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Summary. In this article we propose to analyze over-dispersed panel count data using a
Gamma-Frailty nonhomogeneous Poisson process model. Conditional on a Gamma distributed
frailty variable, the cumulative count, N (t), is assumed to follow a nonhomogeneous Poisson
process. Cubic B-spline functions are used to approximate the logarithm of the baseline mean
function Λ0 (t) in the semiparametric proportional mean model E (N (t) |Z) = Λ0 (t) e

βT
0 Z . The

regression parameters and spline coefficients are estimated by maximizing a likelihood with
the nuisance over-dispersion parameter, σ2, replaced by a method of moment estimate. The
asymptotic properties of the proposed maximum likelihood estimator, including its consistency,
convergence rate and the asymptotic normality of the estimated regression parameters, are
studied using modern empirical process theory. A spline-based least-squares standard error
estimator is developed to facilitate a robust inference of the regression parameters. Simula-
tion studies are conducted to investigate finite sample performance of the proposed method.
Finally, the proposed method is applied to the data from a bladder tumor clinical trial.

Keywords: Counting process; Gamma-Frailty; Monotone B-splines; Over-dispersion; Panel
count data; Semiparametric model;

1. Introduction

Panel count data are a special type of recurrent event data in which only number of events
at some discrete observation times are collected. Such data are often seen in clinical trials
where it is impossible or impractical to monitor the disease progression continuously. A
motivating example is the bladder tumor randomized clinical trial conducted by the Veterans
Administration Cooperative Urological Research Group (Byar et al., 1980). Patients with
superficial bladder tumor were randomized into one of the three arms: placebo, pyridoxine
pills and thiotepa instillation. Many patients have multiple recurrence of tumor and at
each follow-up time the number of recurrent tumors was counted, the tumors were removed
and the original treatment was continued. The number of observations and observation
times vary from subject to subject. The primary objective of this trial is to determine the
treatment effect on suppressing the tumor recurrence.

Different approaches have been proposed in literature to analyze panel count data illus-
trated by this bladder tumor clinical trial by, for example, Byar et al. (1980), Wei et al.
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(1989), Sun and Wei (2000), Zhang (2002), Wellner and Zhang (2000, 2007) and Lu et al.
(2009). Specifically, semiparametric analysis with the proportional mean model

E(N(t)|Z) = Λ0 (t) e
βT
0 Z (1)

where Λ0 is the nondecreasing baseline mean function and β0 is a d-dimensional vector
of regression parameters for time-independent covariate Z, has been widely accepted as a
robust model for regression analysis of recurrent event data by, for example, Lawless and
Nadeau (1995), Sun and Wei (2000), Lin et al. (2000) and Sun et al. (2005).

Using nonhomogeneous Poisson process, Wellner and Zhang (2007) proposed two likelihood-
based estimators, maximum pseudo-likelihood estimator (MPLE) and maximum likelihood
estimator (MLE), for the analysis of panel count data under the proportional mean model
(1). They proved the consistency and derived the convergence rate of both estimators even
though the true underlying counting process may be misspecified. They also showed that in
spite of the fact that the nonparametric estimator of the baseline mean function converges
at a slower rate n1/3, the estimated regression parameters still converge at the standard rate
n1/2 and are asymptotically normally distributed. Incorporating some correlation between
the cumulative counts, the MLE is more efficient than the MPLE at the cost of more com-
puting burden. Lu et al. (2009) studied the spline-based sieve version of the two estimators
of Wellner and Zhang (2007) by approximating the logarithm of baseline mean function
using monotone B-spline functions, i.e.,

log Λ0 (t) ≈
qn∑
l=1

αlBl (t)

subject to a monotone constraint, i.e., α1 ≤ α2 ≤ · · · ≤ αqn . The monotonicity of the
spline coefficients αl, l = 1, · · · , qn guarantees the monotone nondecreasing property of the
estimated baseline mean function (Schumaker, 1981). With such approximation, (1) can be
reparameterized as

E(N(t)|Z) = Λ0 (t) e
βT
0 Z ≈ exp

(
qn∑
l=1

αlBl (t) + βT
0 Z

)
(2)

The number of the B-spline basis functions is often chosen much smaller than the sample
size. Compared to their counterparts in Wellner and Zhang (2007), the sieve estimators
based on this approximation not only show numerical advantage but also converge in a
faster rate. Both the MLE and sieve-MLE were shown semiparametric efficient (Wellner
and Zhang, 2007; Lu et al., 2009), if the Poisson process is the true underlying counting
process for panel count data. When the Poisson process is misspecified for the data, the
estimators may not be very efficient.

In this article, we adopt the spline-based approximation of the proportional mean given
in (2) and consider a new semiparametric sieve-MLE using a Gamma-Frailty nonhomoge-
neous Poisson process for the underlying counting process. We assume that conditional
on a Gamma-distributed frailty variable, the cumulative counts follow a nonhomogeneous
Poisson process. The variance of the gamma distribution is referred to as over-dispersion
parameter and helps accommodate the over-dispersion as well as the correlations between
increments in non-overlapping intervals. This model appears more reasonable than the non-
homogeneous Poisson process model in biomedical applications of longitudinal count data.
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The estimates can be computed by a two-stage algorithm: for the first stage, the over-
dispersion parameter is estimated using the method of moment proposed by Zeger (1988);
for the second stage, the estimates of the regression parameters and the spline coefficients
are obtained by maximizing the likelihood with the over-dispersion parameter replaced by
its method of moment estimate. We show that the new sieve-MLE is consistent and could
converge at their optimal convergence rate in the nonparametric/semiparametric regression
setting. The asymptotic normality of the estimated regression parameters is also estab-
lished by modifying the theorem developed by Wellner and Zhang (2007) to handle the
presence of an additional over-dispersion parameter. The asymptotic variance of the esti-
mated regression parameters depends on the limiting value of the estimated over-dispersion
parameter and can be estimated using a spline-based least-squares estimation method. The
new sieve-MLE is generally more efficient than the sieve-MLE studied by Lu et al. (2009)
when over-dispersion is present.

The rest of the paper is organized as follows: Section 2 introduces the model based
on the Gamma-Frailty nonhomogeneous Poisson assumption; Section 3 discusses the two-
stage algorithm that is applied to compute the new sieve-MLE; Section 4 describes the
asymptotic properties of the new sieve-MLE; Section 5 presents a spline-based least-squares
method to estimate the standard error of the estimated regression parameters; Section 6
provides numerical results including simulation studies and an application to the bladder
tumor example; We conclude our paper with some remarks in Section 7. Some technical
details are included in the Appendices.

2. Spline-Based Sieve Maximum Likelihood Method

Assume N = {N (t) : t ≥ 0} is a univariate counting process with the conditional pro-
portional mean given by (1). There are K random observations of this counting pro-
cess at 0 ≡ TK,0 < TK,1 < · · · < TK,K . We denote TK ≡ (TK,1, TK,2, · · · , TK,K)
and N ≡ (N (TK,1) ,N (TK,2) , · · · ,N (TK,K)). We further assume conditional on the time-
independent covariates Z, (K,TK) is independent of the underlying counting process. Panel

count data compose of a random sample of Xi, i = 1, · · · , n where Xi =
(
Ki, T

(i)
Ki
,N(i), Zi

)
with N(i) =

(
N(i)

(
T

(i)
Ki,1

)
,N(i)

(
T

(i)
Ki,2

)
, · · · ,N(i)

(
T

(i)
Ki,Ki

))
.

