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Bayesian analysis and classification of two
Enzyme-Linked Immunosorbent Assay (ELISA)
tests without a gold standard

Jingyang Zhang1∗, Kathryn Chaloner 1,2, James H. McLinden3 and Jack T.
Stapleton3

This work is motivated by a problem in reconciling two quantitative ELISA tests for an antibody to an RNA virus

in a situation without a gold standard and where false negatives may occur. False negatives occur when access

of the antibody to the binding site is blocked. Based on the mechanism of the assay, a mixture of four bivariate

normal distributions is proposed with the mixture probabil ities depending on a two-stage latent model including

the prevalence of the antibody in the population and the probabilities of blocking on each test. Because there is prior

information on the prevalence of the antibody, and also on the probability of false negatives, a Bayesian analysis

is used. The dependence between the two tests is also modeledto be consistent with the biological mechanism.

Bayesian decision theory is utilized for classification. The proposed method is applied to the motivating data set

to classify the data into two groups: those with and those without the antibody. Simulation studies describe the

properties of the estimation and the classification. Sensitivity to the choice of the prior distribution is also addressed

by simulation. The same model with two levels of latent variables is applicable in other testing procedures such as

quantitative polymerase chain reaction tests where false negatives occur when there is a mutation in the primer

sequence. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. Introduction

In the absence of a diagnostic test with positive predictivevalue (PPV) and negative predictive value (NPV) extremely

close to one (a gold standard), combining multiple imperfect tests to obtain a classification may be necessary [1].

Reconciling the results of two imperfect quantitative Enzyme-Linked Immunosorbent Assay (ELISA) tests is addressed

here. Based on the biological mechanism underlying the tests, a parametric model is proposed with two levels of latent

variables. Prior information on the prevalence of the antibodies, and the probability of false negatives on each test iseasily
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incorporated through the prior information. When the antibodies are present and no false negatives occur the dependence

between the two results is incorporated through a positive correlation.

An Enzyme Linked Immunosorbent Assay, or ELISA, is a test forthe presence of a specific binding site on a specific

antibody; a Polymerase Chain Reaction, or PCR, is a test for the presence of a specific subsequence of the genetic material

of a virus or retrovirus (DNA or RNA respectively). In an ELISA, if the binding site of the antibody of interest (Ab #2

in FigureA.1) on E2 protein is physically blocked by MAb #1 as explained inAppendixA, then the result of the assay

will be consistent with no Ab #2 being present and therefore be a false negative. It is reasonable to assume that if a false

negative occurs then the quantitative result is not only consistent with no antibody being present but also, conditional on

the false negative occurring, the false negative result is independent of the quantitative result of the other test. If neither

test is a false negative then the two quantitative results are closely related as they both quantify Ab #2. Similar arguments

result for real time PCR testing where the tests look for two different subsequences of genetic coding on the virus: false

negatives occurring when there is a mutation in a target subsequence and mutations occur independently in the two target

sequences.

Statistical methods for diagnostic testing with no gold standard were addressed by Hui and Walter [2]. They considered

the case where the false positive (negative) rate of both thenew test and the reference test is unknown. By applying

two tests simultaneously to individuals from two populations with different prevalence of disease, and further assuming

conditional independence, the sensitivity and specificityof both tests, together with the true prevalence in two populations,

could be estimated by maximum likelihood (ML). The Hui-Walter model has been extensively discussed and extended

since it was proposed. Vacek [3] discussed the impact of the conditional independence on the estimates of the error rates

in the model, and Walter and Irwig [4] provided a thorough discussion of the method in different settings. Joseph et al. [5]

developed Bayesian methods for the evaluation and implementation of the conditional independent tests. Hui and Zhou [6]

summarized many available methods for qualitative diagnostic test evaluation, with special focus on estimating sensitivity

and specificity without assuming the conditional independence. The Hui-Walter model and its extensions have also been

applied to research in animal health as discussed by Enøe et al. [7]. The conditional dependence is accommodated via

either a ML approach or a Bayesian approach, for example, by Qu et al. [8], Yang and Becker [9], Dendukuri and Joseph

[10], Black and Craig [11]. These methods are applicable only to binary tests, and hence cannot be directly utilized for

quantitative tests .

For a quantitative assay, the sensitivity and specificity are computed based on a certain classification rule with a specific

threshold value. The two accuracy indices are dependent on the choice of the classification rule. Therefore, when the

true disease status is unknown and there is no gold standard or no imperfect binary reference test, as in our motivating

problem, it is necessary to establish a classification. Nielsen et al. [12] proposed estimation of the sensitivity and specificity

pointwise over the whole range of cutoff values by the ML method of the Hui-Walter model. However, the estimated

receiver operating characteristic (ROC) curve obtained byconnecting all the estimated (sensitivity, 1-specificity)values

is not necessarily monotonic. Henkelman et al. [13] used a mixture of multivariate normal latent model to estimate the

ROC curve for ordinal-scale tests, and Choi et al. [14] adopted the same parametric model and used the Bayesian method

to estimate the ROC curve for continuous-scale tests. Both estimated curves are guaranteed to be monotone increasing.

To release the normality assumption, Hall and Zhou [15] proposed a nonparametric estimator for the ROC curves of

continuous tests based on the conditional independence assumption. Zhou et al. [16] applied this estimator to estimate the

ROC curves for ordinal tests in the absence of a gold standard. If there is an imperfect binary test, the ROC curve of the a

continuous test can be estimated by comparing to the binary test using a Bayesian approach [17]. This approach assures

the monotonicity of the ROC curve without any assumptions regarding to the distributions of the test results.

All of the aforementioned methods primarily focus on estimating the ROC curve to evaluate the tests. There is little

guidance available on how to obtain a gold standard, or at least an imperfect classification with multiple quantitative tests.

The main objective of this paper is to develop a model and method for combining multiple continuous tests and deriving

a classification rule. Section2 proposes the two-level latent model and Section3 derives the decision rule to classify
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samples. The results of the analysis of samples from 100 subjects each tested by two methods are presented in Section4

along with a prior distribution based on previous data. A series of simulation studies is provided in Section5. Section6

is a discussion of the model’s strengths and limitations. Itexplains how the model is also applicable to data from multiple

quantitative (real time) PCRs. AppendixA gives a biological motivation for the presence of false negatives but not false

positives and the background of samples in the example. Appendix B provides details of a sensitivity analysis for the

motivating data set.

2. Statistical Model

2.1. Notation, Assumptions and Model

For thekth sample,k = 1, 2, . . . , n, and theith test,i = 1, 2, let Yik be the observable result.Xk, Xik are binary latent

variables as below:

Xk =

{

1 if the GBV-C E2 antibodies are present in the blood samplek.

0 if the GBV-C E2 antibodies are absent in the blood samplek.

Xik =

{

1 if Xk = 1 and the binding site for testi on samplek is accessible.

0 if Xk = 1 and the binding site for testi on samplek is blocked.

Xik = 0, if Xk = 0.

