs, data) — / Pr(X = 1|21, Zo, ¥)p(t)|data)dis

_/ [(Z1, 25| X = 1,) Pr(X = 1])
) f(Z1, 251X = 1) Pr(X = 1|¢) + f(Z1, Z2|X = 0,7) Pr(X = 0[¢))

p(Y|data)d. (@)

Under Bayesian decision theorgl], the risk under the negative classification ®°P - L1, and the risk under
the positive classification i§l — PPP) - L. The optimal Bayes decision fdtZ,, Z;) based on the observed data is
therefore the one that has the smaller risk. He(€e, Z,) is classified as positive {ft — PPP) - Ly, < PPP - Ly, which
is equivalent toPPP > C, whereC' = 1/(1+ L1/L2). The valueC' = 0.5 corresponds td; = L, and represents a
symmetric loss of misclassification. In many applicatiéns# L, and any value o€’ between 0 and 1 can be obtained
by choosing different values. For example, false negativdsease screening may lead to no treatment and subsgquent
worse consequences of the disease: in this case it may bepaigpe to choosé.; > L,. Alternatively if the treatment
subsequent to a positive result is toxic it may be approptiathoosd., > L.

4. lllustrative Example

In the motivating example, a total of 100 blood specimensioled from HIV infected subjects were tested with each of
the two tests: called thePlate Anti-HGenv{= 1) and M5 ¢ = 2) assays. The two assays are variations on the sandwich
ELISA and the differences between them are explained in met&l in AppendixA. False negatives occur in both tests
when the binding site of the human antibody Ab #2 to the E2qinois blocked by MADb #1. The additional material
introduced in theuPlate Anti-HGenv through the lysate may add additional edigat causes blocking. Neither test is
perfect and false negatives are thought to occur approglgn@0% of the time. Moreover, no commercial and validated
test is available for the antibody, which means that ther@igold standard in the data.

In this example, the prevalence of the target antibodiesdretween populations but the average is thought to be
about 50% in HIV-infected populations based on previoudisgipP2, 23, 24, 25, 26, 27], and the chance of blocking
(false negatives) for each test is thought to be around 103te however that these studies used imperfect tests. Based o
this information, the prior distribution (prior A) is chases follows:

¢ ~ Beta(5,5)

b1, Do Beta(18,2)
HAN, H2N N(0,100)
B1, B2 N(0,10000)
Ol ry Oony Ol s Top '(0.01,0.01).
p U(o,1),

with all of the above assumed to be independent. Recallhatlog(p;p — pin) and sou;p > py fori =1,2.
The observed data are plotted on the right panel in Figuaed the PP P for each of the 100 blood samples are
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Table 2. Summary statistics of the posterior distributions.

Parameter Mean SD  Median
) 0.478 0.063 0.477
o1 0.907 0.045 0.913
¢2 0.842 0.066 0.846
HIN 0.157 0.015 0.156
HoN 0.237 0.019 0.237
Hip 1.029 0.137 1.029
Hop 0.916 0.125 0.913
oy 0.004 0.002 0.004
oy 0.018 0.004 0.017
o?p 0.564 0.128 0.546
o3p 0.417 0.104 0.402
p 0.555 0.126 0.569

shown as a histogram in the left panel. Because the clasgficavas to be used in an analysis comparing antibody
positive subjects to antibody negative subjects, a value 0.5 was used for classification: positively classified samples
are in green, and negatively classified samples are in regls@imples with low results on both tests are classified as E2
antibody negative, and samples with high results on at m@estest are classified as positive. This is consistent Wwéh t
biological mechanism.

40
15 2.0 25

Frequency
20
M5

0.5

[ T T T T 1 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 15 2.0 25 3.0

PPP uPlate Anti-HGenv

Figure 1.Histograms of posterior probability of E2 antibodies bejimgsent and the classifications of the 100 blood samples @it 0.5. Redrepresents the negative
classification andreenrepresents the positive classification.

Details of the posterior distribution are in Talle AppendixB also gives a sensitivity analysis using six additional
prior distributions (priors B, C, D, E, F and G). The classifion withC' = 0.5 leads to almost identical classifications
under each prior distribution: the classifications diffeat most 3 samples for priors B, C, D and E, 7 samples for F and
8 samples for G. Note that F and G are the least informative gistributions. See Figur@.1 for the classification and
FigureB.2 for the posterior distributions. The figures indicate thairgnal posterior distributions for some parameters
are sensitive to the choice of prior distribution, althotigé classification is not very sensitive.
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5. Simulation Studies

A simulation study, in a 43 factorial structure, was designed to assess the accufdhg 8ayesian classification rule
developed above. The data are assumed to arise from eitherititure of four bivariate normal distributions or a simila
mixture of four bivariatet distributions with 4 degrees of freedom. Skewed versionghefdistributions are also used:
the bivariate skew normal and skewdistributions have shape parametes (right-skewed) 28]. The values of the
parameters in the model are chosen to be close to the posteeians from the motivating example in TallleThe
posterior distribution is calculated using the mixture nfbiate normal distributions. The classification undet= 0.5,

0.7 and0.9 is implemented. Because the simulated data is generatbédavkihown classification of each sample (gold
standard), a linear discriminant analysis is also carriggl this assumes the model is a mixture of two bivariate nbrma
distributions. The empirical measures of the diagnostitieacy are computed based on 500 simulated data sets for each
of the three Bayesian classification rules and the linearidisnant classifier.