Throughout the rest of this paper, we study the Gamma-Frailty nonhomogeneous Pois-
son process model. That is, conditional on the frailty variable γ the counting process N(t)
follows the nonhomogeneous Poisson process with mean function γΛ0 (t) e

βT
0 Z and the frailty

variable follows a gamma distribution with mean 1 and variance σ2, i.e., γ ∼ Γ
(
1/σ2, 1/σ2

)
.

This parametrization of Gamma distribution guarantees the identifiability of the model with
the unconditional proportional mean structure specified in (1). The conditional likelihood
of the counts given the frailty variable can be written as

f (N1,N2, · · · ,NK |γ) = ΠK
j=1

e−γ∆Λje
βT Z

(
γ∆Λje

βTZ
)∆Nj

∆Nj !

where Nj = N (TK,j) ,∆Nj = Nj − Nj−1 and Λj = Λ(TK,j) ,∆Λj = Λj − Λj−1 for j =
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1, 2, · · · ,K. We assume N (0) = Λ (0) = 0. Integrating out γ, we have

f (N1,N2, · · · ,NK) =
ΠK

j=1

(
∆Λje

βTZ
)∆Nj (

1/σ2
)1/σ2

ΠK
j=1∆Nj !Γ (1/σ2)

Γ
(
NK + 1/σ2

)(
ΛKeβTZ + 1/σ2

)NK+1/σ2

The log likelihood based on a single observation X subject to an additive constant is,

m
(
β,Λ, σ2;X

)
=

K∑
j=1

∆Nj log
(
∆Λje

βTZi

)
−
(
NK + 1/σ2)× log

(
ΛKeβ

TZ + 1/σ2
)

+ 1/σ2 × log
(
1/σ2)+ log Γ

(
NK + 1/σ2)− logΓ

(
1/σ2) (3)

We propose to approximate the baseline mean function Λ0(t) using cubic B-splines. This
idea of sieve-MLE was originally proposed by Geman and Hwang (1982) and the spline-
based semiparametric sieve-MLE for the analysis of panel count data was adopted by Lu
et al. (2009). Assume the observation times are restricted to a closed interval [L,U ]. [L,U ]
can be divided into mn + 1 subintervals which form a sequence of spline knots

Ξ = {L ≡ ξ0 = ξ1 · · · = ξl < ξl+1, · · · < ξmn+l < ξmn+l+1 · · · = ξmn+2l ≡ U} ,

where l is the order of B-splines and l = 4 corresponds to cubic B-splines. In this article,
we approximate the natural logarithm of the smooth baseline mean function log Λ0 (t) by∑qn

i=1 αiBi (t) and jointly estimate the regression parameter β and spline coefficients α =
(α1, · · · , αqn) subjecting to the monotone constraints, α1 ≤ α2 ≤ · · · , αqn , by maximizing
the approximated log likelihood,

l
(
β, α, σ2) = n∑

i=1

{
Ki∑
j=1

∆N(i)
Ki,j

log

[
exp

(
qn∑
l=1

αlBl

(
t
(i)
Ki,j

))
− exp

(
qn∑
l=1

αlBl

(
t
(i)
Ki,j−1

))]

+N
(i)
Ki,Ki

βTZi −
(
N(i)

Ki,Ki
+ 1/σ2

)
log

[
exp

(
qn∑
l=1

αlBl

(
t
(i)
Ki,Ki

)
+ βTZi

)
+1/σ2]+ 1/σ2 log

(
1/σ2)+ log Γ

(
N(i)

Ki,Ki
+ 1/σ2

)
− log Γ

(
1/σ2)} . (4)

Here Bi (t) , i = 1, · · · qn are B-spline basis functions corresponding to the spline knots
defined in Ξ and qn is the sum of mn and the order of the B-spline functions l. Based on
the variation diminishing property of B-splines (Schumaker, 1981), monotone constraints of
the spline coefficients, i.e., α1 ≤ α ≤ · · · ,≤ αqn , can result in such B-splines approximation
to be monotone as well.

3. Computing Algorithm

In the model discussed in Section 2, the parameters in the proportional mean structure are
of primary interest, the over-dispersion parameter σ2 is treated as an extra nuisance pa-
rameter. Both parameters could be computed simultaneously by maximizing the likelihood
shown in (4). However this involves maximizing a gamma function and is computationally
cumbersome. In this article, we propose a two-stage estimating algorithm. In the first
stage, the nuisance parameter σ2 is estimated using the method of moment proposed by
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Zeger (1988), i.e.,

σ̂2
n =

∑n
i=1

∑Ki

j=1

{(
N(i)

ij − µ̂ij

)2
− µ̂ij

}
∑n

i=1

∑Ki

j=1 µ̂
2
ij

(5)

where N(i)
ij = N(i)

(
T

(i)
Ki,j

)
and µ̂ij is a consistent estimate of E

(
N(i)

ij

)
for j = 1, · · · ,Ki; i =

1, · · · , n, based on the semiparametric MPLE studied by Zhang (2002) and Wellner and
Zhang (2007) due to its computational convenience. σ̂2

n is a
√
n-consistent estimate of σ2

0

satisfying the equation:

V ar (N(T )) = E (N(T )) + σ2
0 {E (N(T ))}2 ,

that is
√
n
(
σ̂2
n − σ2

0

)
= Op(1). The proof is given in Appendix A.1. In the second stage,

the parameters in the proportional mean structure are estimated by maximizing the spline-
based sieve likelihood (4), where σ2 is replaced by the method of moment estimate given
by (5).

A hybrid algorithm of Newton-Raphson iteration and Isotonic regression (NR/IR) is used
to find the maximizer of spline-based sieve likelihood subject to the monotone constraints
on the spline coefficients, α1 ≤ α2 ≤ · · · ,≤ αqn . Newton-Raphson (NR) algorithm is
widely used in optimization of convex nonlinear functions. It converges to the true value in
a quadratic rate numerically. However it cannot guarantee the monotonicity of the solution.
So after each NR iteration, we project the estimates to the cone depicted by the monotone
constraints using isotonic regression. That is, with each NR update {α̃i, i = 1, 2, · · · , qn},
we find {α̂i, i = 1, 2, · · · , qn} such that

{α̂i, i = 1, 2, · · · , qn} = argmin
α1≤α2≤···≤αqn

qn∑
i=1

wi (αi − α̃i)

We choose wi, i = 1, 2, · · · , qn to be the diagonal elements of the negative Hessian matrix
that correspond to α = (α1, α2, · · · , αqn). The solution of this optimization has a nice
interpretation (Groeneboom and Wellner, 1992): it is the left derivative of the greatest
convex minorant of the cumulative sum diagram {Pi, i = 0, 1, · · · , n} where

P0 = (0, 0) and Pi =

(
i∑

l=1

wl,
i∑

l=1

wlα̃l

)
;

and can be expressed as

α̂i = max
j<i

min
l>i

∑l
m=j wmα̃m∑l
m=j wm

The NR/IR algorithm tailored to the spline-based sieve semiparametric maximum likelihood
estimation is summarized in the following steps.
Step 0 (Estimation of σ2

0): Estimate the over-dispersion parameter σ2 using the method
of moments estimate σ̂2

n given by (5) with µ̂ij computed using the semiparametric MPLE
(Wellner and Zhang, 2007).