Assume that if antibodies are present (Xk = 1) and both tests have accessible binding sites (X1k = X2k = 1), thenY1k
andY2k are positively correlated. If antibodies are present but atleast one binding site is inaccessible, thenY1k andY2k
are independent. Similarly, if there are no antibodies present,Xk = 0, thenY1k andY2k are independent and have the

identical distribution as when antibodies are present but both binding sites are inaccessible (Xk = 1 andX1k = X2k = 0).

The joint distribution ofY1k andY2k conditioning on any combination ofX1k andX2k is assumed to be bivariate normal.

HenceY1k andY2k are jointly distributed as a mixture of four bivariate normal distributions conditioning onX1k andX2k,

k = 1, . . . , n. The four distributions are defined:
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where the meansµ1N andµ2N denote the means ofY1k andY2k when either antibodies are absent (true negatives) or

antibodies are present but binding site 1 or 2 respectively is inaccessible (false negatives). The meansµ1P andµ2P denote

the mean responses when antibodies are present and can bind.Based on the biological mechanisms, the high test result

values should correspond to higher chance of being “positive”. Hence we set a constraint thatµ1P ≥ µ1N andµ2P ≥ µ2N .

To guarantee that the constraint holds, define new parametersβi = log(µiP − µiN ) (i = 1, 2). Parametersσ2

1N
, σ2

2N
, σ2

1P
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andσ2

2P
are variances, constrained to be positive. The positive correlation betweenY1k andY2k, if both binding site are

accessible, is denoted byρ with 0 < ρ < 1.

Denote the prevalence of E2 antibodiesφ = Pr(Xk = 1), and denote the probability of the binding site being accessible

in testi (i = 1, 2) if E2 antibodies are present asφi = Pr(Xik = 1|Xk = 1). Then assuming latent variablesX1k andX2k

are independent conditional onXk = 1, the mixture proportions are:

Pr(X1k = X2k = 1, Xk = 1) = φ1φ2φ,

Pr(X1k = X2k = 0) = (1− φ1)(1 − φ2)φ + (1− φ),

Pr(X1k = 1, X2k = 0, Xk = 1) = φ1(1− φ2)φ,

Pr(X1k = 0, X2k = 1, Xk = 1) = (1− φ1)φ2φ.

The unknown parameters are denoted asψ = (φ, φ1, φ2, µ1N , µ2N , β1, β2, σ
2

1N
, σ2

2N
, σ2

1P
, σ2

2P
, ρ)T . The valuesφ, φ1,

φ2 are probabilities and are between 0 and 1, as is the correlationρ.

2.2. Parameter Estimation

2.2.1. Maximum Likelihood(ML) EstimationThe parametersψ can be estimated by ML. The estimates (MLE) can be

found using numerical optimization and an iterative approach as follows:

1. Choose a starting value forψ
1
= (φ, φ1, φ2)

T .

2. Maximize the log-likelihood as a function ofψ
2
= (µ1N , µ2N , β1, β2, σ
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, ρ)T for that fixedψ

1
.

3. Denote the results arêψ
2
|ψ

1
and then maximize the log-likelihood as a function ofψ

1
for fixedψ

2
= ψ̂

2
|ψ

1
.

4. Denote the results aŝψ
1

and use that as a starting value to repeat the steps above until the estimates converge.

Note that without the constraint thatµiP ≥ µiN for i = 1, 2, the likelihood may be multimodal. There is a lack of

identifiability without the constraint: the constraint requires high values of either test to be ”positive” and low values to be

”negative”. See Section6 for more discussion.

2.2.2. Bayesian EstimationIn the motivating data set, there is some prior information available and this is used in

constructing the prior distribution in Section4. This prior distribution incorporates the constraint thatµiP ≥ µiN for

i = 1, 2. Because of the complexity of the model, it is impossible to obtain the marginal posterior distribution for

parameters analytically. The Markov Chain Monte-Carlo (MCMC) method is utilized to simulate samples from the

marginal posterior distribution of each parameter. We use the software WinBUGS [18] to implement the MCMC method

and use the R packageR2WinBUGS[19] to call WinBUGS. Similar results were obtained from a self contained R [19]

program. Code is available in AppendixC.

3. Statistical Decision Rule

The classification decision is chosen after observing the values of the random variablesY1 andY2 and computing the

posterior distribution, denotedp(ψ|data). The observed quantitative test resultsY1 andY2 provide information about the

parametersψ. For a new sample with test results(Z1, Z2), let the loss of classifying this sample as negative if it is in fact

positive beL1 and the loss of classifying this sample as positive if it is negative beL2, as illustrated in Table1.

The posterior probability of E2 antibodies being present for (Z1, Z2), Pr(X = 1|Z1, Z2, data), abbreviated toPPP ,

is:
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Table 1.Loss function in the decision function.

Classification Positive Classification Negative
Antibodies are present 0 L1

Antibodies are absent L2 0

PPP = Pr(X = 1|Z1, Z2, data) =

∫

Pr(X = 1|Z1, Z2, ψ)p(ψ|data)dψ

=

∫

f(Z1, Z2|X = 1, ψ) Pr(X = 1|ψ)

f(Z1, Z2|X = 1)Pr(X = 1|ψ) + f(Z1, Z2|X = 0, ψ) Pr(X = 0|ψ)
p(ψ|data)dψ. (1)

Under Bayesian decision theory [21], the risk under the negative classification isPPP · L1, and the risk under

the positive classification is(1 − PPP ) · L2. The optimal Bayes decision for(Z1, Z2) based on the observed data is

therefore the one that has the smaller risk. Hence,(Z1, Z2) is classified as positive if(1− PPP ) · L2 < PPP · L1, which

is equivalent toPPP > C, whereC = 1/(1 + L1/L2). The valueC = 0.5 corresponds toL1 = L2 and represents a

symmetric loss of misclassification. In many applicationsL1 6= L2 and any value ofC between 0 and 1 can be obtained

by choosing different values. For example, false negativesin disease screening may lead to no treatment and subsequently

worse consequences of the disease: in this case it may be appropriate to chooseL1 > L2. Alternatively if the treatment

subsequent to a positive result is toxic it may be appropriate to chooseL2 > L1.

4. Illustrative Example

In the motivating example, a total of 100 blood specimens obtained from HIV infected subjects were tested with each of

the two tests: called theµPlate Anti-HGenv (i = 1) and M5 (i = 2) assays. The two assays are variations on the sandwich

ELISA and the differences between them are explained in moredetail in AppendixA. False negatives occur in both tests

when the binding site of the human antibody Ab #2 to the E2 protein is blocked by MAb #1. The additional material

introduced in theµPlate Anti-HGenv through the lysate may add additional noise that causes blocking. Neither test is

perfect and false negatives are thought to occur approximately 10% of the time. Moreover, no commercial and validated

test is available for the antibody, which means that there isno gold standard in the data.

In this example, the prevalence of the target antibodies varies between populations but the average is thought to be

about 50% in HIV-infected populations based on previous studies [22, 23, 24, 25, 26, 27], and the chance of blocking

(false negatives) for each test is thought to be around 10%. Note however that these studies used imperfect tests. Based on

this information, the prior distribution (prior A) is chosen as follows:

φ ∼ Beta(5, 5)

φ1, φ2 ∼ Beta(18, 2)

µ1N , µ2N ∼ N(0, 100)

β1, β2 ∼ N(0, 10000)

σ−2

1N
, σ−2

2N
, σ−2

1P
, σ−2

2P
∼ Γ(0.01, 0.01).