All the analyses converge and results are summarized ireBahd Tabled. Results in Table3, indicate that even
though the linear discriminant classifier uses more infaiona it assumes an incorrect distribution and it generally
performs worse than the Bayesian classification method. gribe three Bayesian classification rules with different
cutoff valuesC, for any kind of data, a higher cutoff valug leads to a lower sensitivity and a higher specificity (the
higherC is, the fewer samples are classified as positive). At any fixethe sensitivity for the data is slightly higher
than that for the normal data, while the specificity for themal data is much greater than for theata. This is reasonable
considering that the distribution has fatter tails, hence the true negative gioas more overlap with the true positives.
The PPV and NPV have similar comparisons as the specificitysansitivity, implying that the mis-specified model tends
to overestimate the PPP for thdata, and hence more samples are classified as positivend\ddi skewness to the data
does not affect the performance of the classification mu¢fébie4 indicates that the coverage probabilities of the 95%
highest posterior density intervals for some parameteverg low in many cases. Note that the parameter estimation is
biased under the mis-specified model, especially for thation and scale parameters when the true underlying margina
distribution is a mixture of skew normal oraccording to Tablé€.

6. Discussion

In this paper, a two-level latent model is proposed, whichassistent with the biological machenism. If the data are
from the assumed bivariate normal mixture distributiorfrom a similar bivariateé mixture distribution, with or without
skewness, the classification has a robust discriminatipglifty in the cases examined by simulations.

The model assumes that conditioning on the antibodies mEsgent X, = 1) and both binding sites being accessible
(X1 = X9 = 1), the measurements are positively correlated. This ioredde as they both measure the concentration
of the E2 antibody in the sample. If either the antibody isalb€X, = 0), or itis present but in one of the tests the binding
site is blocked, then the responses are independent. Thditmmal independence assumption can be criticized, ut i
this case seems biologically very plausible. The two tegtcarried out separately on different plates, so if thebaaly
is present in the sample, the blocking of the binding siteofoe test is independent from the blocking for the other test.
Therefore, the results from the two tests are independent &ach other unless both binding sites are accessible and
both quantitative results reflect the concentration of thigbady of interest. Conditional independence is reasteniab
the other cases when one or both tests are false negatives.

In the biological mechanism, high values of a test resulukhoorrespond to “positive” classifications and low valtes
“negative”. The constraint;p > ;. fori = 1,2 isimplemented by defining; = log(u.p — pin) (i = 1,2). Without the
constraint, there is an identifiability question. Plots offple log-likelihood of ;v andy,;p (i = 1,2) indicate very well
the issue in the parameter estimation for the example dat&tse profile likelihoods foi = 1,2 have a ridge, symmetric
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Table 3.Empirical sensitivity (Sen),specificity (Spe), positivegictive value (PPV) and negative predictive value (NPV)
of the Bayesian classification rule and the linear discrantrclassifier based on 500 simulated data sets. MCSE is the

J. ZHANGET AL.

Monte-Carlo standard error of the estimate.

Normal ta Skew-Normal Skew

C =05
Sen (MCSE) 0.899(0.051) 0.931(0.039) 0.893(0.048) 0®626)
Spe (MCSE) 0.991(0.014) 0.948(0.034) 0.974(0.025) 0@43(7)
PPV (MCSE) 0.989(0.016) 0.944(0.036) 0.971(0.027) 0.040%86)
NPV (MCSE) 0.914(0.042) 0.937(0.035) 0.909(0.040) 0.06%4)

C=0.7
Sen (MCSE) 0.886(0.054) 0.922(0.043) 0.875(0.052) 0®626)
Spe (MCSE) 0.996(0.009) 0.962(0.029) 0.988(0.018) 0®@b8Q)
PPV (MCSE) 0.996(0.010) 0.958(0.032) 0.986(0.020) 0.028Q2)
NPV (MCSE) 0.904(0.044) 0.931(0.038) 0.896(0.043) 0.96R5)

C=0.9
Sen (MCSE) 0.868(0.059) 0.909(0.045) 0.849(0.058) 0@5@8)
Spe (MCSE) 0.999(0.004) 0.977(0.022) 0.996(0.010) 0@0@g)
PPV (MCSE) 0.999(0.004) 0.973(0.026) 0.995(0.011) 0.9628)
NPV (MCSE) 0.891(0.047) 0.921(0.040) 0.879(0.046) 0.05¥6)

Linear Discriminant Classifier

Sen (MCSE) 0.688(0.062) 0.725(0.063) 0.668(0.068) 0®15Q)
Spe (MCSE) 0.999(0.005) 0.999(0.007) 0.984(0.066) 0@®280)
PPV (MCSE) 0.999(0.005) 0.998(0.009) 0.986(0.049) 0.898%4)
NPV (MCSE) 0.775(0.032) 0.799(0.035) 0.765(0.043) 0.6609{4)

around the axig,;p = ;v Where the values qf; » andu;y can be interchanged without changing the likelihood much
for eachi = 1, 2. Omitting the constraint may lead to a classification thahé®nsistent with the biological mechanism.
The sensitivity analysis was also repeated without thetcans, and if starting value is chosen that does not sattsfy
constraint, the analysis sometimes converges to a locatmbahich the constraint does not hold.

The classification can also be achieved in the ML approaciteSirom the ML aspect, the parameters are fixed but
unknown, the PPP for each sample is estimated bPt& = 1|7, ZQ,@ in the integrand ofY), Where@ are the MLE
of . FigureB.3 illustrates the histogram of PPP estimated by the ML apfr@aw the corresponding classification.
The classification is exactly the same as the classificatimieuprior G. In the model, there are twelve parameters to be
estimated and the sample size of the motivating data is fitvhich is relatively small to make asymptotic inferences
The Bayesian approach is preferred here to obtain moreestsbimation because there does exist some prior informatio
on parameters such as the prevalence and the probabiléysefhegatives.

