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Abstract

A serial signal detection algorithm is developed to monitor pre-diagnosis and medical

diagnosis data pertaining to biosurveillance. The algorithm is three-state sequential,

based on Bayesian thinking. It accounts for non-stationarity, irregularity, seasonality,

and captures an epidemic serial structural details. At stage n, a trichotomous variable

governing the states of an epidemic is defined, and a prior distribution for time-indexed

serial readings is set. The technicality consists of finding a posterior state probability

based on the observed data history, using the posterior as a prior distribution for stage

n + 1 and sequentially monitoring surges in posterior state probabilities. A sensitivity

analysis for validation is conducted and analytical formulas for the predictive distribu-

tion are supplied for error management purposes. The method is applied to syndromic

surveillance data gathered in the United States (U.S.) District of Columbia metropoli-

tan area.

Keywords: Bayesian Sequential Update, Dynamic Control, Syndromic Surveillance.

1 Introduction

The problem that led to developing the method herein came from medical arena. Data

pertaining to biosurveillance are used in the U.S. and in some countries around the globe to
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assess data-driven evidence for natural epidemics or intentional release of biological agents

with operations similar to natural epidemics. With the view of responding to the serious

danger of bioterrorism, there has been a shift in disease surveillance from the classical ret-

rospective disease chart review, to a prospective and real-time early disease detection. In

syndromic surveillance for example, investigators monitor non-specific clinical information

that may indicate bioterrorism associated disease before specific diagnoses are made. Med-

ical related data such as emergency room observations, over-the-counter sales, veterinary

data, medical and public health information, are used as investigational tools to screen out

information about outbreaks and augment early reports to sentinels. Relevant publications

describing the need to integrate medical related data into real-time surveillance systems are

Arnon et al. (2001); Dennis et al. (2001); Henderson et al. (1999); Inglesby et al. (1999,

2000). An overview of the use of syndromic surveillance can be found in Buehler et al.

(2003); overviews and examples of syndromic surveillance systems are found in Green and

Kaufman (2002); and description of the steps of disease outbreak investigation and syndromic

surveillance are described in Pavlin (2003).

Statistical process control (SPC) tools have long time been central parts of classical

disease surveillance and laboratory based outbreak detections. It is to be noted that the U.S.

Center for Disease Control (CDC) has routinely applied cumulative sum (Cusum) techniques

to laboratory-based data for outbreak detection; see for example Hutwagner et al. (1997),

Stern and Lightfoot (1999). These tools though, need extra maintenance if they were to

migrate to the field of modern biosurveillance. Biosurveillance data are not like industrial

and laboratory data for which traditional SPC methods are developed; they fail to meet

most underlying assumptions of SPC. For example, the main parameters associated with

incidence in syndromic surveillance may be unknown, or only partially known, or unstable

and may change a course from year to year. In addition, incidence parameters may jump at

any time and in any direction (upward/downward or stable). It has been recognized that

for some infectious diseases with seasonal trend such as influenza, each season is likely to

generate its specific data pattern; a new data process to be studied de novo.

A critical requirement for biosurveillance algorithms is fast detection. This requirement

is quickly clouded by a background of variability and structural changes depicted on bio-

surveillance data. As common feature, these data substantially violate the various statistical

underpinnings of standard SPC techniques (we refer a reader less familiar with SPC methods

in medical surveillance to Woodall, 2006; Zamba et al., 2008; Shmueli and Burkom, 2010 for

works and in-depth discussions on assumptions and their violations). To explain, as back-
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ground variability and structural changes affect these data, the monitoring scheme used for

signal detection yields more false signals than anticipated; thus resulting in low sensitivity

and low specificity; Stoto et al. (2004). In addition to variability and structural changes,

historical data gatherings do not provide consistent estimates of the true parameters to mon-

itor due to irregular pattern of the underlying epidemics. Non-stationarity, unpredictability,

irregularity and parameter instability are common features of biosurveillance data.

The context and requirement of biosurveillance (timeliness and fast detection) would de-

mand individual observation SPC methods if underlying assumptions were met. Cusums,

exponentially weighted moving averages (Ewma), and change point charts might seem to

be first blush natural candidates. These charts too, are limited. For example, Cusums

are governed by statistical assumptions such as independent readings, normal distribution

with known mean, known standard deviation, and a requirement of extensive/stable his-

torical data set (HDS); see Hawkins and Olwell, 1998. These statistical underpinnings of

Cusums make them lesser suitable candidates for monitoring real-time biosurveillance data.

In addition, Cusums are better known for responding to step (not gradual) changes. Ewma

requires advance knowledge and stability of the process parameters. Change-point methods,

although less demanding in their calibration needs and better suited for handling individ-

ual reading and start-up processes, rely on independent and identically distributed normal

assumption along with an assumption of change from a constant set of distributional param-

eters to another constant set (see for example Hawkins et al., 2003; Hawkins and Zamba,

2005a, 2005b). Another SPC method commonly used, is to fit a model to data readings and

chart the residuals. This method is known as residual charts and is frequently applied to

autocorrelated data. Residual charts are not suited for monitoring individual data readings.

Their performance is not stellar, and have the disadvantage of filtering observations through

a model before charting (see Zhang, 1997; Winkel and Zhang, 2007). Residual charts can go

as far as the model which yields the residuals.

Our goal is to develop a fast signal detection method to monitor these types of data

pertaining to biosurveillance. We propose a three-state recursive and sequentially updated

method. It is an individual data monitoring scheme (case). The approach is Bayesian and

sets a prior distribution for the serial evolution of the study variable. The method then finds

a posterior based on observed data, assesses the state of an epidemic and uses this posterior as

a prior distribution for the next stage. The Bayesian approach appears to be quite appealing

in modeling these data because at best, the historical information although imperfect and

short, can be used to elicit an appropriate prior. Furthermore, the need to draw inference in

3



an online fashion even in a presence of a short run, along with the possibility of deriving the

predictive distribution for the future observable(s) make the Bayesian approach a favorable

alternative to traditional SPC methods.

The manuscript is organized as follow: Section 2 defines our proposed three-state model

and the algebraic formulas governing the states at each stage. Section 3 elaborates on the

attractiveness of our model, its novelty and its reproducibility. Section 4 outlines our simu-

lation results, the sensitivity analysis, and applies our approach to real-time data gathered

in the U.S. We close our paper with sections on comparative study, discussion and technical

appendix.