ρ ∼ U(0, 1),

with all of the above assumed to be independent. Recall thatβi = log(µiP − µiN ) and soµiP > µiN for i = 1, 2.

The observed data are plotted on the right panel in Figure1 and thePPP for each of the 100 blood samples are
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Table 2.Summary statistics of the posterior distributions.

Parameter Mean SD Median
φ 0.478 0.063 0.477
φ1 0.907 0.045 0.913
φ2 0.842 0.066 0.846
µ1N 0.157 0.015 0.156
µ2N 0.237 0.019 0.237
µ1P 1.029 0.137 1.029
µ2P 0.916 0.125 0.913
σ2

1N
0.004 0.002 0.004

σ2

2N
0.018 0.004 0.017

σ2

1P
0.564 0.128 0.546

σ2

2P
0.417 0.104 0.402

ρ 0.555 0.126 0.569

shown as a histogram in the left panel. Because the classification was to be used in an analysis comparing antibody

positive subjects to antibody negative subjects, a valueC = 0.5 was used for classification: positively classified samples

are in green, and negatively classified samples are in red. The samples with low results on both tests are classified as E2

antibody negative, and samples with high results on at leastone test are classified as positive. This is consistent with the

biological mechanism.
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Figure 1. Histograms of posterior probability of E2 antibodies beingpresent and the classifications of the 100 blood samples withC = 0.5. Red represents the negative
classification andgreenrepresents the positive classification.

Details of the posterior distribution are in Table2. AppendixB also gives a sensitivity analysis using six additional

prior distributions (priors B, C, D, E, F and G). The classification withC = 0.5 leads to almost identical classifications

under each prior distribution: the classifications differ in at most 3 samples for priors B, C, D and E, 7 samples for F and

8 samples for G. Note that F and G are the least informative prior distributions. See FigureB.1 for the classification and

FigureB.2 for the posterior distributions. The figures indicate that marginal posterior distributions for some parameters

are sensitive to the choice of prior distribution, althoughthe classification is not very sensitive.
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5. Simulation Studies

A simulation study, in a 4×3 factorial structure, was designed to assess the accuracy of the Bayesian classification rule

developed above. The data are assumed to arise from either the mixture of four bivariate normal distributions or a similar

mixture of four bivariatet distributions with 4 degrees of freedom. Skewed versions ofthe distributions are also used:

the bivariate skew normal and skewt distributions have shape parameter−3 (right-skewed) [28]. The values of the

parameters in the model are chosen to be close to the posterior means from the motivating example in Table2. The

posterior distribution is calculated using the mixture of bivariate normal distributions. The classification underC = 0.5,

0.7 and0.9 is implemented. Because the simulated data is generated with a known classification of each sample (gold

standard), a linear discriminant analysis is also carried out; this assumes the model is a mixture of two bivariate normal

distributions. The empirical measures of the diagnostic accuracy are computed based on 500 simulated data sets for each

of the three Bayesian classification rules and the linear discriminant classifier.

All the analyses converge and results are summarized in Table 3 and Table4. Results in Table3, indicate that even

though the linear discriminant classifier uses more information, it assumes an incorrect distribution and it generally

performs worse than the Bayesian classification method. Among the three Bayesian classification rules with different

cutoff valuesC, for any kind of data, a higher cutoff valueC leads to a lower sensitivity and a higher specificity (the

higherC is, the fewer samples are classified as positive). At any fixedC, the sensitivity for thet data is slightly higher

than that for the normal data, while the specificity for the normal data is much greater than for thet data. This is reasonable

considering that thet distribution has fatter tails, hence the true negative group has more overlap with the true positives.

The PPV and NPV have similar comparisons as the specificity and sensitivity, implying that the mis-specified model tends

to overestimate the PPP for thet data, and hence more samples are classified as positive. Adding the skewness to the data

does not affect the performance of the classification much but Table4 indicates that the coverage probabilities of the 95%

highest posterior density intervals for some parameters isvery low in many cases. Note that the parameter estimation is

biased under the mis-specified model, especially for the location and scale parameters when the true underlying marginal

distribution is a mixture of skew normal ort, according to Table4.

6. Discussion

In this paper, a two-level latent model is proposed, which isconsistent with the biological machenism. If the data are

from the assumed bivariate normal mixture distribution, orfrom a similar bivariatet mixture distribution, with or without

skewness, the classification has a robust discriminating capability in the cases examined by simulations.

The model assumes that conditioning on the antibodies beingpresent (Xk = 1) and both binding sites being accessible

(X1k = X2k = 1), the measurements are positively correlated. This is reasonable as they both measure the concentration

of the E2 antibody in the sample. If either the antibody is absent (Xk = 0), or it is present but in one of the tests the binding

site is blocked, then the responses are independent. This conditional independence assumption can be criticized, but in

this case seems biologically very plausible. The two tests are carried out separately on different plates, so if the antibody

is present in the sample, the blocking of the binding site forone test is independent from the blocking for the other test.

Therefore, the results from the two tests are independent from each other unless both binding sites are accessible and

both quantitative results reflect the concentration of the antibody of interest. Conditional independence is reasonable in

the other cases when one or both tests are false negatives.

In the biological mechanism, high values of a test result should correspond to “positive” classifications and low valuesto

“negative”. The constraintµiP ≥ µiN for i = 1, 2 is implemented by definingβi = log(µiP − µiN ) (i = 1, 2). Without the

constraint, there is an identifiability question. Plots of profile log-likelihood ofµiN andµiP (i = 1, 2) indicate very well

the issue in the parameter estimation for the example data set. The profile likelihoods fori = 1, 2 have a ridge, symmetric
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Table 3.Empirical sensitivity (Sen),specificity (Spe), positive predictive value (PPV) and negative predictive value (NPV)
of the Bayesian classification rule and the linear discriminant classifier based on 500 simulated data sets. MCSE is the

Monte-Carlo standard error of the estimate.

Normal t4 Skew-Normal Skew-t4
C = 0.5

Sen (MCSE) 0.899(0.051) 0.931(0.039) 0.893(0.048) 0.964(0.025)
Spe (MCSE) 0.991(0.014) 0.948(0.034) 0.974(0.025) 0.945(0.037)
PPV (MCSE) 0.989(0.016) 0.944(0.036) 0.971(0.027) 0.944(0.036)
NPV (MCSE) 0.914(0.042) 0.937(0.035) 0.909(0.040) 0.965(0.024)

C = 0.7
Sen (MCSE) 0.886(0.054) 0.922(0.043) 0.875(0.052) 0.961(0.026)
Spe (MCSE) 0.996(0.009) 0.962(0.029) 0.988(0.018) 0.956(0.032)
PPV (MCSE) 0.996(0.010) 0.958(0.032) 0.986(0.020) 0.955(0.032)
NPV (MCSE) 0.904(0.044) 0.931(0.038) 0.896(0.043) 0.963(0.025)

C = 0.9
Sen (MCSE) 0.868(0.059) 0.909(0.045) 0.849(0.058) 0.956(0.028)
Spe (MCSE) 0.999(0.004) 0.977(0.022) 0.996(0.010) 0.970(0.028)
PPV (MCSE) 0.999(0.004) 0.973(0.026) 0.995(0.011) 0.968(0.028)
NPV (MCSE) 0.891(0.047) 0.921(0.040) 0.879(0.046) 0.959(0.026)

Linear Discriminant Classifier
Sen (MCSE) 0.688(0.062) 0.725(0.063) 0.668(0.068) 0.614(0.152)
Spe (MCSE) 0.999(0.005) 0.999(0.007) 0.984(0.066) 0.848(0.289)
PPV (MCSE) 0.999(0.005) 0.998(0.009) 0.986(0.049) 0.893(0.164)
NPV (MCSE) 0.775(0.032) 0.799(0.035) 0.765(0.043) 0.669(0.174)

around the axisµiP = µiN where the values ofµiP andµiN can be interchanged without changing the likelihood much

for eachi = 1, 2. Omitting the constraint may lead to a classification that isinconsistent with the biological mechanism.