The model is developed based on two ELISA tests for the EDadies, but it can be extended easily to an arbitrary
number of tests, or modified to accommodate different kiridesiing problems. For example, in a real time polymerase
chain reaction (PCR) test, part of a virus genome is ampldied quantified. If a mutation occurs in that part of the
genome, the primer does not detect the virus, and a falséivegesults. In RNA viruses especially, errors in trarsigoin
result frequently, and mutations (and hence false neggtresult.

There remain some limitations to this method. For exampmes#nsitivity analysis of our example (Appenéixshows
that the shapes of the marginal posterior distributionssaresitive to the choice of the prior distribution, althoubhk
overall inferences and the classification do not change much

The parametric assumption is another limitation to thishodt In the model, the results from the two tests are assumed
to be a mixture of multivariate normal distributions. In gliae, this may not be warranted, and is hard to verify. Under
a mis-specified model, it is not surprising for estimateshef parameters to be biased. For simulated data with clear
separation of the four components of the mixture model, kesdication appears to be quite robust. When there is a lack
of separation in the four populations, the classificatianigh harder and appears to have a low sensitivity in the ebeamp
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Table 4. Empirical properties of posterior estimates based on 500lsited data sets. MCSE is the Monte-Carlo standard
error of the estimate and CP is the coverage probability@®8o highest posterior density interval.

J. ZHANGET AL.

Normal ta

Parameter Mean (MCSE) SD (MCSE) CP  Mean (MCSE) SD (MCSE) CP
¢ =0.480 0.476(0.049) 0.053(0.002) 0.972 0.503(0.048) @®BB2) 0.950
¢1 =0.900 0.904(0.032) 0.047(0.008) 0.996 0.900(0.031) @meae7) 0.990
¢2 =0.800 0.864(0.040) 0.061(0.009) 0.820 0.876(0.040) (@ m®BBY9) 0.690
w1y =0.150 0.150(0.009) 0.010(0.001) 0.962 0.151(0.008) @ MOB1) 0.966
wany =0.240  0.242(0.021) 0.021(0.003) 0.942 0.242(0.017) @ MOB3) 0.956
uip =1.000 0.982(0.129) 0.128(0.018) 0.942 0.924(0.152) (@A.A29) 0.884
uop =0.900 0.857(0.131) 0.120(0.021) 0.930 0.784(0.142) (@A.0230) 0.816
0?5y =0.004 0.005(0.001) 0.001(0.000) 0.950 0.003(0.001) @ ®O@O) 0.780
o3y =0.020 0.021(0.005) 0.005(0.001) 0.950 0.014(0.004) @ ®OA@1) 0.554
0?5, =0.570 0.595(0.133) 0.139(0.034) 0.942 0.614(0.358) (@1@B8) 0.726
o5, =0.400 0.425(0.101) 0.107(0.028) 0.950 0.437(0.218) (@1058) 0.788

p=0.54 0.470(0.122) 0.135(0.019) 0.912 0.500(0.163) 04aP23F) 0.798

Skew Normal Skew,

Parameter Mean (MCSE) SD (MCSE) CP  Mean (MCSE) SD (MCSE) CP
¢ =0.480 0.488(0.049) 0.056(0.003) 0.978 0.512(0.046) @EmBO1) 0.932
¢1 =0.900 0.898(0.030) 0.053(0.009) 1.000 0.906(0.032) @ mere6) 0.978
¢2 =0.800 0.882(0.033) 0.063(0.010) 0.782 0.882(0.035) @m®mbMO7) 0.610
uiy =0.150 0.117(0.008) 0.008(0.001) 0.030 0.190(0.009) @ m®mO©1) 0.008
wony =0.240 0.171(0.019) 0.018(0.003) 0.066 0.326(0.021) @FMQA03) 0.012
wp =1.000 0.397(0.161) 0.106(0.032) 0.000 1.525(0.139) (@A.836) 0.020
wop =0.900  0.349(0.133) 0.085(0.031) 0.000 1.295(0.108) A.226) 0.080
0?5y =0.004 0.003(0.001) 0.001(0.000) 0.822 0.004(0.001) @ ®O@O) 0.952
o2y =0.020 0.014(0.003) 0.004(0.001) 0.560 0.018(0.005) @ ®OB1) 0.864
02, =0570 0.368(0.097) 0.092(0.029) 0.400 0.911(1.211) @®BW8) 0.642
o5p =0.400 0.242(0.065) 0.064(0.020) 0.360 0.595(0.317) (@1@68) 0.708

p=0.54 0.210(0.098) 0.122(0.027) 0.222 0.327(0.172) 00P220) 0.508

examined. Computation of the PPP for each sample howevsr,hela in a classification system that includes three
categories (positive/negative/indeterminate). In oamnegle data there was some separation in the marginal distnits
that led to a robust classification. A good ELISA test or PCR, tehould have separation in the marginal distributions.