Iterate the algorithm through the following steps until convergence.



6 Lei Hua and Ying Zhang

Step 1 (Newton-Raphson Update): Start with an initial point θ̂(0) =
(
α̂(0), β̂(0)

)
that

satisfies the monotone constraints of the spline coefficients, i.e., α̂(0) =
(
α̂
(0)
1 , α̂

(0)
2 , · · · , α̂(0)

qn

)
, α̂

(0)
1 ≤

α̂
(0)
2 ≤ · · · ≤ α̂

(0)
qn . Update the current estimates θ̂(k) =

(
α̂(k), β̂(k)

)
by Newton-Raphson

algorithm with step-halving line search,

θ̃(k+1) =
(
α̃(k+1), β̃(k+1)

)
= θ̂(k) − (1/2)

r
H−1

(
θ̂(k); σ̂2

n

)
l̇
(
θ̂(k); σ̂2

n

)
.

where l̇
(
θ̂(k); σ̂2

n

)
is the gradient and H−1

(
θ̂(k); σ̂2

n

)
is the inverse of Hessian matrix of the

log likelihood in (4) evaluated at θ̂(k). r is the smallest integer starting from 0 such that

l
(
θ̂(k) − (1/2)

r
H−1

(
θ̂(k); σ̂2

n

)
l̇
(
θ̂(k); σ̂2

n

)
; σ̂2

n

)
> l
(
θ̂(k); σ̂2

n

)
Step 2 (Isotonic Regression): Construct the cumulative sum diagram {Pi, i = 0, 1, · · · , n}
with

P0 = (0, 0) and Pi =

(
i∑

l=1

wl,
i∑

l=1

wlα̃
(k+1)
l

)
;

where wl, l = 1, 2, · · · , qn are the diagonal elements of the negative Hessian matrix, −H
(
θ̂(k); σ̂2

n

)
that correspond to α. The monotonic update of α̂

(k)
i is then calculated by

α̂
(k+1)
i = max

j<i
min
l>i

∑l
m=j wmα̃

(k+1)
m∑l

m=j wm

Since there is no constraints on β, let β̂(k+1) = β̃(k+1).
Step 3 (Check the convergence): Let d = ∥θ̂(k+1) − θ̂(k)∥, if d < ε for a small ε > 0
stop the algorithm, otherwise go back to step 1.

4. Asymptotic Properties

In this section, we study the asymptotic properties of the spline-based semiparametric sieve-
MLE. First we introduce some notations used in Wellner and Zhang (2007) and Lu et al.
(2009). Let Bd and B denote the collection of Borel sets in Rd and R, respectively, and let
B[0,τ ] = {B ∩ [0, τ ] : B ∈ B}. We define a measure µ and a L2-metric d as following: for
B ∈ B[0,τ ] and C ∈ Bd,

µ (B × C) =

∫
C

∞∑
k=1

P (K = k|Z = z)
k∑

j=1

P (Tk,j ∈ B|K = k, Z = z)dP (z)

and

d(θ1, θ2) =

{
|β2 − β1|2 +

∫
|Λ2(t)− Λ1(t)|2dµ(t)

}1/2

. (6)

We assume the following regularity conditions for the model:
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Condition 1. The true parameter
(
β0,Λ0, σ

2
0

)
∈

◦

Rd ×F ×
◦

R+, where
◦

Rd and
◦

R+ are the
interior of some compact set of Rd and R+ in Rd and R+, respectively. F is a class
of monotone nondecreasing functions.

Condition 2. The observation times TK,j : j = 1, 2, · · · ,K,K = 1, 2, · · · are bounded in
S[T ] = {t : δ < t < τ} for some δ > 0 and τ > 0, Λ0 (δ) > 0 and P (TK,j − TK,j−1 ≥ s0) =
1 for some constant s0. P (K ≤ k0) = 1 for some constant k0.

Condition 3. The true baseline mean function Λ0 is pth differentiable and bounded. The
derivatives have positive and finite lower and upper bounds in S[T ].

Condition 4. For some η ∈ (0, 1), aTV ar(Z|U, V )a ≥ ηaTE(ZZT |U, V )a a.s. for all a ∈
Rd where (U, V, Z) follows distribution µ/µ(R+2 ×Z).

Condition 5. The covariate Z is bounded, i.e., P (|Z| ≤ z0) = 1 for some constant z0.
And P (aZ ̸= c) > 0 for any a ∈ Rd and c ∈ R.

Condition 6. E
{
eCN(t)} is uniformly bounded for t ∈ S[T ].

Condition 7. The measure µ is absolutely continuous with respect to Lebesgue measure
with a finite lower bound in the observation interval S[T ].

For the spline-based sieve-MLE, we also need to properly allocate the spline knots to warrant
a good approximation of B-splines to a smooth function.

Condition 8. The number of internal knots mn = O (nν) for 0 < ν < 1/2. The maximum
spacing of the knots satisfies ∆max = maxl+1≤i≤mn+l+1 |ξi − ξi−1| = O(n−ν). Further
denote ∆min = minl+1≤i≤mn+l+1 |ξi − ξi−1|, there exists a constant M > 0 such that
∆max/∆min ≤M uniformly in n.

Theorem 4.1 (Consistency). Suppose that Conditions 1-3,5, 7 and 8 hold and the
counting process N satisfies the proportional mean regression model. Then given an estimate
of the over-dispersion parameter σ̂2

n such that σ̂2
n →p σ

2
0,

d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
→p 0

Theorem 4.2 (Convergence Rate). Suppose that Conditions 1-8 hold and the count-
ing process N satisfies the proportional mean regression model. Then given a

√
n−consistent

estimate of the over-dispersion parameter σ2
0, σ̂

2
n,

d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
= Op

(
n−min(pν,(1−ν)/2)

)
.

Remark 4.1. This theorem implies that when ν = 1/ (2p+ 1),

d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
= Op

(
n−p/(2p+1)

)
which is the optimal convergence rate in the nonparametric regression setting. When the
baseline mean function is smooth, i.e. p > 1, the spline-based semiparametric sieve-MLE
can converge faster than the conventional semiparametric estimators using step functions
to estimate the baseline mean function considered by Wellner and Zhang (2007).
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Theorem 4.3 describes the asymptotic normality of the estimated regression parameters
despite a slower convergence rate of the estimated baseline mean function. We use simi-
lar notations as those in Huang (1996) and Wellner and Zhang (2007) with the objective
function m

(
β,Λ, σ2;X

)
taken as the log likelihood specified in (3). Suppose that Λη is a

parametric path in the monotone nondecreasing function class F through Λ, i.e. Λη ∈ F ,

and Λη|η=0 = Λ. Let H =
{
h : h =

∂Λη

∂η |η=0

}
and for any h ∈ H, we define

m1

(
β,Λ, σ2;x

)
= ▽βm

(
β,Λ, σ2;x

)
≡

(
∂m

(
β,Λ, σ2;x

)
∂β1

, · · · ,
∂m

(
β,Λ, σ2;x

)
∂βd

)T

,

m2

(
β,Λ, σ2;x

)
[h] =

∂m
(
β,Λη, σ

2;x
)

∂η
|η=0,

m11

(
β,Λ, σ2;x

)
= ▽2

βm
(
β,Λ, σ2;x

)
,

m12

(
β,Λ, σ2;x

)
[h] =

∂m1

(
β,Λη, σ

2;x
)

∂η
|η=0,

m21

(
β,Λ, σ2;x

)
[h] = ▽βm2

(
β,Λ, σ2;x

)
[h],

m22

(
β,Λ, σ2;x

)
[h1, h2] =

∂2m
(
β,Ληj

, σ2;x
)

∂η2
|ηj=0,j=1,2

≡
∂m2

(
β,Λη2 , σ

2;x
)
[h1]

∂η2
.