The sensitivity analysis was also repeated without the constraint, and if starting value is chosen that does not satisfythe

constraint, the analysis sometimes converges to a local mode at which the constraint does not hold.

The classification can also be achieved in the ML approach. Since from the ML aspect, the parameters are fixed but

unknown, the PPP for each sample is estimated by thePr(X = 1|Z1, Z2, ψ̂) in the integrand of (1), whereψ̂ are the MLE

of ψ. FigureB.3 illustrates the histogram of PPP estimated by the ML approach and the corresponding classification.

The classification is exactly the same as the classification under prior G. In the model, there are twelve parameters to be

estimated and the sample size of the motivating data is just 100, which is relatively small to make asymptotic inferences.

The Bayesian approach is preferred here to obtain more stable estimation because there does exist some prior information

on parameters such as the prevalence and the probability of false negatives.

The model is developed based on two ELISA tests for the E2 antibodies, but it can be extended easily to an arbitrary

number of tests, or modified to accommodate different kinds of testing problems. For example, in a real time polymerase

chain reaction (PCR) test, part of a virus genome is amplifiedand quantified. If a mutation occurs in that part of the

genome, the primer does not detect the virus, and a false negative results. In RNA viruses especially, errors in transcription

result frequently, and mutations (and hence false negatives) result.

There remain some limitations to this method. For example the sensitivity analysis of our example (AppendixB) shows

that the shapes of the marginal posterior distributions aresensitive to the choice of the prior distribution, althoughthe

overall inferences and the classification do not change much.

The parametric assumption is another limitation to this method. In the model, the results from the two tests are assumed

to be a mixture of multivariate normal distributions. In practice, this may not be warranted, and is hard to verify. Under

a mis-specified model, it is not surprising for estimates of the parameters to be biased. For simulated data with clear

separation of the four components of the mixture model, the classification appears to be quite robust. When there is a lack

of separation in the four populations, the classification ismuch harder and appears to have a low sensitivity in the examples
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Table 4.Empirical properties of posterior estimates based on 500 simulated data sets. MCSE is the Monte-Carlo standard
error of the estimate and CP is the coverage probability of the 95% highest posterior density interval.

Normal t4
Parameter Mean (MCSE) SD (MCSE) CP Mean (MCSE) SD (MCSE) CP
φ =0.480 0.476(0.049) 0.053(0.002) 0.972 0.503(0.048) 0.053(0.002) 0.950
φ1 =0.900 0.904(0.032) 0.047(0.008) 0.996 0.900(0.031) 0.046(0.007) 0.990
φ2 =0.800 0.864(0.040) 0.061(0.009) 0.820 0.876(0.040) 0.055(0.009) 0.690
µ1N =0.150 0.150(0.009) 0.010(0.001) 0.962 0.151(0.008) 0.008(0.001) 0.966
µ2N =0.240 0.242(0.021) 0.021(0.003) 0.942 0.242(0.017) 0.018(0.003) 0.956
µ1P =1.000 0.982(0.129) 0.128(0.018) 0.942 0.924(0.152) 0.123(0.029) 0.884
µ2P =0.900 0.857(0.131) 0.120(0.021) 0.930 0.784(0.142) 0.112(0.030) 0.816
σ2

1N
=0.004 0.005(0.001) 0.001(0.000) 0.950 0.003(0.001) 0.001(0.000) 0.780

σ2

2N
=0.020 0.021(0.005) 0.005(0.001) 0.950 0.014(0.004) 0.004(0.001) 0.554

σ2

1P
=0.570 0.595(0.133) 0.139(0.034) 0.942 0.614(0.358) 0.140(0.088) 0.726

σ2

2P
=0.400 0.425(0.101) 0.107(0.028) 0.950 0.437(0.218) 0.105(0.058) 0.788

ρ = 0.54 0.470(0.122) 0.135(0.019) 0.912 0.500(0.163) 0.123(0.027) 0.798
Skew Normal Skewt4

Parameter Mean (MCSE) SD (MCSE) CP Mean (MCSE) SD (MCSE) CP
φ =0.480 0.488(0.049) 0.056(0.003) 0.978 0.512(0.046) 0.051(0.001) 0.932
φ1 =0.900 0.898(0.030) 0.053(0.009) 1.000 0.906(0.032) 0.042(0.006) 0.978
φ2 =0.800 0.882(0.033) 0.063(0.010) 0.782 0.882(0.035) 0.051(0.007) 0.610
µ1N =0.150 0.117(0.008) 0.008(0.001) 0.030 0.190(0.009) 0.009(0.001) 0.008
µ2N =0.240 0.171(0.019) 0.018(0.003) 0.066 0.326(0.021) 0.020(0.003) 0.012
µ1P =1.000 0.397(0.161) 0.106(0.032) 0.000 1.525(0.139) 0.143(0.046) 0.020
µ2P =0.900 0.349(0.133) 0.085(0.031) 0.000 1.295(0.108) 0.128(0.026) 0.080
σ2

1N
=0.004 0.003(0.001) 0.001(0.000) 0.822 0.004(0.001) 0.001(0.000) 0.952

σ2

2N
=0.020 0.014(0.003) 0.004(0.001) 0.560 0.018(0.005) 0.005(0.001) 0.864

σ2

1P
=0.570 0.368(0.097) 0.092(0.029) 0.400 0.911(1.211) 0.207(0.308) 0.642

σ2

2P
=0.400 0.242(0.065) 0.064(0.020) 0.360 0.595(0.317) 0.140(0.068) 0.708

ρ = 0.54 0.210(0.098) 0.122(0.027) 0.222 0.327(0.172) 0.125(0.029) 0.508

examined. Computation of the PPP for each sample however, may help in a classification system that includes three

categories (positive/negative/indeterminate). In our example data there was some separation in the marginal distributions

that led to a robust classification. A good ELISA test or PCR test, should have separation in the marginal distributions.

In addition, for a different population, a different prior distribution will be needed and the parameters may be different.