In addition, for a different population, a different pricsttibution will be needed and the parameters may be diftere
For example, because HIV and GBV-C share the same modeseation, the prevalence of the E2 antibody in an HIV-
infected population is high, about 50%, whereas the precalén the general population of blood donors is much lower,
about 5%. The prior distribution on the prevalence shouldilferent for the two populations. Caution should also be
used in using prior information from one population to egotate to a different population in constructing the prior.
is possible that the underlying level of what is being te$tedconcentration of antibody in an ELISA, or concentratio
of virus in a PCR) is different in different infected popudats and therefore the parameters of the mixture components
involving true positive measurements will differ. It may kEasonable to assume that the true negative responses on a
test are similar across populations and perhaps also thelpitity of a false negative. Different prior distributi®iior
different populations are easily incorporated. Diffeneopulations may share the same model structure, but widreift
parameter values (perhaps, for example, with a hierarictiicacture between populations).

To summarize, this method provides a reasonable methoafobining the results of quantitative tests when there is
no gold standard and when false negatives may occur fagtyuently, independently on each test, and the probability
of a false negative does not depend on the underlying valtieeafuantitative variable. It provides a systematic way of
combining the results so that sufficiently high values of ang test lead to a positive classification.
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A. Details of the Motivating Example

GBV-C is a human RNA virus, not currently known to definitebuse any disease although a recent observational study
suggested a potential link between GBV-C and non-HodgkimphomaP9]. There is also evidence that people with HIV
disease who are co-infected with GBV-C have prolonged gat{#0]. In addition,one study found an association between
GBV-C and response to an HIV thera@1]. The mechanism for these mechanisms is under investgfi) 33, 34].

At this time, there is no commercial and validated test abéd for GBV-C antibodies. When people with active infeatio
(viremia) with GBV-C clear infection, antibodies develdyat are directed against the viral envelope glycoprotela2).(
Several Enzyme Linked Immunosorbent Assays (ELISAs) haemluesigned to detect the presence of E2 antibodies in
human serum samples. ELISAs can be designed in several ugysl GBV-C assays reported to date use E2 Monoclonal
antibodies (MAb) which bind to the E2 protein at a specifie.sit

One test was developed by Roche Laboratories and is dertsdgdPtate Anti-HGenv testd5]. It is a variation of
a “sandwich capture assay”. It uses full-length recomhiizhprotein in a Chinese Hamster Ovary (CHO) cell lysate
(this contains other cellular material in addition to E2tpim). This lysate is treated with a specific murine monoalon
antibody (MAb #1) which binds to the E2 protein. MADb #1 is limylated and binds to the E2 in the lysate but supposedly
not to the other cellular materials present. After MAb #1 iged with the E2, it is added to wells on a microtitre plate
together with the human sample. The wells are coated wigpttvidin which binds to the biotin on the MAb #1 (which
has E2 protein attached). If there are GBV-C E2 antibodi¢serhuman sample, these human antibodies (denoted as Ab
#2) in FigureA.1 will bind to the E2 protein. When the plate is subsegentlyheas the E2 protein-biotinylated MAb
complex remains on the plate. In some samples however, tmamantibodies will not bind because they are directed
against the same region on E2 recognized by MAb #1 and the&sads therefore blocked; blocking may also occur
because of the additional cellular material in the lysatés Blocking is the mechanism for false negatives. Anti-aom
IgG antibodies conjugated to an enzyme are then added todhg, which attach to Ab#2. A colorimetric substrate for
the enzyme is added afterward to allow determination of tirecentration of enzyme present in the well, reflecting the
amount of human anti-E2 antibody. Control wells to which malan serum is added are present on each plate to measure
nonspecific material that may stick to Ab #2 and give rise ttkgeound fluorescence. The ultraviolet absorbance of color
in the wells is measured and compared to the fluorescence cbititrol wells.

A second test (denoted M5), was developed in the Staplebmrdtory 6], and is a more common variation on the
sandwich capture assay . The end result of the test is the, senie FigureA.1, but the procedure to get there differs
from thepuPlate Anti-HGenv ELISA. A murine MAb #1 specific for E2 prates attached to microtiter plate wells. This
MADb was provided by Dr. Alfred Engel, Roche Diagnostics, Bmrig, Germany. The MAb used may be the same as
the MAb used in the:Plate Anti-HGenv test; however, this information is preperry. This antibody is not biotinylated.
Semi-purified recombinant E2 protein for which the C-terahimembrane spanning domain is not included is added to
wells. The plate is then washed and human serum samplegdpigliman antibodies against E2 (Ab #2) will bind to the
E2 protein, again unless they have the same specificity anuhi@e capture MAb #1. Anti-Human IgG conjugated to an
enzyme is added, and the colorimetric substrate to measuanariigG uses the same methods as#Rkate Anti-HGenv
assay. The result of both thélate Anti-HGenv and the M5 test is quantitative; howevee tb differences in the capture
antibody, recombinant E2 protein, the quantitative rascdin not be directly compared.
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Q — Enzyme
Substrate LLL’
Anti-human
IgG antibody
Ab #2
——  primary antibody
from blood sample
E2 protein -
\ ( MAD #1

Molecule biotin binds to strepavidin on plate.

Figure A.1. Diagram of sandwich capture ELISA test.

B. Summary of analyses and sensitivity to the prior distribuion

Six additional prior distributions, priors B, C, D, E, F andsBown in TableB.1, are also used to analyze the example
data. The marginal distributions are assumed to be mutuadigpendent, as they are in prior A. Talie? lists the
summary statistics of the posterior distributions undersix prior distributions. Figur8.1 illustrates the classification
using C = 0.5. The histograms are not very different from each other anthfthat with prior A, especially around
the threshold of” = 0.5. FigureB.2 shows the marginal posterior densities under each of thenganor distributions.
From these figures, the marginal posterior distributioessansitive to the choice of the prior distributions. Howehe
classifications under priors B, C, D and E differ from the sifisation under prior A for only 1, 3, 2 and 1 samples
respectively, and the classifications under F and G diffe7 fand 8 samples respectively. The convergence of each chain
is examined by Geweke’s diagnosti/], Heidelberger and Welch'’s diagnostigd and Raftery and Lewis’s diagnostic
[39]. All the seven chains converge.