Let Pn denote the ordinary empirical measure defined by Pnf(X) = 1
n

∑n
i=1 f(Xi) and

Gn the centered empirical measure defined byGnf(X) =
√
n(Pn−P )f(x) = 1√

n

∑n
i=1 (f(Xi)− Ef(X)).

Theorem 4.3 (Asymptotic Normality). Suppose that Conditions 1-8 hold and the
counting process N satisfies the proportional mean regression model. Then given a

√
n−consistent

estimate of the over-dispersion parameter σ2
0, σ̂

2
n,

√
n
(
β̂n − β0

)
= A−1

0 Gn

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗]

)
+ op (1)

→d N
(
0, A−1

0 B0A
−1
0

)
where

A0 = A
(
β0,Λ0, σ

2
0

)
= −P

(
m11

(
β0,Λ0, σ

2
0

)
−m21

(
β0,Λ0, σ

2
0

)
[h∗]

)
B0 = B

(
β0,Λ0, σ

2
0

)
= P

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗]

)⊗2

and h∗ = (h∗1, h
∗
2, · · · , h∗d)

T
with

h∗s = Λ0 ×
E

(
Zs×1/σ2

0

Λ0,Keβ
T
0 Z+1/σ2

0

× eβ
T
0 Z |K,TK

)
E
(
eβ

T
0 Z |K,TK

)
− E

(
Λ0,Ke2β

T
0 Z

Λ0,Keβ
T
0 Z+1/σ2

0

|K,TK

) , s = 1, · · · d (7)

We prove Theorems 1, 2 and 3 by verifying the conditions of Theorem 5.7 in van der Vaart
(1998), Theorem 3.4.1 of van der Vaart and Wellner (1996) and modifying Theorem 6.1 in
Wellner and Zhang (2007), respectively. The sketch of the proofs are given in Appendix
A.2.
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5. A consistent estimate of standard error for the estimated regression parameters

In order to make inference about the regression parameters based on their asymptotic
normality, we need to estimate h∗ = (h∗1, · · · , h∗d)

T
. As shown in the proof of Theorem 4.3

in Appendix A.2, finding h∗s is the projection problem of solving each component of h∗ by

h∗s = argmin
h∈H

P
(
m1,s

(
β0,Λ0, σ

2
0 ;X

)
−m2

(
β0,Λ0, σ

2
0 ;X

)
[h]
)2

(8)

for s = 1, · · · , d where m1,s is the sth component of m1. We apply the spline-based sieve

method again and estimate h∗s by a linear span of cubic B-spline basis functions, e.g., ĥn,s =∑qn
j=1 γj,sBj for s = 1, 2, · · · , d where γj,s, j = 1, · · · , qn are estimated by minimizing the

empirical version of (8), namely,

Pn

(
m1,s

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn,s]

)2
,

where β̂n, Λ̂n and σ̂2
n are consistent estimates of β0,Λ0 and σ2

0 , respectively. Since m2 is a
bilinear operator, this is equivalent to solving a least-squares problem and the solution of
γ
s
= (γ1,s, γ2,s, · · · , γqn,s)

T
is given by(

mT
2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]×m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]
)−1

×(
mT

2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]×m1,s

(
β̂n, Λ̂n, σ̂

2
n;X

))
where m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B] is the n× qn design matrix with (i,m)

th
entry being

Ki∑
j=1

N(i)
(
t
(i)
Ki,j

)
− N(i)

(
t
(i)
Ki,j−1

)
Λ̂n

(
t
(i)
Ki,j

)
− Λ̂n

(
t
(i)
Ki,j−1

) (
Bm

(
t
(i)
Ki,j

)
−Bm

(
t
(i)
Ki,j−1

))
−

N(i)
(
t
(i)
Ki,Ki

)
+ 1/σ̂2

n

Λ̂n

(
t
(i)
Ki,Ki

)
eβ̂

T
nZi + 1/σ̂2

n

eβ̂
T
nZiBm

(
t
(i)
Ki,Ki

)

Theorem 5.1. Let
(
β̂n, Λ̂n, σ̂

2
n

)
be a consistent estimate of

(
β0,Λ0, σ

2
0

)
and ĥn,s, s =

1, · · · , d, be the least-squares estimate of h∗s. Denote ĥn =
(
ĥn,1, ĥn,2, · · · , ĥn,d

)T
, under

Conditions 1-3, 5, 6 and 8, ĥn is a consistent estimate of h∗. Let

Ân = −Pn

(
m11

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m21

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn]

)
B̂n = Pn

(
m1

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn]

)⊗2

.

Then Ân →p A0 and B̂n →p B0.

The spline-based least-squares estimate of standard error in semiparametric regression
setting was originally proposed by Huang et al. (2008). The proof of Theorem 5.1 is given
in Appendix A.3.
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6. Numerical Results

6.1. Simulation Studies
Simulation studies are conducted to examine finite sample performance of the spline-based
semiparametric sieve-MLE under the Gamma-Frailty nonhomogeneous Poisson model. For

the ith subject, we generate Xi =
(
Ki, T

(i)
Ki
,N(i), Zi

)
in a way that may reflect actual

observations in a clinical follow-up study. (i) Six follow-up times are pre-scheduled at
T ◦ = {T ◦

j : T ◦
j = 2j, j = 1, · · · , 6}. The actual observation times T ◦

ij are generated from a
normal distribution, N(T ◦

j , 1/3). Let ξij = 1[T◦
ij−1<T◦

ij ]
, for j = 1, · · · , 6 and T ◦

i0 = 0. (ii)

Let δij = 1 if the jth visit actually happens and zero otherwise, with P (δij = 1) = 1

1+e
T◦
ij

−10

indicating the probability of missing visit increasing as follow-up proceeds. The ith subject

has Ki =
∑6

j=1 ξijδij observations at T
(i)
Ki

=
(
T

(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

)
, where T

(i)
Ki,j

is

the jth ordered observation time of {T ◦
ij : ξijδij = 1, j = 1, · · · , 6}. (iii) The covariate

vector Zi = (Zi1, Zi2, Zi3) is simulated by Zi1 ∼ Uniform (0, 1) , Zi2 ∼ N (0, 1) , and Zi3 ∼
Bernoulli (0.5). The regression parameter β0 = (β0,1, β0,2, β0,3)

T
= (−1.0, 0.5, 1.5)

T
. (iv)

Given
(
Zi,Ki, T

(i)
Ki

)
, different scenarios are used to generate the panel counts

N(i) =
(
N(i)

(
T

(i)
Ki,1

)
,N(i)

(
T

(i)
Ki,2

)
, · · · ,N(i)

(
T

(i)
Ki,Ki

))
.