2 Proposed Three-State Bayesian Statistical Modeling

We assume that observations are gathered sequentially and define a time indexed series

Yn, n = 1, 2, . . .; where n may be hours, days, weeks, months, . . . , depending on the impor-

tance of the characteristic being monitored. The observed Yn may be actual case counts or

percentage of some activity observed, standardized observed cases, or any aggregation of ob-

served data over a specific hospital, location county, or state. We work under the assumption

that readings are large enough for normality to hold.

At time n = 0, before any monitoring starts, we set a prior distribution for the response

variable; we denote this by Y0:

Y0 ∼ N(ζ, σ2
0),

where ζ and σ2
0 are the initial prior mean and variance, assumed known. The prior infor-

mation, although imperfect, may come from an educated guess, from previous HDS or from

expert’s opinion.

Moving between successive stages n−1 and n, we model Yn using a first order autoregressive

AR(1) model:

Yn = λYn−1 + un, (1)

where λ ∈ (0, 1) is a discount factor, assumed to be known, and un is a random error

displacement. Observe that for λ = 0, the model becomes the random batch effect model

while for λ = 1 the model is a random walk model. The AR representation provides a smooth

transition between successive stages, relaxing the independence assumption governing most

standard SPC techniques. The three-state approach comes as follow: Yn may be affected by

three mutually exclusive states; flat, rise and decay.

• Flat state: Yn does not change much from Yn−1

4



• Rise state: Yn experiences positive jumps/shocks with respect to Yn−1

• Decay state: Yn experiences negative jumps/shocks with respect to Yn−1.

We model these three states using a trichotomous random variable En. Specifically, at each

stage n one has:

En =





0 with prob. π
(n−1)
0

−1 with prob. π
(n−1)
−

+1 with prob. π
(n−1)
+





, (2)

with 0,−1 and +1 indicating flat, decay and rise states respectively; each of which occurs

with some a-priori probability
(
π

(n−1)
0 + π

(n−1)
− + π

(n−1)
+ = 1

)
.

Each realization of En corresponds to either a jump (for the En = ±1) or a no-jump

(En = 0) scenario. For the cases where a jump occurs (i.e. rise or decay states) we consider

the size of the jump to be a random variable with directionality given by the sign of En (the

direction is upward for the rise and downward for the decay states). If δn denotes the size of

the jump at time n, we assume:

δn ∼ N(∆, τ 2),

where ∆ is the expected magnitude of the jump, and τ 2 is the uncertainty regarding the prior

mean estimate ∆. In this setting we have selected the same expected magnitude for both the

rise and the decay because of the hallmark of our illustrative epidemics under study. One

may choose different magnitudes, ∆1 for rise and ∆2 for decay, based on a specific epidemic

or upon observing the shape of an epidemic curve using a small but relevant HDS.

Brief, En is a trichotomous random variable associated with the directionality of Yn and

governs the states, while δn is associated with the size of the random shock. Both these

entities are embedded in the random error displacement un of Equation (1) as follows:

un|(En, δn) ∼ N(Enδn, σ2);

yielding an unconditional distribution of random error un of

un ∼





N( 0, σ2) with prob. π
(n−1)
0

N(−∆, σ2 + τ 2) with prob. π
(n−1)
−

N(+∆, σ2 + τ 2) with prob. π
(n−1)
+





.

Thus, the random error term in Equation (1) corresponds to a mixture of three normal

distributions, each of which is specifically mapped onto one of the three states of an epidemic

under study at each stage. Our method for monitoring the series is a sequentially updated

scheme based on monitoring two out of three states posterior probabilities:
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• At stage n, get the observation Yn and obtain the posterior En|Yn .

• Draw a decision regarding the state of the epidemics, based on the posterior distribution

and obtain the predictive distribution.

• Continue monitoring if the posterior distribution is within the ‘range of acceptability’

(point to which we will return).

• Use the posterior distribution at stage n as a prior distribution for stage n+1 (sequential

update).

In Equation (2), the probabilities π
(n−1)
0 , π

(n−1)
− and π

(n−1)
+ require some attention. These

respectively refer to the posterior probabilities of flat, decay and rise states of an epidemic

at time point n − 1. For this scheme to be able to run, one needs to set some initial

prior probabilities π
(0)
0 , π

(0)
− and π

(0)
+ which reflect prior beliefs regarding the states of an

epidemic at time 0. In the event that no such prior belief exists, one can simply choose a

non-informative prior such as π
(0)
0 = π

(0)
− = π

(0)
+ = 1/3.

The following theorem is the basis for our recursive monitoring:

Theorem 1 The unconditional distribution of Yn at each time n is a mixture of 3n Normal distributions.

f(Yn) =
3n−1∑

i=0

w
(n)
i N

(
µ

(n)
i ,

(
σ

(n)
i

)2
)

.

The weights, means and variances, for n ≥ 1 and for i = 0, 1, . . . , 3n−1 − 1 obey the recursions:

w
(n)
3i = w

(n−1)
i π

(n−1)
0 µ

(n)
3i = λµ

(n−1)
i

(
σ

(n)
3i

)2

= σ2 + λ2
(
σ

(n−1)
i

)2

w
(n)
3i+1 = w

(n−1)
i π

(n−1)
− µ

(n)
3i+1 = λµ

(n−1)
i −∆

(
σ

(n)
3i+1

)2

= τ2 + σ2 + λ2
(
σ

(n−1)
i

)2

w
(n)
3i+2 = w

(n−1)
i π

(n−1)
+ µ

(n)
3i+2 = λµ

(n−1)
i + ∆

(
σ

(n)
3i+2

)2

= τ2 + σ2 + λ2
(
σ

(n−1)
i

)2

,

with initial values w
(0)
i = 1, µ

(0)
i = ζ and σ

(0)
i = σ0; the posterior probabilities are given by:

P (En = 0|Yn = yn) =

3n−1−1∑

i=0

w
(n−1)
i

π
(n−1)
0√

2π

[
σ2+λ2

(
σ

(n−1)
i

)2
]exp



−

(
yn−λµ

(n−1)
i

)2

2

[
σ2+λ2

(
σ

(n−1)
i

)2
]





f(Yn = yn)
= π

(n)
0 ,
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P (En = −1|Yn = yn) =

3n−1−1∑

i=0

w
(n−1)
i

π
(n−1)
−√

2π

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]exp



−

(
yn−

[
λµ

(n−1)
i

−∆
])2

2

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]





f(Yn = yn)
= π

(n)
− , and

P (En = +1|Yn = yn) =

3n−1−1∑

i=0

w
(n−1)
i

π
(n−1)
+√

2π

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]exp



−

(
yn−

[
λµ

(n−1)
i

+∆
])2

2

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]





f(Yn = yn)
= π

(n)
+ .