Table B.1.Six alternative sets of prior distributions for the mixtunedel.

Parameter Prior B Prior C Prior D Prior E Prior F Prior G
o) Beta(5,5) Beta(5,5) Beta(5,5) Beta(1,1) Beta(5,5) Beta(1,1)
1, P2 Beta(2,2) Beta(1,1) A(0.9)* Beta(18,2)  Beta(18,2) Beta(1,1)
LN, 2N, P, pop  N(0,100) N(0,100) N(0,100) N(0,100) N(0,100) N(0,100)
OimOony 01,055 1(0.01,0.01) T(0.01,0.01) I(0.01,0.01) T(0.01,0.01) Unif(0,100)" Unif(0,100)"
p Beta(1,1) Beta(1,1) Beta(1,1) Beta(1,1) Beta(1,1) Beta(1,1)

* A(0.9) denotes a triangular distribution with the mode At
t The prior distribution is ow instead ofr—2.
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Table B.2.Summary statistics of posterior distributions under sis ¢ prior distributions for sensitivity analysis

Prior B Prior C Prior D
Parameter Mean SD MedianMean SD Median Mean SD  Median
) 0.479 0.063 0.479| 0.500 0.065 0.499| 0.498 0.065 0.497
on 0.921 0.063 0.932| 0.871 0.069 0.880| 0.864 0.063 0.873
P2 0.792 0.106 0.794| 0.721 0.099 0.725] 0.727 0.096 0.728

MmN 0.156 0.014 0.155| 0.153 0.014 0.152| 0.155 0.015 0.153
H2N 0.238 0.019 0.238| 0.239 0.019 0.239| 0.238 0.019 0.238
H1P 1.007 0.134 1.003| 1.007 0.140 1.004| 1.013 0.137 1.007
Ha2p 0.927 0.125 0.926| 0.936 0.129 0.934| 0.944 0.121 0.941
o2y 0.004 0.002 0.004| 0.004 0.002 0.003| 0.004 0.002 0.004
o3y 0.018 0.004 0.018| 0.018 0.004 0.018| 0.018 0.004 0.018
o?p 0.568 0.131 0.547| 0.560 0.126 0.544| 0.561 0.129 0.544
o2p 0.412 0.103 0.397| 0.406 0.101 0.392| 0.407 0.105 0.392

p 0.542 0.129 0.557| 0.550 0.130 0.563| 0.554 0.129 0.569
Prior E Prior F Prior G

Parameter Mean SD MedianMean SD Median| Mean SD Median

) 0.472 0.065 0.470| 0.538 0.056 0.539| 0.472 0.065 0.470

o1 0.908 0.045 0.914| 0.912 0.041 0.917| 0.908 0.045 0.914

o5 0.844 0.067 0.848| 0.814 0.071 0.818| 0.844 0.067 0.848

HAN 0.157 0.015 0.157| 0.139 0.008 0.138| 0.157 0.015 0.157
H2N 0.237 0.019 0.237| 0.234 0.019 0.234| 0.237 0.019 0.237
Hip 1.031 0.135 1.028| 0.925 0.113 0.925| 1.031 0.135 1.028
Lap 0.917 0.123 0.914| 0.842 0.110 0.839| 0.917 0.123 0.914
oy 0.004 0.002 0.004| 0.001 0.001 0.001| 0.004 0.002 0.004
oaN 0.018 0.004 0.018| 0.017 0.004 0.017| 0.018 0.004 0.018
o’p 0.563 0.127 0.545| 0.566 0.119 0.551| 0.563 0.127 0.545
o5p 0.418 0.102 0.402| 0.425 0.099 0.411| 0.418 0.102 0.402

P 0.554 0.126 0.567| 0.614 0.109 0.626| 0.554 0.126 0.567

C. WIinBUGS and R code

Notations:

phi: the prevalence of the E2 antibody

phil and phi2: the accessible probability of the binding si te for each test
mulN, mu2N, mulP, mu2P: the means of the normal marginal dis tributions
mudl=log(mulP - mulN); mud2=log(mu2P - mu2N)

sigma2_1N, sigma2_2N, sigma2_ 1P, sigma2_ 2P:

the variances of the normal marginal distributions

taulN, tau2N, taulP, tau2P:

the precisions of the normal marginal distributions

rho: the positive correlation of the two tests results

when the antibody is present and both test bind

N: the sample size

#
#
#
#
#
#
#
#
#
#
#
#
#
# y: the data matrix (N * 2)

WWW.Ssim.org Copyright© 2010 John Wiley & Sons, Ltd. Statist. Med201Q 001-27
Prepared usingimauth.cls



Statistics
iIn Medicine

B C
wn wn
I <&
o o
o 7 <
wn wn
— 7 a2
Its) 1)
= =
o o
- 7] S 4
n _| v
] %EC% ] %z
o o
S 7] ° S ]
T T T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
HPlate Anti—-HGenv HPlate Anti—-HGenv
D E
0 0
o 7 <
o o
o 7] o 7]
0 0
- ] 2 4
1) 0
= =
o o
— ] — ]
[ o
[S) éo% [S) éo%
o o
<IN S o

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
pPlate Anti-HGenv pPlate Anti-HGenv
F G
wn wn
I o 7
o o
o 7 o 7
wn wn
— 7 — 7
[Te} [Te}
= =
o o
- -
n n
o % o g
o o
o o

T T T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

HPlate Anti-HGenv HPlate Anti-HGenv

Figure B.1.Plots of the classifications using six prior distributions® D, E, F and G. The classification cutoff valde= 0.5 is used Redrepresents the negative classification
and represents the positive classification.