Scenario 1. Data are generated from a Gamma-Frailty Poisson model. The frailty
parameters γ1, γ2, · · · , γn are randomly drawn from the Gamma distribution, Γ (0.5, 0.5),
giving an over-dispersion parameter of 2. Conditional on the frailty parameter γi as well as
the covariates Zi, the panel counts for each subject are drawn from a Poisson process, i.e.

N(i)
(
T

(i)
Ki,j

)
− N(i)

(
T

(i)
Ki,j−1

)
|γi ∼ Poisson

{
2γi

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}
(9)

for j = 1, 2, · · · ,Ki. In this scenario, the counting process given only the covariate is not
a Poisson process. However, the conditional mean given the covariate vector still satisfies
the proportional mean model specified in (1). The marginal distribution of the counts is a
negative binomial distribution.

Scenario 2. Data are generated from a Lognormal-Frailty Poisson model. A random
sample (γ1, γ2, · · · , γn) is generated from a lognormal distribution with mean 1 and variance
2. Conditional on each frailty term γi, the cumulative counts are drawn from a Poisson
process by (9). In this scenario, the proportional mean model (1) still holds. The marginal
distribution of the cumulative counts is not a Poisson process, nor does it follow a negative
binomial distribution.

Scenario 3. Data are generated from mixture Poisson data similar to those discussed
in Wellner and Zhang (2007) and Lu et al. (2009). We first generate a random sample
η1, · · · , ηn from (−0.8, 0, 0.8) with probability (0.25, 0.5, 0.25). Given ηi, the cumulative

counts are generated from a nonhomogeneous Poisson process with mean (2 + ηi) t
1/2eβ

TZi .
That is,

N(i)
(
T

(i)
Ki,j

)
− N(i)

(
T

(i)
Ki,j−1

)
|ηi ∼ Poisson

{
(2 + ηi)

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}
for j = 1, 2, · · · ,Ki. In the frailty formulation, this is equivalent to generating a discrete
frailty term γi from {0.6, 1, 1.4} with probabilities 0.25, 0.5 and 0.25, respectively. Given
γi, the cumulative counts follow a Poisson process similar to those in Scenario 1.
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For all three scenarios, monotone cubic B-splines are used to approximate the logarithm
of the baseline mean function. The number of interior knots is chosen to be mn = ⌈N1/3⌉,
the smallest integer above N1/3, where N is the number of collected distinct observation

times
{
T

(i)
Ki

: 1 ≤ i ≤ n
}
. These knots are placed at the corresponding quantiles of the

distinct observation times so Condition 8 is satisfied. In our simulation studies, we generate
1000 Monte Carlo samples with sample size of 50 and 100 for each scenario, respectively.
The proposed estimator based on the Gamma-Frailty Poisson process model and the two
estimators from Lu et al. (2009), the spline-based sieve-MPLE and sieve-MLE based on
Poisson process model are computed and compared.

Table 6.1 summarizes simulation results for the estimated regression parameters in all
three scenarios, including their bias (bias), Monte Carlo standard deviation (M-C sd), the
average of the estimated standard error (ASE) based on the spline-based least-squares
method, and 95% coverage of the regression parameters. Figures 1 plot the squared bias
and the variance of the estimated baseline mean function at t = 2, 2.25, · · · , 9 for the
corresponding scenarios. When data follow a Gamma-Frailty Poisson process as simulated
from Scenario 1, all three estimates are consistent. The biases are negligible compared to the
standard errors. The estimates based on the Gamma-Frailty Poisson process model take the
over-dispersion into account and apparently outperform their alternative estimates based on
the Poisson process model in view of the estimation standard error. The spline-based least-
squares estimates of the standard error of different maximum likelihood estimates appear
to underestimate the true values a little bit when sample size is small, which attributes
to the empirical coverage probability lower than the nominal level. The underestimation
lessens as sample size increases. Among the three standard error estimates, the sieve-MLE
based on the Gamma-Frailty Poisson process model have the least bias. For the estimates
of the baseline mean function at different time points, the bias is negligible compared to its
standard error for all three estimators. The estimator accounting for over-dispersion using
the Gamma-Frailty Poisson process model has the smallest standard error and is apparently
more efficient than the two estimators studied in Lu et al. (2009).

Simulation results from Scenario 2 and Scenario 3 are similar to those from Scenario
1, even though the underlying frailty variable is not Gamma distributed. Based on these
simulation results, we conclude that (i) the spline-based semiparametric sieve-MLE based
on the Gamma-Frailty Poisson process model that accounts for the over-dispersion and au-
tocorrelation will improve the estimation efficiency when over-dispersion or autocorrelation
is present in the data; (ii) the Gamma-Frailty Poisson process model is robust against the
underlying distribution of the frailty variable.
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Table 2. The spline-based sieve semiparametric inference for bladder tumor data
Independent Poisson Poisson Process Gamma-Frailty Poisson(

σ̂2
n = 1.32

)
Est. Std. p-value Est. Std. p-value Est. Std. p-value

Z1 0.1444 0.0553 0.0090 0.2075 0.0433 <.0001 0.3289 0.0976 0.0007
Z2 −0.0447 0.0462 0.3342 −0.0353 0.0945 0.7089 0.0054 0.1310 0.9681
Z3 0.1776 0.2706 0.5117 0.0637 0.2295 0.7812 0.0213 0.4267 0.9792
Z4 −0.6966 0.3021 0.0211 −0.7960 0.3179 0.0012 −1.0692 0.3765 0.0029

6.2. Application
The proposed method is applied to the bladder tumor data introduced in Section 1. A total
of 116 patients were randomized into three treatment groups, with 31 using pyridoxin pills,
38 instilled with thiotepa and 47 in placebo group. Their follow-up times vary from one
week to sixty-four weeks. Four variables, including the number (Z1) and size (Z2) of tumor
at baseline, and two indicator variables, one for pyridoxin (Z3), one for thiotepa (Z4), are
included in the proportional mean model, i.e.,

E(N(t)|Z1, Z2, Z3, Z4) = Λ0 (t) exp (β1Z1 + β2Z2 + β3Z3 + β4Z4)

Analysis results based on the proposed method along with those based on the two methods
studied in Lu et al. (2009) are shown in Table 6.2. The number of tumors observed at
study entrance is positively related to the recurrence of bladder tumor. Per tumor increase
at the baseline, the number of tumors at follow-ups increases by 15.5%, 23.1% and 39.1%
on average using the Poisson process model-based sieve-MPLE and sieve-MLE, and the
Gamma-Frailty Poisson process model-based sieve-MLE, respectively. Thiotepa instillation
effectively decreases the number of recurrent tumors. The number of recurrent tumors for
patients with thiotepa instillation is 49.5%, 45.1% and 32.5% of those in control group
according to the three methods. The tumor size and the treatment of pyridoxin pills do
not significantly affect the number of recurrent tumors at follow-up visits. The estimation
method based on the Gamma-Frailty Poisson process model provides an estimate of the over-
dispersion parameter 1.32 which evidently supports the over-dispersion of the panel count
or the potential positive correlation between non-overlapping increments in the counting
process. The effect of tumor number at study entrance and the treatment of thiotepa
are quantitatively more significant when accounting for the correlation between cumulative
counts using the frailty variable.