For proof of the theorem, see technical appendix -A.

Note that the formulas in this theorem are all recursive. In particular, P (En | Yn = yn) is

derived with the use of the prior at stage n−1 (that involves information about yn−1) which

is, on itself, an updated posterior coming from stage n− 2 and so on. Therefore, historical

data information is maintained and updated as each new observation yn accrues. Other

points that remain to be exposed from the theorem are the subscripts and the superscripts

of the iterative weights, means and variances. The subscript i denotes each component of

the mixture at stage n − 1; i ∈ {0, 1, . . . , 3n−1 − 1}. As one moves from n − 1 to n, each

i triplicates, giving rise to a mixture of 3 × 3n−1 = 3n components. To keep track of the

flat− rise− decay cases and facilitate their recognition, the components are renumbered at

time n using the module 3 operator, i.e.:

3i + 0 refers to the flat state (corresponding to mod(3)=0)

3i + 1 refers to the decay state (corresponding to mod(3)=1)

3i + 2 refers to the rise state (corresponding to mod(3)=2).

Thus, the modulo 3 operator allows us to easily discriminate which of the components refers

to what of the three possible states of the epidemic. The problem of monitoring the time-

indexed series comes down to estimating and monitoring two of the three π
(n)
• ’s.

2.1 Drawing Decision Regarding the State of the Epidemic

In General: At each stage of the sequential algorithm, three actions may be taken. The

actions a
(n)
f , a

(n)
r and a

(n)
d are respectively associated with the flat, rise, and decay states

of the epidemic at stage n. Some of these actions may be: reinforcing current measures of

preparedness, taking stronger eradicative measures, or allocating resources to other means.

Depending on whether π
(n)
• (i.e. any state posterior probability at stage n) has actually

increased, decreased, or stabilized, there would be some costs incurred. A loss matrix such

7



as in Table 1 can be built and decision rules for hypotheses testing can be worked into the

sequential algorithm. Note that a Bayes rule always exists since the action space is a compact

set.

a
(n)
d a

(n)
f a

(n)
r

En = −1 0 c−1,f c−1,r

En = 0 c0,d 0 c0,r

En = +1 c1,d c1,f 0

Table 1: Loss matrix for a more general decision problem. In the matrix, c•,• represents the costs associated

with the true state of En (denoted by the first subscript) and the action taken (second subscript).

Expert’s opinion may be used to provide the appropriate values for the loss matrix. Once

the matrix is set, one can derive the ‘optimal’ decision, according to some criterion, like Bayes

risk, Minimax rule or other similar optimality criteria (see for example De Groot, 1970 and

Berger, 1980).

Special case: In the following special case, we are interested in detecting the rise state of

the epidemic (which in public health is usually of highest importance) while controlling the

false alarm rate. This corresponds to the sequential hypothesis testing:

{
H

(n)
0 : En = +1

H
(n)
1 : En 6= +1

}
.

Denote a
(n)
0 and a

(n)
1 the decisions to accept H

(n)
0 and H

(n)
1 respectively. Also, denote cMA

the cost associated with the ‘Missed Alarm’ (failing to recognize the rise, or Type I error);

and cFA the one associated with ‘False Alarm’ (falsely claiming a rise, or Type II error).

The loss matrix becomes a 2 × 2 matrix, and according to the generalized 0–1 loss function

takes the form of Table 2.

a
(n)
0 a

(n)
1

En = +1 0 cMA

En 6= +1 cFA 0

Table 2: Loss matrix generated by the 0–1 generalized loss function principle for the special decision

problem.
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It is then easy to show (Casela and Berger, 1990) that the Bayes decision rule (i.e. the

decision which minimizes Bayes risk) is: ‘Reject H
(n)
0 if and only if’

P (En = +1|Yn) <
cFA

cMA + cFA

.

We should note here that other decision drawing methods such as Bayes factors (Jeffreys,

1948) are also plausible.

2.2 Thresholding the Posterior Probabilities

As noted earlier, the method is a sequentially updated recursive scheme where at stage n,

the posterior probability of each state is used as prior for stage n+1. This technique invites

a natural problem where one state with a history of consecutively low probabilities con-

stantly contaminates its subsequent updates. This problem is known as causing sensitivity

issues because a very low prior probability of an unlikely state would need several succes-

sive observations with high likelihood to provide an accurate signal. To avoid this problem,

one usually puts a ‘floor’ on the value of a prior probability of any state; a technique that

provides ‘head start’ to speed response to signal. The idea consists of defining a threshold

floor value p∗ such that π
(n)
• = max

{
p∗, π(n)

•

}
, and adjusting the remaining probabilities to

attain collective exhaustiveness.

3 Attractiveness and Novelty of the Method

The attractiveness of the Bayesian method lies in its ease of adaptability to parameter in-

stability such as the one seen in syndromic surveillance data settings. Bayesian approaches

appear to be quite appealing in modeling these data because at least, the historical informa-

tion (although usually imperfect) can be used to elicit an appropriate prior. Furthermore, in

disease surveillance there is a need to draw inference in an online fashion even in a presence

of a short data history. Our algorithm has the flexibility of a straightforward transition from

fixed to a random jump. The sequential updating mechanism has allowed our approach

to also perform well in the presence of a non informative prior for the state probabilities.

Another appealing aspect is the possibility of deriving predictive distribution for future ob-

servable(s) to be used for error management or forecasting purposes. Specifically, following

Geisser (1993) we easily show via some algebra (see technical appendix) that the predictive

distribution of Yn given the available data Y1, . . . , Yn−1 is a mixture of 3n Normal components:

9



f(Yn|Yn−1) ∼
∑

i∈{0,−1,+1}
f(Yn|En = i)P (En = i|Yn−1)

∼
3n−1−1∑

i=0

[
w

(n−1)
i π

(n−1)
0 N

(
λµ

(n−1)
i , σ2 + λ2

(
σ

(n−1)
i

)2
)

+ w
(n−1)
i π

(n−1)
− N

(
λµ

(n−1)
i −∆, τ 2 + σ2 + λ2

(
σ

(n−1)
i

)2
)

+ w
(n−1)
i π

(n−1)
+ N

(
λµ

(n−1)
i + ∆, τ 2 + σ2 + λ2

(
σ

(n−1)
i

)2
)]

.