# C: vector of indicators for the 4 mixture elements
# p: vector of 4 mixture probabilities

#

# Seven prior distributions are all listed.
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# Comment out the unnecessary priors when use.
is saved as ‘“model.txt”

# The model

model

{
# prior A
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phi ~ dbeta(5,5)
phil ~ dbeta(18, 2)
phi2 ~ dbeta(18, 2)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud2)

taulN ~ dgamma(0.01, 0.01)
tau2N ~ dgamma(0.01, 0.01)
taulP ~ dgamma(0.01, 0.01)
tau2P ~ dgamma(0.01, 0.01)
sigma2_1N <- l/taulN
sigma2_1P <- 1/taulP
sigma2_2N <- 1/tau2N
sigma2_2P <- 1/tau2P

rho ~ dunif(0,1)

# prior B

phi ~ dbeta(5,5)
phil = dbeta(2, b)
phi2 ~ dbeta(2, b)
b <- 2/9

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud?2)

taulN ~ dgamma(0.01, 0.01)
tau2N ~ dgamma(0.01, 0.01)
taulP ~ dgamma(0.01, 0.01)
tau2P ~ dgamma(0.01, 0.01)
sigma2_1N <- 1/taulN
sigma2_1P <- 1/taulP
sigma2_2N <- 1/tau2N
sigma2_2P <- 1l/tau2P

rho ~ dunif(0,1)
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# prior C

phi ~ dbeta(5,5)
phil ~ dbeta(1, 1)
phi2 = dbeta(l, 1)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud?2)

taulN ~ dgamma(0.01, 0.01)
tau2N ~ dgamma(0.01, 0.01)
taulP ~ dgamma(0.01, 0.01)
tau2P ~ dgamma(0.01, 0.01)
sigma2_1N <- 1/taulN
sigma2_1P <- 1/taulP
sigma2_2N <- 1/tau2N
sigma2_2P <- 1l/tau2P

rho ~ dunif(0,1)

# prior D
phi ~ dbeta(5,5)

Const <- 10000
b <- 20/9

zerol <- 0
phil = dflat()
thetal <- -log(b *phil *step(phil) *step(0.9-phil)+
(20-20 *phil) =*step(phil-0.9) * step(1-phil)) + Const
zerol ~ dpois(thetal)

zero2 <- 0
phi2 ~ dflat()
theta2 <- -log(b *phi2 *step(phi2)  *step(0.9-phi2)+
(20-20 =*phi2) =step(phi2-0.9) * step(1-phi2)) + Const
zero2 ~ dpois(theta?)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
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mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud2)

taulN ~ dgamma(0.01, 0.01)
tau2N ~ dgamma(0.01, 0.01)
taulP ~ dgamma(0.01, 0.01)
tau2P ~ dgamma(0.01, 0.01)
sigma2_1N <- 1l/taulN
sigma2_1P <- 1/taulP
sigma2_2N <- 1/tau2N
sigma2_2P <- 1/tau2P

rho ~ dunif(0,1)

# prior E

phi ~ dbeta(1,1)
phil ~ dbeta(18, 2)
phi2 ~ dbeta(18, 2)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud2)

taulN ~ dgamma(0.01, 0.01)
tau2N ~ dgamma(0.01, 0.01)
taulP ~ dgamma(0.01, 0.01)
tau2P ~ dgamma(0.01, 0.01)
sigma2_1N <- 1/taulN
sigma2_1P <- 1/taulP
sigma2_2N <- 1/tau2N
sigma2_2P <- 1l/tau2P

rho ~ dunif(0,1)

# prior F

phi ~ dbeta(5,5)
phil ~ dbeta(18, 2)
phi2 ~ dbeta(18, 2)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
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mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mu2P <- mu2N + exp(mud2)

sigmalN ~ dunif(0, 100)
sigma2N ~ dunif(0, 100)
sigmalP ~ dunif(0, 100)
sigma2P ~ dunif(0, 100)
sigma2_1N <- pow(sigmalN,2)
sigma2_1P <- pow(sigmalP,2)
sigma2_2N <- pow(sigma2N,2)
sigma2_2P <- pow(sigma2P,2)

taulN <- 1/sigma2_1N
tau2N <- 1/sigma2_2N
taulP <- 1/sigma2_1P
tau2P <- 1/sigma2_2P

rho ~ dunif(0,1)

# prior G

phi ~ dbeta(1,1)
phil ~ dbeta(l, 1)
phi2 ~ dbeta(l, 1)

mulN ~ dnorm(0, 1.0E-2)
mu2N ~ dnorm(0, 1.0E-2)
mudl ~ dnorm(0, 1.0E-4)
mud2 ~ dnorm(0, 1.0E-4)
mulP <- mulN + exp(mudl)
mMu2P <- mu2N + exp(mud?2)

sigmalN ~ dunif(0, 100)
sigma2N ~ dunif(0, 100)
sigmalP ~ dunif(0, 100)
sigma2P = dunif(0, 100)
sigma2_1N <- pow(sigmalN,2)
sigma2_1P <- pow(sigmalP,2)
sigma2_2N <- pow(sigma2N,2)
sigma2_2P <- pow(sigma2P,2)

taulN <- 1/sigma2_1N
tau2N <- 1/sigma2_2N
taulP <- 1/sigma2_1P
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tau2P <- 1/sigma2_2P
rho ~ dunif(0,1)