For example, because HIV and GBV-C share the same modes of infection, the prevalence of the E2 antibody in an HIV-

infected population is high, about 50%, whereas the prevalence in the general population of blood donors is much lower,

about 5%. The prior distribution on the prevalence should bedifferent for the two populations. Caution should also be

used in using prior information from one population to extrapolate to a different population in constructing the prior.It

is possible that the underlying level of what is being testedfor (concentration of antibody in an ELISA, or concentration

of virus in a PCR) is different in different infected populations and therefore the parameters of the mixture components

involving true positive measurements will differ. It may bereasonable to assume that the true negative responses on a

test are similar across populations and perhaps also the probability of a false negative. Different prior distributions for

different populations are easily incorporated. Differentpopulations may share the same model structure, but with different

parameter values (perhaps, for example, with a hierarchical structure between populations).

To summarize, this method provides a reasonable method for combining the results of quantitative tests when there is

no gold standard and when false negatives may occur fairly frequently, independently on each test, and the probability

of a false negative does not depend on the underlying value ofthe quantitative variable. It provides a systematic way of

combining the results so that sufficiently high values of anyone test lead to a positive classification.
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Appendices
A. Details of the Motivating Example

GBV-C is a human RNA virus, not currently known to definitely cause any disease although a recent observational study

suggested a potential link between GBV-C and non-Hodgkins lymphoma [29]. There is also evidence that people with HIV

disease who are co-infected with GBV-C have prolonged survival [30]. In addition,one study found an association between

GBV-C and response to an HIV therapy [31]. The mechanism for these mechanisms is under investigation [32, 33, 34].

At this time, there is no commercial and validated test available for GBV-C antibodies. When people with active infection

(viremia) with GBV-C clear infection, antibodies develop that are directed against the viral envelope glycoprotein 2 (E2).

Several Enzyme Linked Immunosorbent Assays (ELISAs) have been designed to detect the presence of E2 antibodies in

human serum samples. ELISAs can be designed in several ways,but all GBV-C assays reported to date use E2 Monoclonal

antibodies (MAb) which bind to the E2 protein at a specific site.

One test was developed by Roche Laboratories and is denoted the µPlate Anti-HGenv test [35]. It is a variation of

a “sandwich capture assay”. It uses full-length recombinant E2 protein in a Chinese Hamster Ovary (CHO) cell lysate

(this contains other cellular material in addition to E2 protein). This lysate is treated with a specific murine monoclonal

antibody (MAb #1) which binds to the E2 protein. MAb #1 is biotinylated and binds to the E2 in the lysate but supposedly

not to the other cellular materials present. After MAb #1 is mixed with the E2, it is added to wells on a microtitre plate

together with the human sample. The wells are coated with streptavidin which binds to the biotin on the MAb #1 (which

has E2 protein attached). If there are GBV-C E2 antibodies inthe human sample, these human antibodies (denoted as Ab

#2) in FigureA.1 will bind to the E2 protein. When the plate is subseqently washed, the E2 protein-biotinylated MAb

complex remains on the plate. In some samples however, the human antibodies will not bind because they are directed

against the same region on E2 recognized by MAb #1 and their access is therefore blocked; blocking may also occur

because of the additional cellular material in the lysate. This blocking is the mechanism for false negatives. Anti-human

IgG antibodies conjugated to an enzyme are then added to the wells, which attach to Ab#2. A colorimetric substrate for

the enzyme is added afterward to allow determination of the concentration of enzyme present in the well, reflecting the

amount of human anti-E2 antibody. Control wells to which no human serum is added are present on each plate to measure

nonspecific material that may stick to Ab #2 and give rise to background fluorescence. The ultraviolet absorbance of color

in the wells is measured and compared to the fluorescence of the control wells.

A second test (denoted M5), was developed in the Stapleton laboratory [36], and is a more common variation on the

sandwich capture assay . The end result of the test is the same, as in FigureA.1, but the procedure to get there differs

from theµPlate Anti-HGenv ELISA. A murine MAb #1 specific for E2 protein is attached to microtiter plate wells. This

MAb was provided by Dr. Alfred Engel, Roche Diagnostics, Penzburg, Germany. The MAb used may be the same as

the MAb used in theµPlate Anti-HGenv test; however, this information is proprietary. This antibody is not biotinylated.

Semi-purified recombinant E2 protein for which the C-terminal membrane spanning domain is not included is added to

wells. The plate is then washed and human serum samples applied. Human antibodies against E2 (Ab #2) will bind to the

E2 protein, again unless they have the same specificity as themurine capture MAb #1. Anti-Human IgG conjugated to an

enzyme is added, and the colorimetric substrate to measure human IgG uses the same methods as theµPlate Anti-HGenv

assay. The result of both theµPlate Anti-HGenv and the M5 test is quantitative; however, due to differences in the capture

antibody, recombinant E2 protein, the quantitative results can not be directly compared.
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Figure A.1. Diagram of sandwich capture ELISA test.

B. Summary of analyses and sensitivity to the prior distribution

Six additional prior distributions, priors B, C, D, E, F and Gshown in TableB.1, are also used to analyze the example

data. The marginal distributions are assumed to be mutuallyindependent, as they are in prior A. TableB.2 lists the

summary statistics of the posterior distributions under the six prior distributions. FigureB.1 illustrates the classification

usingC = 0.5. The histograms are not very different from each other and from that with prior A, especially around

the threshold ofC = 0.5. FigureB.2 shows the marginal posterior densities under each of the seven prior distributions.

From these figures, the marginal posterior distributions are sensitive to the choice of the prior distributions. However the

classifications under priors B, C, D and E differ from the classification under prior A for only 1, 3, 2 and 1 samples

respectively, and the classifications under F and G differ for 7 and 8 samples respectively. The convergence of each chain

is examined by Geweke’s diagnostic [37], Heidelberger and Welch’s diagnostic [38] and Raftery and Lewis’s diagnostic

[39]. All the seven chains converge.

Table B.1.Six alternative sets of prior distributions for the mixturemodel.

Parameter Prior B Prior C Prior D Prior E Prior F Prior G
φ Beta(5, 5) Beta(5, 5) Beta(5, 5) Beta(1, 1) Beta(5, 5) Beta(1, 1)

φ1, φ2 Beta(2, 2
9
) Beta(1, 1) ∆(0.9)∗ Beta(18, 2) Beta(18, 2) Beta(1, 1)

µ1N , µ2N , µ1P , µ2P N(0, 100) N(0, 100) N(0, 100) N(0, 100) N(0, 100) N(0, 100)
σ−2

1N
, σ−2

2N
, σ−2

1P
, σ−2

2P
Γ(0.01, 0.01) Γ(0.01, 0.01) Γ(0.01, 0.01) Γ(0.01, 0.01) Unif(0, 100)† Unif(0, 100)†

ρ Beta(1, 1) Beta(1, 1) Beta(1, 1) Beta(1, 1) Beta(1, 1) Beta(1, 1)
∗ ∆(0.9) denotes a triangular distribution with the mode at0.9.
† The prior distribution is onσ instead ofσ−2.
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Table B.2.Summary statistics of posterior distributions under six sets of prior distributions for sensitivity analysis