7. Concluding Remark

In this article we propose to analyze panel count data using the Gamma-Frailty Poisson
process model. For over-dispersed panel count data that occur frequently in longitudi-
nal follow-up studies of biomedical research, the proposed method yields a more efficient
estimation procedure compared to the established likelihood methods based on Poisson
process model studied in Wellner and Zhang (2007) and Lu et al. (2009). When over-
dispersion is not an issue for panel count data, Zeger’s method of moments estimate of the
over-dispersion parameter is often zero or negative. Once that happens, the spline-based
sieve-MLE of Lu et al. (2009) will be used in the second stage estimation. Such two-stage
procedure yields very similar results to the Lu-Zhang-Huang’s sieve-MLE for panel counts
simulated from nonhomogeneous Poisson process (results not showing here). This implies
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Fig. 1. Simulation results for estimations of the baseline mean function, Λ0 (t) = 2t1/2
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Fig. 2. Point estimates of the baseline mean function

that the proposed estimation method that accounts for over-dispersion performs as good as
the semiparametric MLE for nonhomogeneous Poisson panel count data. Another strength
of the proposed method rests on the fact that the Gamma-Frailty Poisson process model is
only a working assumption for deriving the estimates. Both the theoretical and numerical
results demonstrate that the advantage of the proposed method over the Poisson likelihood
based estimates does not depend on true distribution of the frailty variable. In spite of
the robustness properties of Poisson process model for panel count data demonstrated by
Wellner and Zhang (2007) and the numerical efficiency of spline-based sieve-MLE under the
Poisson model shown by Lu et al. (2009), we strongly recommend the use of the proposed
method in the analysis of panel count data, as the over-dispersion is highly prevalent in
applications of counting process data.

A. Technical Proofs

We use modern empirical process theory to study the asymptotic properties of the pro-
posed estimate and the standard error estimate of the estimated regression parameters.
Thereafter, C stands for a universal constant that may vary from place to place. Section
A.1 provides the proof of the

√
n−consistency of the method of moment estimate of the

over-dispersion parameter; Section A.2 outlines the proofs of Theorems 4.1, 4.2 and 4.3; Sec-
tion A.3 sketches the proof of the consistency of spline-based sieve least-squares variance
estimation method. Section A.4 gives two technical lemmas and proofs.
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A.1. Proof of
√
n−consistency of σ̂2

n

Proof. Let µj denote the proportional mean at observation time tj specified in (1).
Wherever without confusion, we suppress the dependence of µj on (β,Λ) and let

µ0j = Λ0 (tj) e
βT
0 Z ; µ̂

(0)
nj = Λ̂(0)

n (tj) e
β̂(0)T

n Z

where
(
β̂
(0)
n , Λ̂

(0)
n

)
is the MPLE studied by Wellner and Zhang (2007). The method of

moment estimate of the over-dispersion parameter in (5) can be rewritten as

σ̂2
n =

Pn

(∑K
j=1

(
Nj − µ̂

(0)
nj

)2
− µ̂

(0)
nj

)
Pn

(∑K
j=1 µ̂

(0)2

nj

) (10)

The numerator of (10) can be decomposed to

Pn

 K∑
j=1

(
Nj − µ̂

(0)
nj

)2
− µ̂

(0)
nj


=Pn

 K∑
j=1

(Nj − µ0j)
2 − µ0j

+ Pn

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)2
+ 2Pn

 K∑
j=1

(Nj − µ0j)
(
µ0j − µ̂

(0)
nj

)+ Pn

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)
=J1 + J2 + J3 + J4

where

J1 = (Pn − P )

 K∑
j=1

(Nj − µ0j)
2 − µ0j

+ σ2
0P

 K∑
j=1

µ2
0j

 (11)

J2 = (Pn − P )

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)2+ P

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)2 (12)

J3 = 2 (Pn − P )

 K∑
j=1

(Nj − µ0j)
(
µ0j − µ̂

(0)
nj

) (13)

J4 = (Pn − P )

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)+ P

 K∑
j=1

(
µ0j − µ̂

(0)
nj

) (14)

By ordinary central limit theorem and Conditions 1, 2, 5 and 6, the first term in (11) is
Op

(
n−1/2

)
.
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Denote

J1 (δ) =


K∑
j=1

(µ0j − µj)
2
: (β,Λ) ∈ Rd ×F , d ((β,Λ) , (β0,Λ0)) ≤ δ

 ,

J2 (δ) =


K∑
j=1

(Nj − µ0j) (µ0j − µj) : (β,Λ) ∈ Rd ×F , d ((β,Λ) , (β0,Λ0)) ≤ δ

 , and

J3 (δ) =


K∑
j=1

(µ0j − µj) : (β,Λ) ∈ Rd ×F , d ((β,Λ) , (β0,Λ0)) ≤ δ

 .

Using the same technique for constructing the brackets as given in Wellner and Zhang
(2007), it is easily shown that the bracketing numbers, N[ ](ϵ,J1(δ), L2(P )), N[ ](ϵ,J2(δ), L2(P ))

and N[ ](ϵ,J3(δ), L2(P )) are all bounded above by C exp (1/ϵ) (1/ϵ)
d
. It follows that J1, J2

and J3 are all P -Donsker. Due to the consistency of MPLE (β̂
(0)
n , Λ̂

(0)
n ) given by Wellner

and Zhang (2007), using Conditions 1-3, 5 and 6, the result of Lemma 7.1 in Wellner and
Zhang (2007) and Dominated Convergence Theorem (DCT), it can be also easily shown
that

P

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)22

→p 0,

P

 K∑
j=1

(Nj − µ0j)
(
µ0j − µ̂

(0)
nj

)2

→p 0,

and P

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)2

→p 0

as δ → 0. Therefore, by the relationship between P -Donsker and asymptotic equicontinuity
(Corollary 2.3.12 van der Vaart and Wellner, 1996), it follows that the first terms of (12),
(13), and (14) are all op

(
n−1/2

)
.

Using Conditions 1-3, 5 and 6, the result of Lemma 7.1 in Wellner and Zhang (2007) and

the n1/3 convergence rate of (β̂
(0)
n , Λ̂

(0)
n ) as shown in Wellner and Zhang (2007), it follows

that,

P

 K∑
j=1

(
µ0j − µ̂

(0)
nj

)2 ≤ Cd2
(
(β̂(0)

n , Λ̂(0)
n ), (β0,Λ0)

)
= Op

(
n−2/3

)
.

By the similar arguments as used in the proof of Theorem 2 in Zhang (2006) along with

the convergence rate of
(
β̂
(0)
n , Λ̂

(0)
n

)
, it is parallel to show that

√
nP
(∑K

j=1

(
µ0j − µ̂

(0)
nj

))
is asymptotically normal with zero mean and hence P

(∑K
j=1

(
µ0j − µ̂

(0)
nj

))
= Op

(
n−1/2

)
.