# likelihood of the ith data

for (1 in 1:N)

{
yli, :2 17 dmnorm(mu[ C[i], 2:2 ], T[ C[i], 2:2 , 1.2 ])
Cl[i] = dcat(p[ 1:4])

}

p[1] <- phi * phil * phi2

p[2] <- phi * phil * (1 - phi2)

p[3] <- phi * (1 - phil) * phi2

p[4] <- phi * (1 - phil) * (1 - phi2) + 1-phi

mu[l, 1 ] <- mulP
mu[l, 2 ] <- mu2P
mu[2, 1 ] <- mulP
mu[2, 2 ] <- mu2N
mu[3, 1 ] <- mulN
mu[3, 2 ] <- mu2P
mu[4, 1 ] <- mulN
mu[4, 2 ] <- mu2N

sigmal[l, 1] <- 1l/taulP

sigmal[l, 2] <- rho * pow(taulP * tau2P, -0.5)
sigmal[2, 1] <- rho * pow(taulP * tau2P, -0.5)
sigmal[2, 2] <- 1l/tau2P

T[1, 1:2, 1:2 ] <- inverse(sigmal[ , )

sigma2[l, 1] <- l/taulP

sigma2[l, 2] <- 0

sigmaz[2, 1] <- 0

sigma2[2, 2] <- 1l/tau2N

T[2, 1:2, 1:2 ] <- inverse(sigma?[ , ])

sigma3[l, 1] <- l/taulN

sigma3[l, 2] <- 0

sigma3[2, 1] <- 0

sigma3[2, 2] <- 1l/tau2P

T[3, 1.2, 1:2 ] <- inverse(sigma3[ , ])

sigma4[l, 1] <- 1l/taulN
sigmad[l, 2] <- 0
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sigma4[2, 1] <-
sigma4[2, 2] <-

0
1/tau2N

T[4, 1:2, 1:2 ] <- inverse(sigma4[ , ])
}
# === —========
# Calling WIinBUGS in R
H === —===—=—====
library(R2WinBUGS)
# N = sample size
# Y: N*2 data matrix
data <- list(
N = 100,
y = dput(Y, control="showAttributes")
)

inits <- function()

{
listt C = c(2

2
1
3
1

bW e

NN WN
2NN A
N P W oW

2
1
4
5

131 11 41 41 21 41 21 11 21 21 21 11 31 11 41 31 31 21 21

14! 2| 3! 21 2! 31 11 3! 21 11 3! 31 11 3! 2! 21 41

’ 1! 41 4! 31 41 4! 31 31 2! 31 11 2! 3! 31 11
’ 41 31 41 41 41 41 31 31 21 11 21 21 21 11 21
’ 21 41 11 11 11 31 41 41 31 21 1)1

phi = 0.5,phil = 0.5,phi2 = 0.5,mulN = O,mu2N = O,mudl = O,

mud?2

= O,taulN = 1tau2N = l,taulP = 1,tau2P = 1,rho = 0.5)

sim <- bugs(data, inits,

model.file = "model.txt",

n.iter = 15000, n.chains=1, n.thin=1, n.burnin=5000, digi

parameters.to.save = c("phi", "phil", "phi2", "mulN", "mu
"mulP", "mu2P", "sigma2_1N", "sigma2_ 2N", "sigma2_1P",
“rho","mud1","mud2"),

bugs.directory = "C:/Program Files/WinBUGS14/"

)

#

# MCMC in R
#

library(mvtnorm)

# log likelihood

loglik <- function(y,para)

ts=5,
2N",
sigma2_2P",
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res <- 0

phi <- exp(para[l])/(1+exp(para[l]))
phil <- exp(para[2])/(1+exp(paral2]))
phi2 <- exp(para[3])/(1+exp(para[3]))
mulN <- paral4]

mu2N <- para[5]

bl <- para[6]

b2 <- para[7]

taulN <- exp(para[8])

tau2N <- exp(para[9])

taulP <- exp(para[l10])

tau2P <- exp(para[ll])

rho <- exp(para[l2])/(1+exp(para[12]))

pl <- phi * phil = phi2

p2 <- phi * phil = (1 - phi2 )

p3 <- phi * (1 - phil) * phi2

p4 <- phi * (1 - phil) * (1 -phi2)+ (1-phi)

mulP <- mulN + exp(bl)
mu2P <- mu2N + exp(b2)

varlN <- l1/taulN
var2N <- 1/tau2N
varlP <- 1l/taulP
var2P <- 1/tau2P

meanNN <- c(mulN, mu2N)
covNN <- diag(c(varlN, var2N))

meanPN <- c(mulP, mu2N)
covPN <- diag(c(varlP, var2N))

meanNP <- c(mulN, mu2P)
covNP <- diag(c(varlN, var2P))

meanPP <- c¢(mulP, mu2P)

covPP <- matrix(c(varlP, (rho +sqrt(varlP)  =sqgrt(var2P)), (rho *sqrt(varlP)  *sqrt(var2P)),
fl <- dmvnorm(y, mean = meanPP, sigma = covPP)
f2 <- dmvnorm(y, mean = meanPN, sigma = covPN)
f3 <- dmvnorm(y, mean = meanNP, sigma = covNP)
f4 <- dmvnorm(y, mean = meanNN, sigma = covNN)
Statist. Med201Q 001-27 Copyright® 2010 John Wiley & Sons, Ltd. www.sim.oro]ER)
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res <- log(pl * f1 + p2 * f2 + p3 » f3 + p4 =+ f4)

return(sum(res))