This distribution opens the door to the predictive advantage of our mechanism.

We view our proposal as a self-reliant algorithm in that it combines three different aspects

of control theory into a single process. It has the flexibility to simultaneously model, chart,

and forecast. Modeling comes about by deriving the unconditional mixture distribution Yn,

sequential charting intervenes by taking advantage of the posterior state probabilities, and

forecasting becomes apparent by making an adequate usage of the predictive distribution of

Yn.

3.1 Computational Considerations and Reproducibility

In an era of advanced computational technology, one may be tempted to implement our

methodology in a ‘brute-force’ manner. However, direct implementation of the mixtures

involved in the theorem, and their sequential computation can lead to much severe compu-

tational load than necessary. The use of the three-state approach to modeling En induces

a mixture of 3n Normal components in the unconditional distribution of Yn. Thus, we have

a combinatorial explosion of the number of components used to describe the process. The

reason for this explosion is that the model attempts to keep all possible trajectories from the

beginning of the process till the most recent observation. Due to the autoregressive nature of

the model, the posterior mixture parameters are bounded (see technical appendix A for these

bounds). As n increases, the 3n components have tiny weights and their parameters differ

only slightly. Thus, we approximate the exact distribution with another mixture having

far fewer components. We adopt the approximation algorithm of Tsiamyrtzis and Hawkins

(2010), which is a hybrid of the procedure proposed in West (1993).

First select K, as the number of components for the approximating mixture. At stage n of

the process, when the number of components r = 3n exceeds K for first time, activate the
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approximation algorithm:

1. Sort the r components in increasing order of their weights.

2. Find the index i (i = 2, 3, . . . , r) of the ‘nearest neighbor’ of component 1.

3. Replace these two distributions with a new Normal with updated parameters. Set

r = r − 1.

4. Go to step 1 and repeat the procedure, until r = K.

Two issues that need to be clarified here are the definition of a ‘nearest neighbor’ (step 2)

and the replacement of two Normal components by a single one (step 3).

To measure distribution proximity in finding the nearest neighbor (required at stage 2

of the algorithm), we use the Jeffreys (1948) divergence measure. Specifically, the Jeffreys

divergence between f1 and f2 is provided by:

J(f1, f2) =

∫
[f1(x)− f2(x)] log

(
f1(x)

f2(x)

)
dx.

In the case where f1 ∼ N(µ1, σ
2
1) and f2 ∼ N(µ2, σ

2
2) the criterion is given by:

J(f1, f2) =
1

2

(
σ1

σ2

− σ2

σ1

)2

+

(
1

σ2
1

+
1

σ2
2

)
(µ1 − µ2)

2

2
.

The lowest-weight mixture component is then merged with the component with lowest Jef-

freys divergence, and the pair replaced with a single normal distribution. The mean and

variance of the new component is estimated using the method of moments. Thus, if we have

f1 ∼ N(µ1, σ
2
1) and f2 ∼ N(µ2, σ

2
2) with weights w1 and w2 respectively, the replacement

will be given by fp ∼ N(µp, σ
2
p) with wp = w1 + w2 and (see for example McLachlan and

Basford 1988):

µp =

(
w1

w1 + w2

)
µ1 +

(
w2

w1 + w2

)
µ2

σ2
p =

(
w1

w1 + w2

)
σ2

1 +

(
w2

w1 + w2

)
σ2

2 +
w1w2

(w1 + w2)2
(µ1 − µ2)

2,

which preserves the total weight, marginal mean and variance of the components. The choice

of K would undoubtedly reflect on the required accuracy of the approximation, where the

larger the K, the better the approximation. Based on West (1993) proposal, along with some

simulation results, it turns out that usually a few hundred components suffice to approximate

the exact posterior satisfactorily in most applications. We use K = 1, 000 in our application;

although K = 500 has a similar performance.
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4 Simulation Study for Sensitivity Analysis

4.1 Performance Under Normal Regime

The performance under normal regime gives us an assessment of sensitivity analysis for real

epidemics. Three different syndromes are used for the assessment; fever (FEV), respiratory

illnesses 1 (RESP1) and respiratory illnesses 2 (RESP2). The clinical definition of these

syndromes is attached in the technical appendix section B. These syndromes came from

physicians visit records and emergency department discharges in a District of Columbia

metropolitan area in the United State (U.S). The data was kindly supplied by Dr. Burkhom

of the Applied Physics Laboratory at Johns Hopkins University. Observations are recorded

daily over a span of 3 years (1994–1997) and represent an aggregate over multiple clinical

settings. The hypothesis is that these variables may carry clinical information and symptoms

that may indicate bioterrorism-associated diseases (see for example CDC-MMWR, vol 50,

number 41, for a complete list and syndromic surveillance variables’ rankings); or that an

intentional release is likely to alter their daily readings. We use the first two years to elicit our

nuisance parameters and check them against the third year. Table 3 gives us the estimated

nuisance parameters.

To be noted too is the day of the week (DOW) effect usually depicted on these syndromic

data. We reduce the DOW effect by using a seven-day rolling window filter. See Shmueli

and Burkhom (2010); Lotze et al. (2008) for suggested methods for reducing a DOW effect.

Other appropriate methods are available in spectral analysis; Bloomfield (1976).

We use the parameters in Table 3 to run our algorithm against the 1997 real-time epi-

demic curve to graphically assess its goodness of fit. In order for our approach to be used

in biosurveillance, the algorithm should be able to model and follow the pathway of an epi-

demic curve. Since the underlying dual reason for using influenza-like-illnesses is that they

correlate with influenza and that symptoms from the aftermath of biological activities are

likely to reflect on them and alter their normal counts, we also found it appropriate to check

our performance against the influenza pattern for a receiver operating characteristic (ROC)

assessment. The gold standard for generating these ROC curves is the flu season which, for

this specific location, ranges from November 1st to March 31st according to the U.S. CDC.

This may differ from state to state and from one location to another.