Thus,

Pn

 K∑
j=1

(
Nj − µ̂

(0)
nj

)2
− µ̂

(0)
nj

 = σ2
0P

 K∑
j=1

µ2
0j

+Op

(
n−1/2

)
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The denominator of (10) can be decomposed to

Pn

 K∑
j=1

µ̂
(0)2

nj

 = (Pn − P )

 K∑
j=1

µ̂
(0)2

nj

+ P

 K∑
j=1

µ̂
(0)2

nj

 (15)

Let J4 =
{∑K

j=1 µ
2
j : (β,Λ) ∈ Rd ×F

}
. it can be similarly argued thatN[ ] (ϵ,J4, L1 (P )) is

bounded above by C exp (1/ϵ) (1/ϵ)
d
. By Theorem 2.4.1 of van der Vaart and Wellner (1996)

(Glivenko-Cantelli Theorem), J4 is a Glivenko-Cantelli class and hence (Pn − P )
(∑K

j=1 µ̂
(0)2

nj

)
=

op (1). The consistency of
(
β̂
(0)
n , Λ̂

(0)
n

)
along with Conditions 1-3 and 5, and DCT result in

P
(∑K

j=1

(
µ̂
(0)2

nj

))
= P

(∑K
j=1 µ

2
0j

)
+ op (1) .

Therefore,

Pn

(∑K
j=1

(
Nj − µ̂

(0)
nj

)2
− µ̂

(0)
nj

)
Pn

∑K
j=1 µ̂

(0)2

nj

= σ2
0 +Op

(
n−1/2

)
This proof is complete.

A.2. Proof of the Asymptotic properties
A.2.1. Proof of Theorem 4.1 (Consistency):
To study the asymptotic properties of the proposed estimate, some notations about B-
splines are needed. Let

ϕl,Ξ =

{
qn∑
i=1

aiBi : Bi, i = 1, 2, · · · , qn are the B-spline basis functions at Ξ

}
and

ψl,Ξ =

{
qn∑
i=1

aiBi :

qn∑
i=1

aiBi ∈ ϕl,Ξ and a1 ≤ a2 ≤ · · · ≤ aqn

}
Proof. To prove the consistency of the proposed two-stage estimation method, we

apply Theorem 5.7 in van der Vaart (1998) and check the three sufficient conditions for the
global consistency. Let

Mn (β,Λ) = Pnm
(
β,Λ, σ̂2

n

)
; M (β,Λ) = Pm

(
β,Λ, σ2

0

)
First,

Mn (β,Λ)−M (β,Λ) = Pnm
(
β,Λ, σ̂2

n

)
− Pm

(
β,Λ, σ2

0

)
= Pn

(
m
(
β,Λ, σ̂2

n

)
−m

(
β,Λ, σ2

0

))
+ (Pn − P )m

(
β,Λ, σ2

0

)
By Taylor expansion

Pn

(
m
(
β,Λ, σ̂2

n

)
−m

(
β,Λ, σ2

0

))
= Pnṁσ2

(
β,Λ, σ̃2

) (
σ̂2
n − σ2

0

)
where ṁσ2

(
β,Λ, σ2

)
= ∂

∂σ2m
(
β,Λ, σ2

)
and

∣∣σ̃2 − σ2
0

∣∣ ≤ ∣∣σ̂2
n − σ2

0

∣∣. By Conditions 1, 2, 3,

5 and 6, it can be easily argued that Pnṁσ2

(
β,Λ, σ̃2

)
= Op(1). Then the consistency of σ̂2

n

implies that Pn

(
m
(
β,Λ, σ̂2

n

)
−m

(
β,Λ, σ2

0

))
= op (1).
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Define L1 = {m
(
β,Λ, σ2

0

)
, β ∈ Rd, log Λ ∈ ψl,Ξ} and L∗

1 = {m
(
β,Λ, σ2

0

)
, β ∈ Rd,Λ ∈

F}. Using Theorem 2.7.5 of van der Vaart and Wellner (1996) and the same technique
for constructing the brackets given by Wellner and Zhang (2007), we can show that the

bracketing number, N[ ](ϵ,L∗
1, L1(P )) is bounded by C exp(1/ϵ) (1/ϵ)

d
. Since exp(ψl,Ξ) ⊂ F

and L1 ⊂ L∗
1, N[ ](ϵ,L1, L1(P )) is bounded by C exp(1/ϵ) (1/ϵ)

d
as well. By Glivenko-

Cantelli Theorem, L1 is Glivenko-Cantelli and hence (Pn − P )m
(
β,Λ, σ2

0

)
= op (1). This

justifies the uniform convergence condition.
Second, the separation condition has been established by Lemma A.1, Part (ii).
Last, based on the spline approximation result given by de Boor (2001, p.148), there exist

a Λ0,n, such that log Λ0,n ∈ ψl,Ξ of order l ≥ p+ 2 and ∥Λ0,n − Λ0∥∞ ≤ Cq−p
n = O(n−pν).

Mn

(
β̂n, Λ̂n

)
−Mn (β0,Λ0)

= Pnm
(
β̂n, Λ̂n, σ̂

2
n

)
− Pnm

(
β0,Λ0, σ̂

2
n

)
= Pn

(
m
(
β̂n, Λ̂n, σ̂

2
n

)
−m

(
β0,Λ0,n, σ̂

2
n

))
+ Pn

(
m
(
β0,Λ0,n, σ̂

2
n

)
−m

(
β0,Λ0, σ̂

2
n

))
≥ Pn

(
m
(
β0,Λ0,n, σ̂

2
n

)
−m

(
β0,Λ0, σ̂

2
n

))
= Pn

(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
+ Pn

(
m
(
β0,Λ0,n, σ̂

2
n

)
−m

(
β0,Λ0,n, σ

2
0

))
− Pn

(
m
(
β0,Λ0, σ̂

2
n

)
−m

(
β0,Λ0, σ

2
0

))
Using the same arguments as above, the last two terms are both op (1). Note that

Pn

(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
= (Pn − P )

(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
+ P

(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
= P

(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
+ op(1)

by Glivenko-Cantelli theorem. By Conditions 1, 2, 3, 5 and 6, Taylor expansion ofm(β0,Λ, σ
2)

at Λ0 yields that

P
(
m
(
β0,Λ0,n, σ

2
0

)
−m

(
β0,Λ0, σ

2
0

))
≥ −C∥Λ0,n − Λ0∥L2(µ).

Therefore, Mn

(
β̂n, Λ̂n

)
−Mn (β0,Λ0) ≥ −op (1). The proof is complete.