Prior B Prior C Prior D
Parameter Mean SD MedianMean SD Median Mean SD Median

φ 0.479 0.063 0.479 0.500 0.065 0.499 0.498 0.065 0.497
φ1 0.921 0.063 0.932 0.871 0.069 0.880 0.864 0.063 0.873
φ2 0.792 0.106 0.794 0.721 0.099 0.725 0.727 0.096 0.728
µ1N 0.156 0.014 0.155 0.153 0.014 0.152 0.155 0.015 0.153
µ2N 0.238 0.019 0.238 0.239 0.019 0.239 0.238 0.019 0.238
µ1P 1.007 0.134 1.003 1.007 0.140 1.004 1.013 0.137 1.007
µ2P 0.927 0.125 0.926 0.936 0.129 0.934 0.944 0.121 0.941
σ2

1N
0.004 0.002 0.004 0.004 0.002 0.003 0.004 0.002 0.004

σ2

2N
0.018 0.004 0.018 0.018 0.004 0.018 0.018 0.004 0.018

σ2

1P
0.568 0.131 0.547 0.560 0.126 0.544 0.561 0.129 0.544

σ2

2P
0.412 0.103 0.397 0.406 0.101 0.392 0.407 0.105 0.392

ρ 0.542 0.129 0.557 0.550 0.130 0.563 0.554 0.129 0.569
Prior E Prior F Prior G

Parameter Mean SD MedianMean SD Median Mean SD Median
φ 0.472 0.065 0.470 0.538 0.056 0.539 0.472 0.065 0.470
φ1 0.908 0.045 0.914 0.912 0.041 0.917 0.908 0.045 0.914
φ2 0.844 0.067 0.848 0.814 0.071 0.818 0.844 0.067 0.848
µ1N 0.157 0.015 0.157 0.139 0.008 0.138 0.157 0.015 0.157
µ2N 0.237 0.019 0.237 0.234 0.019 0.234 0.237 0.019 0.237
µ1P 1.031 0.135 1.028 0.925 0.113 0.925 1.031 0.135 1.028
µ2P 0.917 0.123 0.914 0.842 0.110 0.839 0.917 0.123 0.914
σ2

1N
0.004 0.002 0.004 0.001 0.001 0.001 0.004 0.002 0.004

σ2

2N
0.018 0.004 0.018 0.017 0.004 0.017 0.018 0.004 0.018

σ2

1P
0.563 0.127 0.545 0.566 0.119 0.551 0.563 0.127 0.545

σ2

2P
0.418 0.102 0.402 0.425 0.099 0.411 0.418 0.102 0.402

ρ 0.554 0.126 0.567 0.614 0.109 0.626 0.554 0.126 0.567

C. WinBUGS and R code

# ================================================== ======================

# WinBUGS function for the Bayesian analysis of the example d ata

# ================================================== ======================

# Notations:

#

# phi: the prevalence of the E2 antibody

# phi1 and phi2: the accessible probability of the binding si te for each test

# mu1N, mu2N, mu1P, mu2P: the means of the normal marginal dis tributions

# mud1=log(mu1P - mu1N); mud2=log(mu2P - mu2N)

# sigma2_1N, sigma2_2N, sigma2_1P, sigma2_2P:

# the variances of the normal marginal distributions

# tau1N, tau2N, tau1P, tau2P:

# the precisions of the normal marginal distributions

# rho: the positive correlation of the two tests results

# when the antibody is present and both test bind

# N: the sample size

# y: the data matrix (N * 2)
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Figure B.1.Plots of the classifications using six prior distributions B, C, D, E, F and G. The classification cutoff valueC = 0.5 is used.Redrepresents the negative classification
andgreenrepresents the positive classification.

# C: vector of indicators for the 4 mixture elements

# p: vector of 4 mixture probabilities

#

# Seven prior distributions are all listed.

Statist. Med.2010, 001–27 Copyright c© 2010 John Wiley & Sons, Ltd. www.sim.org 15
Prepared usingsimauth.cls



Statistics
in Medicine

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

φ

D
en

si
ty

0.65 0.75 0.85 0.95

0
2

4
6

8
10

φ1

D
en

si
ty

0.6 0.7 0.8 0.9 1.0

0
2

4
6

8
10

φ2

D
en

si
ty

0.12 0.16 0.20 0.24

0
20

40
60

80

µ1N

D
en

si
ty

0.15 0.20 0.25 0.30

0
5

10
15

20
25

µ2N

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0
1

2
3

4
5

µ1P

D
en

si
ty

0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4
5

µ2P

D
en

si
ty

0.000 0.005 0.010 0.015

0
20

0
40

0
60

0
80

0
10

00

σ2
1N

D
en

si
ty

0.01 0.02 0.03 0.04

0
20

40
60

80
10

0
12

0

σ2
2N

D
en

si
ty

0.5 1.0 1.5

0
1

2
3

4

σ2
1P

D
en

si
ty

0.5 1.0 1.5

0
1

2
3

4
5

σ2
2P

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

ρ

D
en

si
ty

Prior A Prior B Prior C Prior D Prior E Prior F Prior G
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Figure B.3.Histograms of posterior probability of E2 antibodies beingpresent and the classifications of the 100 blood samples withC = 0.5 estimated by the ML approach.Red
represents the negative classification andgreenrepresents the positive classification.

# Comment out the unnecessary priors when use.

# The model is saved as ‘‘model.txt’’

model

{

# prior A
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phi ˜ dbeta(5,5)

phi1 ˜ dbeta(18, 2)

phi2 ˜ dbeta(18, 2)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

tau1N ˜ dgamma(0.01, 0.01)

tau2N ˜ dgamma(0.01, 0.01)

tau1P ˜ dgamma(0.01, 0.01)

tau2P ˜ dgamma(0.01, 0.01)

sigma2_1N <- 1/tau1N

sigma2_1P <- 1/tau1P

sigma2_2N <- 1/tau2N

sigma2_2P <- 1/tau2P

rho ˜ dunif(0,1)

# prior B

phi ˜ dbeta(5,5)

phi1 ˜ dbeta(2, b)

phi2 ˜ dbeta(2, b)

b <- 2/9

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

tau1N ˜ dgamma(0.01, 0.01)

tau2N ˜ dgamma(0.01, 0.01)

tau1P ˜ dgamma(0.01, 0.01)

tau2P ˜ dgamma(0.01, 0.01)

sigma2_1N <- 1/tau1N

sigma2_1P <- 1/tau1P

sigma2_2N <- 1/tau2N

sigma2_2P <- 1/tau2P

rho ˜ dunif(0,1)
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# prior C

phi ˜ dbeta(5,5)

phi1 ˜ dbeta(1, 1)

phi2 ˜ dbeta(1, 1)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

tau1N ˜ dgamma(0.01, 0.01)

tau2N ˜ dgamma(0.01, 0.01)

tau1P ˜ dgamma(0.01, 0.01)

tau2P ˜ dgamma(0.01, 0.01)

sigma2_1N <- 1/tau1N

sigma2_1P <- 1/tau1P

sigma2_2N <- 1/tau2N

sigma2_2P <- 1/tau2P

rho ˜ dunif(0,1)

# prior D

phi ˜ dbeta(5,5)