12



Nuisance Parameters

Parameters FEV RESP1 RESP2

λ 0.94 0.95 0.95

ζ 60.0 200 150

σ2
0 16.0 220 80.0

σ2 16.0 220 80.0

∆ 4
√

16 3
√

220 3
√

80

τ2 2.00 16.0 9.00

π
(0)
+ 0.20 0.20 0.20

π
(0)
− 0.20 0.20 0.20

p∗ 0.10 0.10 0.10

K 1000 1000 1000

Table 3: Table of nuisance parameters. λ is the autoregressive discount factor; ζ, σ2
0 are the initial prior

mean and variance; ∆ and τ2 are the mean and variance of the random (in magnitude) jump distribution;

π
(0)
+ (π(0)

− ) are the initial prior probability referring to rise (decay) states (for the flat state we have π
(0)
0 =

1 − π
(0)
+ − π

(0)
− ), σ2 is the model variance and p∗ is the floor probability. K is the number of components

used to approximate the mixtures.

Results:

Figures 1–3 show our model’s approximation to the state and the stage of an epidemic curve.

The model was run on the 1997 data set for FEV, RESP1, and RESP2. On left-hand panel

of each graph, we display the unconditional mean Yn as stated in Theorem 1’ approximation

of the epidemic stage (grey), and the actual data values (black). The graphs on the left-hand

panel give graphical evidence that the unconditional mean Yn provides a good fit to the ob-

served readings. The right-hand panel displays two of the three posterior state probabilities.

Observe that the posterior probabilities change direction relative to changes in the epidemic

curve or with respect to changes in Yn. This suggests their reliability for sensitivity analysis,

provided they have an ease of predictability. This predictability is assessed in a ROC anal-

ysis. Figure 4. displays the ROC curves. The curves were built using π
(n)
0 as ROC variable

(left-hand panel) and on the right-hand panel using the posterior π
(n)
+ /π

(n)
0 as a ROC crite-

rion. The ROC suggests that RESP1 unequivocally correlates better with influenza season

and is closely followed by FEV. It also is intuitively clear from both panels that RESP2

may not be the ideal prognostic factor. The low performance of RESP2 may be attributed

to the syndrome’ assessment; although tuning parameters may also have a say. Turning to

the ICD9 codes defining the syndrome, RESP2 is defined as other categories of respiratory

illnesses that cannot be clearly identified as RESP1; either known or unknown. This catego-
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rization becomes subjective by definition and invites more misclassification, irregularity and

more structural break than the clearly defined FEV and RESP1.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

Time

D
at

a 
an

d 
U

nc
on

di
tio

na
l m

ea
n

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
os

te
rio

r 
st

at
e 

pr
ob

ab
ili

tie
s

Figure 1: Year 1997; time origin July 1st. Left panel: FEV data in black and squared dots; unconditional

mean in grey and circles. Right panel: Posterior state probabilities; black and squared dots is π
(n)
0 ; and in

grey π
(n)
+ .
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Figure 2: Year 1997; time origin July 1st. Left panel: RESP1 data in black and squared dots; unconditional

mean in grey and circles. Right panel: Posterior state probabilities; black and squared dots is π
(n)
0 ; and in

grey π
(n)
+ .

14



0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

Time

D
at

a 
an

d 
un

co
nd

iti
on

al
 m

ea
n

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
os

te
rio

r 
st

at
e 

pr
ob

ab
ili

tie
s

Figure 3: Year 1997; time origin July 1st. Left panel: RESP2 data in black and squared dots; unconditional

mean in grey and circles. Right panel: Posterior state probabilities; black and squared dots is π
(n)
0 ; and in

grey π
(n)
+ .
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Figure 4: ROC curves for Fever (FEV) and Respiratory illnesses. Variable used for left-hand panel is π
(n)
0 .

Variable used for right-hand ROC panel is π
(n)
+ /π

(n)
0 . RESP1 dominates. In all, RESP2 is not particularly

effective.
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The ROC analysis is particularly useful in finding a threshold value ~(π(n)
• ) that yields the

‘best acceptable’ set of sensitivity and specificity. For example, with ~(π(n)
0 ) = 0.42, RESP1

yields a sensitivity of 92.71% and a specificity of 72.59%. With the same threshold FEV

yields a sensitivity of 80.79% and a specificity of 73.55%. The value of ~(π(n)
0 ) can be used

as threshold limit for a natural outbreak. Should one define a cost or utility function that

combines these two probability values, the ‘best acceptable’ threshold ~(π(n)
0 ) may be chosen

to minimize this utility function. (See for example Metz, 1978; Pepe, 2003). To chart and

identify additional cases that could alter normal counts (e.g. in case of intentional release), it

is intuitive to keep a copy of the charting parameters (π
(n)
• ) under normal regime and assess

performance with respect to this baseline. In the absence of expert’s opinion to conduct a

full utility/cost analysis, we conduct a simulation study under normal regime to calibrate

a false alarm rate for charting. We run 1000 replications in which the observed FEV (or

RESP1) series is perturbed by normal fluctuation N(0, σ2). We assess false alarm relative

to the original true series through numerical optimization. To be explicit, if π
(n)
+ /π

(n)
0 is the

ratio of the two posteriors under the true series, and π
(n)
+ /π

(n)
0 |s is the corresponding value

in repeated iterations, we find a and b such that P (a < π
(n)
+ /π

(n)
0 − π

(n)
+ /π

(n)
0 |s< b) = 1− α.

With a = −0.225 and b = 0.311, the false alarm rate is α = 0.002. This false alarm rate is

carried into the following simulated outbreaks study for signal detection.

4.2 Performance Under Different Outbreak Scenarios

Since the problem that spearheaded this research is outbreaks signal detection problem,

we simulated outbreaks in different ways that a pathogen could alter syndrome counts (see

Mandl et al., 2004 and Figure 8 in appendix B). The simulated outbreak extra cases are

superposed on the 1997 HDS and run through the developed model for signal detection. We

simulated outbreaks of one and two weeks. We spike the data stream with a number of indi-

vidual non-overlapping outbreaks. We space the outbreaks by 10, 20, and 30 days throughout

the year to ensure that seasonality in the data does not impede signal detection. We clean the

system before the next outbreak so that response to one outbreak does not carry over to the

next. The simulated data represents multiple ways in which pathogens could spread through

a community. Among the pathways considered, a flat outbreak corresponds to point-source

infections such as Bacillus Anthracis. Linear, exponential and sigmoid outbreaks may relate

to infectious diseases that are highly infectious, such as smallpox. Our working assumption

is that these outbreaks will reflect upon FEV and RESP1 (we discard RESP2 because of

its marginal performance in a ROC analysis). The number of simulated additional cases
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depends on the error profile of the agent under study (twice the standard deviation). Two

error profiles are considered; one for the flu season (winter) and one outside the flu season

(summer). The reasoning behind this is that visit rates vary more unpredictably in winter

than in summer. To illustrate, if the mean daily visit is 80 and the pathway gives a constant

error profile with standard deviation of 25, simulated outbreaks ranging from 0 to 50 extra

visits per day are considered. These visits are randomly sampled from 0 to 50 at a step of

5, and readjusted to fit the distributional pathway under study. In case the error profile

may vary between summer and winter, the number of additional cases may follow the season

accordingly, with more extra cases in winter. For example FEV has an error profile with

standard deviation 30 in winter and 22 otherwise.