# log full posterior
logf <- function(y,para)

{

phi <- exp(para[l])/(1+exp(para[l]))
phil <- exp(para[2])/(1+exp(para[2]))
phi2 <- exp(para[3])/(1+exp(para[3]))

mulN
mu2N
bl <-
b2 <-
taulN
tau2N
taulP
tau2P

<- para[4]

<- para[5]
para[6]

para[7]

<- exp(paral8])
<- exp(para[9])
<- exp(para[10])
<- exp(para[l11])

rho <- exp(para[12])/(1+exp(para[12]))

full.loglik <- loglik(y,para) + dbeta(phi, 5, 5, log=T) +

log(exp(para[1])/(1+exp(para[1]))'2) + dbeta(phil, 18,
log(exp(para[2])/(1+exp(para[2]))"2) + dbeta(phi2, 18,
log(exp(para[3])/(1+exp(para[3]))2) +

dnorm(mulN, 0, 10, log=T) + dnorm(mu2N, 0, 10, log=T) +
dnorm(bl, 0, 100, log=T) + dnorm( b2, 0, 100, log=T) +
dgamma(taulN, 0.01, 0.01, log=T) + abs(para[8]) +
dgamma(tau2N, 0.01, 0.01, log=T) + abs(para[9]) +
dgamma(taulP, 0.01, 0.01, log=T) abs(para[10]) +
dgamma(tau2P, 0.01, 0.01, log=T) + abs(para[ll]) +
dunif(rho, 0, 1, log=T) + log(exp(para[12])/(1+exp(para]

—+

return(full.loglik)

# M-H within Gibbs: proposal distribution is N(0,d)

# initial values: from the WIinBUGS posterior means
winbugs <- read.table("winbug_summary.txt",header=T)
postmean <- winbugs],1]

init <- rep(0,12)

library(boot)

init[1:3] <- logit(postmean[1:3])

initf4:5] <- postmean[4:5]

2, log=T) +
2, log=T) +

12]))2)
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init[6:7] <- postmean[13:14]

init[8:11] <- (-1) * log(postmean([8:11])

init[12] <- logit(postmean[12])

# sd of proposal distribution: from the result of WinBUGS
postsd <- winbugsl[,2]

std <- rep(1,12)

std[1:3] <- postsd[1:3]/(postmean[1:3] * (1-postmean[1:3]))
std[4:5] <- postsd[4:5]

std[6:7] <- postsd[13:14]

std[8:11] <- postsd[8:11]/postmean[8:11]

std[12] <- postsd[12]/(postmean[12] * (1-postmean[12]))

mar.post <- function(dat=y, para=init, N, d=std, K=1)
{

L <- length(para)

v <- matrix(0, nrow=N, ncol=L)

AcceptRate <- matrix(0,nrow=N, ncol=L)

for (n in 1:N)

for (I in 1:L)
{
for (k in 1:K)
{
new.para.l <- rnorm(1, mean=para[l],sd=d[l])
new.para <- para
new.para[l] <- new.para.l
logDensRatio <- logf(dat, new.para) - logf(dat, para)
if (is.finite(logDensRatio) && log(runif(1)) < logDensRa tio)
{
parall] <- new.para.l
AcceptRate[n,l] <- 1

}
cat(" para=",para,"\n")
v[n,] <- para
}
return(list(v,AcceptRate))

sim <- mar.post(N=15000)
v <- sim[1]
A <- sim[2]
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#

# function to calculate posterior positive prob. (PPP)

#

prob.1 <- function(y,para)
# para is the parameters saved from the “bugs()” function

{
phi <-

para[l]

phil <- para[2]
phi2 <- para[3]

mulN
mu2N
mulP
mu2P
varlN
var2N
varlP
var2P
rho <-

pl <-
p2 <-

<- paral4]
<- paral[5]
<- para[6]
<- para[7]
<- para[8]
<- para[9]
<- para[10]
<- para[ll]
para[12]

phil = phi2
phil. =+ (1 - phi2)
p3 <- (1 - phil )
p4 <- (1 - phil )

* phi2
* (1 - phi2)

meanNN <- c(mulN, mu2N)
covNN <- diag(c(varlN, var2N))

meanPN <- c(mulP, mu2N)
covPN <- diag(c(varlP, var2N))

meanNP <- c(mulN, mu2P)
covNP <- diag(c(varlN, var2P))

meanPP <- c¢(mulP, mu2P)
covPP <- matrix(c(varlP, (rho *sqrt(varlP)  *sqrt(var2P)),
* sqrt(var2P)), var2P),nrow=2)

(rho *sqgrt(varlP)

fl <-
f2 <-
f3 <-
f4 <-

res <-
(phi

dmvnorm(y,
dmvnorm(y,
dmvnorm(y,
dmvnorm(y,

mean
mean
mean
mean

(phi * (fL =
* flL = pl +f2 « p2 + 3 » p3 + f4 =+ pd) + 4 = (1 - phi))

= meanPP, sigma = covPP)
= meanPN, sigma = covPN)
= meanNP, sigma = covNP)
= meanNN, sigma = covNN)

plL + f2 = p2 + f3 * p3 + f4 = pd)) /
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return (res)
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