Const <- 10000

b <- 20/9

zero1 <- 0

phi1 ˜ dflat()

theta1 <- -log(b * phi1 * step(phi1) * step(0.9-phi1)+

(20-20 * phi1) * step(phi1-0.9) * step(1-phi1)) + Const

zero1 ˜ dpois(theta1)

zero2 <- 0

phi2 ˜ dflat()

theta2 <- -log(b * phi2 * step(phi2) * step(0.9-phi2)+

(20-20 * phi2) * step(phi2-0.9) * step(1-phi2)) + Const

zero2 ˜ dpois(theta2)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)
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mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

tau1N ˜ dgamma(0.01, 0.01)

tau2N ˜ dgamma(0.01, 0.01)

tau1P ˜ dgamma(0.01, 0.01)

tau2P ˜ dgamma(0.01, 0.01)

sigma2_1N <- 1/tau1N

sigma2_1P <- 1/tau1P

sigma2_2N <- 1/tau2N

sigma2_2P <- 1/tau2P

rho ˜ dunif(0,1)

# prior E

phi ˜ dbeta(1,1)

phi1 ˜ dbeta(18, 2)

phi2 ˜ dbeta(18, 2)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

tau1N ˜ dgamma(0.01, 0.01)

tau2N ˜ dgamma(0.01, 0.01)

tau1P ˜ dgamma(0.01, 0.01)

tau2P ˜ dgamma(0.01, 0.01)

sigma2_1N <- 1/tau1N

sigma2_1P <- 1/tau1P

sigma2_2N <- 1/tau2N

sigma2_2P <- 1/tau2P

rho ˜ dunif(0,1)

# prior F

phi ˜ dbeta(5,5)

phi1 ˜ dbeta(18, 2)

phi2 ˜ dbeta(18, 2)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)
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mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

sigma1N ˜ dunif(0, 100)

sigma2N ˜ dunif(0, 100)

sigma1P ˜ dunif(0, 100)

sigma2P ˜ dunif(0, 100)

sigma2_1N <- pow(sigma1N,2)

sigma2_1P <- pow(sigma1P,2)

sigma2_2N <- pow(sigma2N,2)

sigma2_2P <- pow(sigma2P,2)

tau1N <- 1/sigma2_1N

tau2N <- 1/sigma2_2N

tau1P <- 1/sigma2_1P

tau2P <- 1/sigma2_2P

rho ˜ dunif(0,1)

# prior G

phi ˜ dbeta(1,1)

phi1 ˜ dbeta(1, 1)

phi2 ˜ dbeta(1, 1)

mu1N ˜ dnorm(0, 1.0E-2)

mu2N ˜ dnorm(0, 1.0E-2)

mud1 ˜ dnorm(0, 1.0E-4)

mud2 ˜ dnorm(0, 1.0E-4)

mu1P <- mu1N + exp(mud1)

mu2P <- mu2N + exp(mud2)

sigma1N ˜ dunif(0, 100)

sigma2N ˜ dunif(0, 100)

sigma1P ˜ dunif(0, 100)

sigma2P ˜ dunif(0, 100)

sigma2_1N <- pow(sigma1N,2)

sigma2_1P <- pow(sigma1P,2)

sigma2_2N <- pow(sigma2N,2)

sigma2_2P <- pow(sigma2P,2)

tau1N <- 1/sigma2_1N

tau2N <- 1/sigma2_2N

tau1P <- 1/sigma2_1P
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tau2P <- 1/sigma2_2P

rho ˜ dunif(0,1)

# likelihood of the ith data

for ( i in 1:N)

{

y[i, 1:2 ] ˜ dmnorm(mu[ C[i], 1:2 ], T[ C[i], 1:2 , 1:2 ] )

C[i] ˜ dcat(p[ 1:4])

}

p[1] <- phi * phi1 * phi2

p[2] <- phi * phi1 * (1 - phi2)

p[3] <- phi * (1 - phi1) * phi2

p[4] <- phi * (1 - phi1) * (1 - phi2) + 1-phi

mu[1, 1 ] <- mu1P

mu[1, 2 ] <- mu2P

mu[2, 1 ] <- mu1P

mu[2, 2 ] <- mu2N

mu[3, 1 ] <- mu1N

mu[3, 2 ] <- mu2P

mu[4, 1 ] <- mu1N

mu[4, 2 ] <- mu2N

sigma1[1, 1] <- 1/tau1P

sigma1[1, 2] <- rho * pow(tau1P * tau2P, -0.5)

sigma1[2, 1] <- rho * pow(tau1P * tau2P, -0.5)

sigma1[2, 2] <- 1/tau2P

T[1, 1:2, 1:2 ] <- inverse(sigma1[ , ])

sigma2[1, 1] <- 1/tau1P

sigma2[1, 2] <- 0

sigma2[2, 1] <- 0

sigma2[2, 2] <- 1/tau2N

T[2, 1:2, 1:2 ] <- inverse(sigma2[ , ])

sigma3[1, 1] <- 1/tau1N

sigma3[1, 2] <- 0

sigma3[2, 1] <- 0

sigma3[2, 2] <- 1/tau2P

T[3, 1:2, 1:2 ] <- inverse(sigma3[ , ])

sigma4[1, 1] <- 1/tau1N

sigma4[1, 2] <- 0
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sigma4[2, 1] <- 0

sigma4[2, 2] <- 1/tau2N

T[4, 1:2, 1:2 ] <- inverse(sigma4[ , ])

}

# ================================================== ======================

# Calling WinBUGS in R

# ================================================== ======================

library(R2WinBUGS)

# N = sample size

# Y: N * 2 data matrix

data <- list(

N = 100,

y = dput(Y, control="showAttributes")

)

inits <- function()

{

list( C = c(2, 3, 1, 4, 4, 2, 4, 2, 1, 2, 2, 2, 1, 3, 1, 4, 3, 3, 2, 2,

2, 4, 3, 2, 4, 2, 3, 2, 2, 3, 1, 3, 2, 1, 3, 3, 1, 3, 2, 2, 4,

3, 2, 3, 1, 1, 2, 1, 4, 4, 3, 4, 4, 3, 3, 2, 3, 1, 2, 3, 3, 1,

2, 2, 1, 3, 3, 1, 4, 3, 4, 4, 4, 4, 3, 3, 2, 1, 2, 2, 2, 1, 2,

2, 4, 2, 1, 1, 4, 2, 4, 1, 1, 1, 3, 4, 4, 3, 2, 1),

phi = 0.5,phi1 = 0.5,phi2 = 0.5,mu1N = 0,mu2N = 0,mud1 = 0,

mud2 = 0,tau1N = 1,tau2N = 1,tau1P = 1,tau2P = 1,rho = 0.5)

}

sim <- bugs(data, inits,

model.file = "model.txt",

n.iter = 15000, n.chains=1, n.thin=1, n.burnin=5000, digi ts=5,

parameters.to.save = c("phi", "phi1", "phi2", "mu1N", "mu 2N",

"mu1P", "mu2P", "sigma2_1N", "sigma2_2N", "sigma2_1P", " sigma2_2P",

"rho","mud1","mud2"),

bugs.directory = "C:/Program Files/WinBUGS14/"

)

# ================================================== ======================

# MCMC in R

# ================================================== ======================

library(mvtnorm)