4.2.1 Simulation Setting

We simulated one thousand (1,000) outbreaks for each of the following combinations: dura-

tion (7 days, 14 days), pathway (flat, linear, exponential, sigmoid), and yearly hit frequency

(once, twice). In case of more than one outbreak, the spacings used are 10, 20 or 30 days.

We kept a copy of the posterior ratio under normal regime and compared the simulated

performances to the normal for signal detection.

Here, we describe the basic idea behind generating a single outbreak. The idea carries

over to multiple non-overlapping outbreaks.

1. Choose a random n1 ∈ {1, . . . , 365−d} for the beginning of an outbreak with duration

d

2. Prior to n1 there is a normal course of an epidemic curve. Thus, the simulated data

before n1 is the original data 1, . . . , n1 − 1 plus a normal fluctuation N(0, σ2)

3. From time n1, generate an outbreak with duration d and pathway q. Add these out-

breaks to the original data stream plus a normal fluctuation

4. After time (n1 + d), the normal course continues; so, add normal fluctuation to the

original data set

5. Run the simulated data through the system for signal detection.

Figure 5 is an illustration of extra cases altering the normal FEV epidemic curve. For the

sake of clarity of the figure, we ignore the random fluctuations. This provides a pictorial

representation of how a single outbreak of duration d may look. In case of multiple epidemics,
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one may use spacing after step 4, then cycle back to step 1 and choose a restricted n1,2 >> n1.

It would also be wise to confine n1 to a time interval in case of multiple outbreaks.
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Figure 5: Left-hand panel: Epidemic curve (grey) spiked with a seven-day flat outbreak at day 148 (black).

Right-hand panel: Epidemic curve (grey) spiked with a fifteen-day linear outbreak starting at day 122 (black).

Time origin is July 1st.

Assuming an outbreak was introduced at time n1 and that our system flags contamination

at time n2, we define the following measuring yardsticks:

• No Signal (N.S.) cases where the system is degenerate and fails to sound an alarm after

an outbreak has been introduced and during an outbreak

• Correct Signal (C.S.) cases where n2 = n1; to say that the system signals at the exact

time that an outbreak has been introduced

• Missed Signal (M.S.) cases where n2 > n1; to say that the system misses the exact

time but signals with delay

• False Signal (F.S.) cases where n2 < n1; to say that the system signals earlier than the

event has actually occurred (this has been set to have probability 0.002).

These partitions provide a tool for performance assessment under unusual activity. In

addition, a pictorial representation of signal and the missed signal compartments will help

display the delay to signal.
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4.2.2 Results of Sensitivity Analysis

Figures 6 – 7 provide a summary of the simulation results for single outbreaks. Among the

series that did not result in a F.S. prior to spiking the data stream with simulated outbreaks,

we evaluate the proportion of signal as well as the distribution of signals. Note that the flat

pathway and the linear result in the best detection of signal (see table 4 & 5). On the

tables, we display the cumulative signal detection as a numerical representation of the delay

to signal. Note that the seven-day flat picks out nearly all its signals two days after being

introduced (94.0%). The linear picks out nearly all its signals 3 days into spiking the data

stream (95.2%). The seven-day exponential and sigmoid have a slower reaction time. This

is to be expected because their shape starts out with low number of outbreaks then becomes

gradually increasing (see appendix B for a display of possible shapes). Some series failed to

signal during the outbreak period. We view those series as degenerate. Their proportions for

the seven-day outbreak follow: flat (1.2%) linear (1.6%), sigmoid (3.2%), and exponential

(2.8%). The proportion of degenerate series fades when the outbreak has a long duration

(see Table 5). The non-overlapping outbreaks simulation scenario yields similar results. This

is not a surprise because the system has been cleaned moving from the first to the second

outbreak.

% of Signal Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Flat 79.6 92.4 94.0 96.0 97.2 98.4 98.8

Linear 29.2 71.2 91.2 95.2 97.2 98.0 98.4

Sigmoid 15.6 35.6 73.6 91.6 95.6 96.6 96.8

Exponential 07.2 16.4 38.8 71.2 87.6 95.6 97.2

Table 4: Table of cumulative signal for 7-day outbreaks. System set at a false alarm rate of 0.002

% of Signal Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 Day 14

Flat 92.8 96.8 97.6 98.0 99.2 99.2 100

Linear 37.2 87.2 96.4 98.0 98.4 99.6 100

Sigmoid 08.0 14.4 23.6 47.2 88.8 98.8 100

Exponential 12.8 20.8 27.6 32.4 62.8 94.8 99.2

Table 5: Table of cumulative signal for 14-day outbreaks. System set at a false alarm rate of 0.002
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Figure 6: Performance on 7-day outbreaks. Top row: Flat and linear Linear. Bottom row: Exponential

and Sigmoid.

5 Simulation Comparative Study

Since part of our goal is to build a control algorithm with the potential of identifying clusters

of disease cases before traditional methods, we use the decision interval Cusum on the first

difference readings following the 7-day rolling window filtration. The reason for using the

Cusum on the first difference spurred from the fact that first differences have a tendency

to remove bias from series and leave them with noise. After all, the readings have to be

detrended/demodulated for the Cusum to reach its optimality. Next, the first differences are
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Figure 7: Performance on 14-day outbreaks: Top row: Flat and linear Linear. Bottom row: Exponential

and Sigmoid.

transformed to achieve normality. Our approach builds 2 Cusums for shift in the mean; one

upward and one downward. We run these Cusums until one crosses its decision interval, so

that the out of control run length is the minimum of the two. We compare this first-signal-

based Cusum to the performance of the Bayesian approach. To be fair, the comparison is

plausible on one ground only: the flat outbreak pathway. The reason is that optimality of a

Cusum holds from one step change to another step change; not from step to gradual changes.

It would have been a clear disadvantage for the Cusum if the comparison were carried for

outbreaks with gradual pathway. Speaking of the Cusum design, in order to obtain a joint
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in-control ARL of 500, we must tune each individual Cusum at a nominal ARL of 1000.

The in-control ARL was matched by the performance of the Bayesian method under normal

operation resulting in a false alarm rate of 0.002 (see Montgomery 2009, Hawkins and Olwel

1998). Since we used 2-year observations to elicit the Bayesian model parameters, the same

number of observations is used to calibrate our Cusums. The filtered and demodulated

HDS is N(0.02, 4.71); which needed another standardization. The reference value and the

decision intervals for the Cusums depend on the shift we anticipate to detect. In our case,

with reference value of 1 for an upward shift, -1 for a downward shift, and a decision interval

of 2.6666, both Cusums are tuned to detect 2 standard deviation shifts from a N(0,1) error

profile and attain an average run length of 1000 each. We run 1000 of contaminated series

through both the Bayesian model and through the Cusum; and we recorded the proportion

of correct signals and that of degenerated series. Tables 6 and 7 compare the two methods

and the signal detection efficiency of the Bayesian over the Cusum–which is in the order of

1.5 to 1. Note that in the Cusum case, more than 30% of the series degenerate. The intent

of this comparative study is by no means to downgrade cumulative sums; but rather to bring

to light some of its abuses. The point is that a process loses its signal detection capability

when readings are extensively filtered; see Zhang (1997).

% of Signal Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Bayesian (Ba) 79.6 92.4 94.0 96.0 97.2 98.4 98.8

Cusum (Cu) 53.6 62.0 62.8 63.6 64.4 65.2 65.2

Efficiency (Ba/Cu) 1.48 1.49 1.49 1.50 1.50 1.50 1.51

Table 6: 7-day flat outbreaks. Comparing the Bayesian algorithm to the Cusum performance

% of Signal Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 Day 14

Bayesian (Ba) 92.8 96.8 97.6 98.0 99.2 99.2 100

Cusum (Cu) 60.0 62.4 63.6 66.0 66.8 68.4 68.8

Efficiency (Ba/Cu) 1.54 1.55 1.53 1.48 1.48 1.45 1.45

Table 7: 14-day flat outbreaks. Comparing the Bayesian algorithm to the Cusum performance

6 Discussion & Conclusion

Traditional SPC tools for monitoring data pertaining to biosurveillance are currently short of

capturing all the important structural changes depicted on these data. These tools lose their
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performance due to the background of variability seen on biosurveillance data. We have de-

veloped a three-state sequential and recursive algorithm that accounts for some of the issues

encountered in biosurveillance. The algorithm is bayesian and accounts for non-stationarity,

irregularity, and seasonality through sequentially updated prior distribution parameters. Our

approach has the added advantage to adjust to random jumps, both in magnitude and in

direction, and to capture an epidemic curve serial structural details. Compared to Cusum

on simulated flat outbreaks, its efficiency is 1.5 to 1.

Other approaches based on Hidden Markov Models (HMM) and Markov Switching Mod-

els (MSM) are also used in conjunction with epidemiological types of data. Within this

framework, an unobserved epidemic state space is modeled using homogeneous Markov chain

of order one (1) with stationary transition probabilities (see for example Le Strat et al.,

1999, for HMM and Lu et al., 2010, for MSM; see also Cappé, et al., 2007 and Früehwirth-

Schnatter, 2006 for statistical developments in HMM and MSM models). These methods are

usually computationally intensive with a questionable performance in start-up settings when

only a short history is available at the beginning of a monitoring scheme. Also, multivariate

methods may be worth exploring when many syndromic variables are under study. This

issue needs more space and mathematical development than can be devoted to it here. Mul-

tivariate case charts are not assumption-free and are more demanding in their calibration

needs than univariates’. A reasonable multivariate development would consist of using some

syndromic variables in a ‘strength borrowing’ fashion to monitor the remaining incidence

parameters.

The current proposal will augment early reports of natural epidemics or intentional oper-

ations to sentinels. Its novelty comes from monitoring the states posterior probabilities and

from its self-reliance. We view our proposal as a self-reliant method, with the potential to

combine three different aspects of control theory into a single process: modeling, charting,

and forecasting. We also recognize that our proposal is not ‘one size fits all’. Biosurveillance

data may differ from one location to another in the same country. As one switches from

location to location or between syndromic variables, the general philosophy behind our pro-

posal holds; but parameters may change. Thus, the need to re-tune some parameters and

reset some initial values.
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7 Technical Appendix–A

The theorem is proved by induction. For n = 1 it is easy to show that the theorem holds.

Specifically, the unconditional distribution of Y1 is a mixture of 3 Normal distributions:

f(Yn) =
2∑

i=0

w
(1)
i N

(
µ

(1)
i ,

(
σ

(1)
i

)2
)

where for the weights, means and variances, we have:

w
(1)
0 = π

(0)
0 µ

(1)
0 = λζ

(
σ

(1)
0

)2

= σ2 + λ2σ2
0

w
(1)
1 = π

(0)
− µ

(1)
1 = λζ −∆

(
σ

(1)
1

)2

= τ 2 + σ2 + λ2σ2
0

w
(1)
2 = π

(0)
+ µ

(1)
2 = λζ + ∆

(
σ

(1)
2

)2

= τ 2 + σ2 + λ2σ2
0 .

For the posterior probabilities of the events Ei we have:

P (E1 = 0|Y1 = y1) =

2∑
i=0

π
(0)
0√

2π[σ2+λ2σ2
0]

exp

{
− (y1−λζ)2

2[σ2+λ2σ2
0]

}

f(Y1 = y1)
= π

(1)
0 ,

P (E1 = −1|Y1 = y1) =

2∑
i=0

π
(0)
−√

2π[τ2+σ2+λ2σ2
0]

exp

{
− (y1−[λζ−∆])2

2[τ2+σ2+λ2σ2
0]

}

f(Y1 = y1)
= π

(1)
− , and

P (E1 = +1|Y1 = y1) =

2∑
i=0

π
(0)
+√

2π[τ2+σ2+λ2σ2
0]

exp

{
− (y1−[λζ+∆])2

2[τ2+σ2+λ2σ2
0]

}

f(Y1 = y1)
= π

(1)
+ .