# log likelihood

loglik <- function(y,para)
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{

res <- 0

phi <- exp(para[1])/(1+exp(para[1]))

phi1 <- exp(para[2])/(1+exp(para[2]))

phi2 <- exp(para[3])/(1+exp(para[3]))

mu1N <- para[4]

mu2N <- para[5]

b1 <- para[6]

b2 <- para[7]

tau1N <- exp(para[8])

tau2N <- exp(para[9])

tau1P <- exp(para[10])

tau2P <- exp(para[11])

rho <- exp(para[12])/(1+exp(para[12]))

p1 <- phi * phi1 * phi2

p2 <- phi * phi1 * ( 1 - phi2 )

p3 <- phi * ( 1 - phi1 ) * phi2

p4 <- phi * ( 1 - phi1 ) * ( 1 - phi2 ) + ( 1 - phi )

mu1P <- mu1N + exp(b1)

mu2P <- mu2N + exp(b2)

var1N <- 1/tau1N

var2N <- 1/tau2N

var1P <- 1/tau1P

var2P <- 1/tau2P

meanNN <- c(mu1N, mu2N)

covNN <- diag(c(var1N, var2N))

meanPN <- c(mu1P, mu2N)

covPN <- diag(c(var1P, var2N))

meanNP <- c(mu1N, mu2P)

covNP <- diag(c(var1N, var2P))

meanPP <- c(mu1P, mu2P)

covPP <- matrix(c(var1P, (rho * sqrt(var1P) * sqrt(var2P)), (rho * sqrt(var1P) * sqrt(var2P)),

f1 <- dmvnorm(y, mean = meanPP, sigma = covPP)

f2 <- dmvnorm(y, mean = meanPN, sigma = covPN)

f3 <- dmvnorm(y, mean = meanNP, sigma = covNP)

f4 <- dmvnorm(y, mean = meanNN, sigma = covNN)
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res <- log(p1 * f1 + p2 * f2 + p3 * f3 + p4 * f4)

return(sum(res))

}

# log full posterior

logf <- function(y,para)

{

phi <- exp(para[1])/(1+exp(para[1]))

phi1 <- exp(para[2])/(1+exp(para[2]))

phi2 <- exp(para[3])/(1+exp(para[3]))

mu1N <- para[4]

mu2N <- para[5]

b1 <- para[6]

b2 <- para[7]

tau1N <- exp(para[8])

tau2N <- exp(para[9])

tau1P <- exp(para[10])

tau2P <- exp(para[11])

rho <- exp(para[12])/(1+exp(para[12]))

full.loglik <- loglik(y,para) + dbeta(phi, 5, 5, log=T) +

log(exp(para[1])/(1+exp(para[1]))ˆ2) + dbeta(phi1, 18, 2, log=T) +

log(exp(para[2])/(1+exp(para[2]))ˆ2) + dbeta(phi2, 18, 2, log=T) +

log(exp(para[3])/(1+exp(para[3]))ˆ2) +

dnorm(mu1N, 0, 10, log=T) + dnorm(mu2N, 0, 10, log=T) +

dnorm(b1, 0, 100, log=T) + dnorm( b2, 0, 100, log=T) +

dgamma(tau1N, 0.01, 0.01, log=T) + abs(para[8]) +

dgamma(tau2N, 0.01, 0.01, log=T) + abs(para[9]) +

dgamma(tau1P, 0.01, 0.01, log=T) + abs(para[10]) +

dgamma(tau2P, 0.01, 0.01, log=T) + abs(para[11]) +

dunif(rho, 0, 1, log=T) + log(exp(para[12])/(1+exp(para[ 12]))ˆ2)

return(full.loglik)

}

# M-H within Gibbs: proposal distribution is N(0,d)

# initial values: from the WinBUGS posterior means

winbugs <- read.table("winbug_summary.txt",header=T)

postmean <- winbugs[,1]

init <- rep(0,12)

library(boot)

init[1:3] <- logit(postmean[1:3])

init[4:5] <- postmean[4:5]
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init[6:7] <- postmean[13:14]

init[8:11] <- (-1) * log(postmean[8:11])

init[12] <- logit(postmean[12])

# sd of proposal distribution: from the result of WinBUGS

postsd <- winbugs[,2]

std <- rep(1,12)

std[1:3] <- postsd[1:3]/(postmean[1:3] * (1-postmean[1:3]))

std[4:5] <- postsd[4:5]

std[6:7] <- postsd[13:14]

std[8:11] <- postsd[8:11]/postmean[8:11]

std[12] <- postsd[12]/(postmean[12] * (1-postmean[12]))

mar.post <- function(dat=y, para=init, N, d=std, K=1)

{

L <- length(para)

v <- matrix(0, nrow=N, ncol=L)

AcceptRate <- matrix(0,nrow=N, ncol=L)

for (n in 1:N)

{

cat("n=",n)

for (l in 1:L)

{

for (k in 1:K)

{

new.para.l <- rnorm(1, mean=para[l],sd=d[l])

new.para <- para

new.para[l] <- new.para.l

logDensRatio <- logf(dat, new.para) - logf(dat, para)

if (is.finite(logDensRatio) && log(runif(1)) < logDensRa tio)

{

para[l] <- new.para.l

AcceptRate[n,l] <- 1

}

}

}

cat(" para=",para,"\n")

v[n,] <- para

}

return(list(v,AcceptRate))

}

sim <- mar.post(N=15000)

v <- sim[1]

A <- sim[2]
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# ================================================== ======================

# function to calculate posterior positive prob. (PPP)

# ================================================== ======================

prob.1 <- function(y,para)

# para is the parameters saved from the ‘‘bugs()’’ function

{

phi <- para[1]

phi1 <- para[2]

phi2 <- para[3]

mu1N <- para[4]

mu2N <- para[5]

mu1P <- para[6]

mu2P <- para[7]

var1N <- para[8]

var2N <- para[9]

var1P <- para[10]

var2P <- para[11]

rho <- para[12]

p1 <- phi1 * phi2

p2 <- phi1 * ( 1 - phi2 )

p3 <- ( 1 - phi1 ) * phi2

p4 <- ( 1 - phi1 ) * ( 1 - phi2 )

meanNN <- c(mu1N, mu2N)

covNN <- diag(c(var1N, var2N))

meanPN <- c(mu1P, mu2N)

covPN <- diag(c(var1P, var2N))

meanNP <- c(mu1N, mu2P)

covNP <- diag(c(var1N, var2P))

meanPP <- c(mu1P, mu2P)

covPP <- matrix(c(var1P, (rho * sqrt(var1P) * sqrt(var2P)),

(rho * sqrt(var1P) * sqrt(var2P)), var2P),nrow=2)

f1 <- dmvnorm(y, mean = meanPP, sigma = covPP)

f2 <- dmvnorm(y, mean = meanPN, sigma = covPN)

f3 <- dmvnorm(y, mean = meanNP, sigma = covNP)

f4 <- dmvnorm(y, mean = meanNN, sigma = covNN)

res <- (phi * (f1 * p1 + f2 * p2 + f3 * p3 + f4 * p4)) /

(phi * (f1 * p1 + f2 * p2 + f3 * p3 + f4 * p4) + f4 * (1 - phi))
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return (res)

}
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