Next, assume that the theorem holds for n − 1; i.e. the unconditional distribution of Yn−1

given by

f(Yn−1) =
3n−1−1∑

i=0

w
(n−1)
i N

(
µ

(n−1)
i ,

(
σ

(n−1)
i

)2
)

,

where for the weights, means, variances, and the posterior probabilities of the events Ei, the

recursive relationships are valid. Then, we can show that it is valid for n. Indeed,

Yn|Yn−1, δ, En ∼ N
(
λYn−1 + Enδ, σ2

)

Yn−1 ∼
3n−1−1∑

i=0

w
(n−1)
i N

(
µ

(n−1)
i ,

(
σ

(n−1)
i

)2
)

δ ∼ N
(
∆, τ 2

)
.
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From the above we obtain the distribution of Yn|En:

Yn|En ∼
3n−1−1∑

i=0

w
(n−1)
i N

(
λµ

(n−1)
i + En∆, E2

nτ 2 + σ2 + λ2
(
σ

(n−1)
i

)2
)

En =





0 with prob. π
(n−1)
0

−1 with prob. π
(n−1)
−

+1 with prob. π
(n−1)
+





.

Then for the unconditional distribution of Yn we have:

Yn ∼
3n−1−1∑

i=0

[
w

(n−1)
i π

(n−1)
0 N

(
λµ

(n−1)
i , σ2 + λ2

(
σ

(n−1)
i

)2
)

+ w
(n−1)
i π

(n−1)
− N
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(n−1)
i −∆, τ 2 + σ2 + λ2

(
σ

(n−1)
i

)2
)

+ w
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i π

(n−1)
+ N

(
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(n−1)
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(
σ

(n−1)
i
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)]

≡
3n−1∑
i=0

w
(n)
i N

(
µ

(n)
i ,

(
σ

(n)
i

)2
)

;

which satisfies the recursive relationships for the weights, means and variances. Furthermore,

for the posterior distribution of En we get:

P (En = 0|Yn = yn) =

3n−1−1∑
i=0
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i
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−√

2π

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]exp

{
−

(
yn−

[
λµ

(n−1)
i

−∆
])2

2

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]

}

f(Yn = yn)
= π

(n)
− ,

P (En = +1|Yn = yn) =

3n−1−1∑
i=0

w
(n−1)
i

π
(n−1)
+√

2π

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]exp

{
−

(
yn−

[
λµ

(n−1)
i

+∆
])2

2

[
τ2+σ2+λ2

(
σ

(n−1)
i

)2
]

}

f(Yn = yn)
= π

(n)
+ ;

which are consistent with the formulas provided in the theorem.

Bounds on the parameters of f(Yn) :

Here, we establish the proof that the means, variances and weights are bounded.
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Means

The lowest (highest) possible mean corresponds to the case where we have a negative (posi-

tive) jump at each of the n stages of the process. Using induction one has:

µ
(n)
min = λnζ − λn−1∆− λn−2∆− . . .− λ∆−∆

= λnζ −
(

1− λn

1− λ

)
∆,

µ
(n)
max = λnζ + λn−1∆ + λn−2∆ + . . . + λ∆ + ∆

= λnζ +

(
1− λn

1− λ

)
∆.

Thus at each stage n of the process all 3n means are bounded in

[
µ

(n)
min, µ

(n)
min

]
=

[
λnζ −

(
1− λn

1− λ

)
∆, λnζ +

(
1− λn

1− λ

)
∆

]
,

with range converging as follow:

2

(
1− λn

1− λ

)
∆

n↑−→ 2∆

1− λ
.

As n grows, these means are within the range of at most 2∆/(1−λ), leading to the conclusion

that they become less and less different from each other as n increases.

Variances

The two most extreme scenarios for the variances are:(
σ

(n)
min

)2

: corresponding to a no-jump state for all n stages of the process
(
σ

(n)
max

)2

: corresponding to all-jump states (positive or negative) for all n stages of the

process. Based on the recursion we can easily show:

(
σ

(n)
min

)2

= σ2 + λ2σ2 + λ4σ2 + . . . + λ2n−2σ2 + λ2nσ2
0

= λ2nσ2
0 +

(
1− λ2n

1− λ2

)
σ2,

(
σ

(n)
max

)2

=
(
σ2 + τ 2

)
+ λ2

(
σ2 + τ 2

)
+ λ4

(
σ2 + τ 2

)
+ . . . + λ2n−2

(
σ2 + τ 2

)
+ λ2nσ2

0

= λ2nσ2
0 +

(
1− λ2n

1− λ2

) (
σ2 + τ 2

)
.

At each stage n of the process all 3n variance terms are bounded in

[(
σ

(n)
min

)2

,
(
σ

(n)
max

)2
]

=

[
λ2nσ2

0 +

(
1− λ2n

1− λ2

)
σ2, λ2nσ2

0 +

(
1− λ2n

1− λ2

) (
σ2 + τ 2

)]
,
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with range converging as follow:

(
1− λ2n

1− λ2

)
τ 2 n↑−→ τ 2

1− λ2
.

As n increases the variance terms become similar.

Weights

The weights involve a non-linear relation between the posterior probabilities and the data

readings. An exact mathematical bound on these entities in not a reasonable task. However,

given that the weights fall in [0,1] and add up to 1, as n increases all 3n weights become

smaller. Based on the recursive relationship at each stage n of the process the weights of the

previous stage n− 1 are multiplied with the respective posterior probabilities (i.e. a number

in [0,1]) making them smaller.

Technical Appendix–B
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Figure 8: Various shapes of outbreaks considered. These are canonical frequency shapes for display; random

displacements have not been added to them yet; the span of each outbreak is 7 days.
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FEV: Includes febrile illnesses of unspecified origin, unknown viral illnesses accompanied by

fever, fever and septicemia not specified.

RESP: Includes any acute infection of the upper and/or lower respiratory tract (from the

oropharynx to the lungs, includes otitis media), diagnosis of acute respiratory tract infection

such as pneumonia due to parainfluenza virus, acute non-specific diagnosis of respiratory

tract infection such as sinusitis, pharyngitis, laryngitis, cough, stridor, shortness of breath,

and throat pain. Exclude chronic bronchitis, allergic conditions and asthma. These respi-

ratory diagnoses are believed to be linked to anthrax (inhalational) , tularemia and plague

(pneumonic).

RESP1: Reflects general symptoms of respiratory illnesses and also includes associated

bioterrorism diseases of highest concern or diseases highly approximating them.

RESP2: Consists of symptoms that might normally be placed in respiratory illness group

but daily volume could detract from the signal generated by RESP1.
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