A.2.2. Proof of Theorem 4.2 (Convergence Rate):
Proof. The convergence rate is derived by verifying the conditions in Theorem 3.4.1

of van der Vaart and Wellner (1996). To apply the theorem to this problem, we denote θ =
(β,Λ) ∈ Θn with Θn = {(β,Λ) : β ∈ Rd, log Λ ∈ ψl,Ξ}. We also denote θn = (β0,Λ0,n)

with the Λ0,n chosen as in the proof of Theorem 4.1 and θ̂n = (β̂n, Λ̂n) ∈ Θn, the proposed

estimate of θ0 in Θn. Hence Mn(θ̂n) ≥ Mn(θn). For the sieve estimation problem studied
in this article, let

Mn(θ) = M(β,Λ) = Pm(β,Λ, σ2
0) = Pm(θ, σ2

0) and dn(θ, θn) = d(θ, θn)

First, by the separation property given by Lemma A.1, Part (ii), it follows thatMn(θ)−
Mn(θ0) ≤ −Cd2n(θ, θ0). Since ∥θn − θ0∥∞ = ∥Λ0,n − Λ0∥∞ = O(n−pν), for any θ such that
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δ/2 < dn(θ, θn) < δ, dn(θ, θ0) ≥ dn(θ, θn)− dn(θn, θ0) ≥ Cδ for large enough n. Therefore,

Mn(θ)−Mn(θn) = Mn(θ)−Mn(θ0) +Mn(θ0)−Mn(θn)

≤ −Cδ2 −O(n−pν) = −Cδ2 for large enough n

Second, note that for any θ such that δ/2 < dn(θ, θn) < δ,

(Mn −Mn)(θ)− (Mn −Mn)(θn)

=
[
Pnm(θ, σ̂2

n)− Pm(θ, σ2
0)
]
−
[
Pnm(θn, σ̂

2
n)− Pm(θn, σ

2
0)
]

= Pn

{[
m(θ, σ̂2

n)−m(θ, σ2
0)
]
−
[
m(θn, σ̂

2
n)−m(θn, σ

2
0)
]}

+(Pn − P )
(
m(θ, σ2

0)−m(θn, σ
2
0)
)

= (Pn − P )
(
m(θ, σ2

0)−m(θn, σ
2
0)
)
+ δOp(n

−1/2)

by Conditions 1-3, 5 and 6, and the
√
n-consistency of σ̂2

n.

Let L3(δ) = {m(θ, σ2
0) −m(θn, σ

2
0) : θ ∈ Θn, δ/2 < dn(θ, θn) < δ)}. Using the result

of Lemma A.2 and the technique given by Wellner and Zhang (2007, p.2129), it can be
easily shown that logN[ ](ϵ,L3(δ), ∥ ∥P,B) is also bounded above by Cqn log (δ/ϵ) with the
‘Bernstein norm’ defined in van der Vaart and Wellner (1996, p.324). Then it follows that

J̃[ ] (δ,L3(δ), ∥ · ∥P,B) =

∫ δ

0

√
1 + logN[ ] (ϵ,L3(δ), ∥ · ∥P,B)dϵ ≤ Cq1/2n δ

which results in

EP ∥
√
n(Pn − P )∥L3(δ) ≤ C

(
q1/2n δ + qn/n

1/2
)

by Lemma 3.4.3 of van der Vaart and Wellner (1996). Hence

EP sup
δ/2<dn(θ,θn)<δ

θ∈Θn

√
n
∣∣Pnm

(
θ, σ̂2

n

)
− Pm

(
θ, σ2

0

)
−

[
Pnm

(
θ0, σ̂

2
n

)
− Pm

(
θ0, σ

2
0

)]∣∣ ≤ Cϕn (δ)

with ϕn(δ) = C
(
q
1/2
n δ + qn/n

1/2
)
. An easy algebra shows that r2nϕn(r

−1
n ) ≤ Cn1/2 with

rn = nmin(pν,(1−ν)/2). Then it follows that

rndn(θ̂n, θn) = Op(1)

by the conclusion of Theorem 3.4.1 of van der Vaart and Wellner (1996). Moreover, since
∥θn − θ0∥∞ = O(n−pν), it follows that

rnd(θ̂n, θ0) = rndn(θ̂n, θ0) ≤ rndn(θ̂n, θn) + rndn(θn, θ0)

= Op(1) + rnO(n−pν) = Op(1)

The proof is complete.
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A.2.3. Proof of Theorem 4.3 (Asymptotic Normality):

Incorporating the extra over-dispersion parameter, we adopt the following notations

S1 (β,Λ) = Pm1

(
β,Λ, σ2

0 ;X
)
; S2 (β,Λ) = Pm2

(
β,Λ, σ2

0 ;X
)

S1n (β,Λ) = Pnm1

(
β,Λ, σ̂2

n;X
)
; S2n (β,Λ) = Pnm2

(
β,Λ, σ̂2

n;X
)

Ṡ11 (β,Λ) = Pm11

(
β,Λ, σ2

0 ;X
)
; Ṡ22 (β,Λ) = Pm22

(
β,Λ, σ2

0 ;X
)

Ṡ12 (β,Λ) [h] = ṠT
12 (β,Λ) [h] = Pm12

(
β,Λ, σ2

0 ;X
)
.

Proof. There are only slightly different expressions in S1n and S2n from those used in
Theorem 6.1 of Wellner and Zhang (2007) in which a fixed quantity σ2

0 is replaced by its
estimate σ̂2

n. So Theorem 6.1 of Wellner and Zhang (2007) cannot be immediately applied.

We will derive the asymptotic normality of β̂n by modifying the proof of Wellner-Zhang’s
theorem under the same conditions. First, we show that Conditions A1-A6 of Wellner-
Zhang’s theorem hold in this problem under Conditions 1-8.

A1. The condition is satisfied with the consistency and convergence rate of
(
β̂n, Λ̂n

)
.

A2. Pm1

(
β0,Λ0, σ

2
0

)
= 0 and Pm2

(
β0,Λ0, σ

2
0

)
[h] = 0 as long as the proportional mean

model in (1) hold.

A3. By the same technique used in information calculation as given by Wellner and Zhang
(2007, p.2130), it can be easily calculated that the least favorable direction h∗ is
expressed by (7).

A4. Since
(
β̂n, Λ̂n

)
are estimated by maximizing the likelihood m

(
β,Λ, σ̂2

n

)
, they satisfy

the score equation, i.e.,

Pnm1

(
β̂n, Λ̂n, σ̂

2
n;X

)
= 0 and Pnm2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[h] = 0.

where h is any function in H. The first part is automatically true. To prove the
second part, by specifically choosing h = Λ̂nS ∈ H, it suffices to show that

I = Pn

{
m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[Λ0S]−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[Λ̂nS]

}
= op

(
n−1/2

)
where

S =

E

(
Z×1/σ2

0

Λ0,Keβ
T
0 Z+1/σ2

0

× eβ
T
0 Z |K,TK

)
E
(
eβ

T
0 Z |K,TK

)
− E

(
Λ0,Ke2β

T
0 Z

Λ0,Keβ
T
0 Z+1/σ2

0

|K,TK

) .
Now rewrite Pn

{
m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[Λ0S]−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[Λ̂nS]

}
by T1 + T2

where

T1 =Pn

{
m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[(Λ0 − Λ̂n)S]−m2

(
β̂n, Λ̂n, σ

2
0 ;X

)
[(Λ0 − Λ̂n)S]

}
T2 =Pn

{
m2

(
β̂n, Λ̂n, σ

2
0 ;X

)
[(Λ0 − Λ̂n)S]

}
.
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By Taylor expansion

T1 =Pn

{
ṁ2σ2

(
β̂n, Λ̂n, σ̆

2
)
[
(
Λ0 − Λ̂n

)
S]
}(
σ̂2
n − σ2

0

)
=
[
(Pn − P )

{
ṁ2σ2

(
β̂n, Λ̂n, σ̆

2
)
[
(
Λ0 − Λ̂n

)
S]
}

+ P
{
ṁ2σ2

(
β̂n, Λ̂n, σ̆

2
)
[
(
Λ0 − Λ̂n

)
S]
}] (

σ̂2
n − σ2

0

)
where ṁ2σ2

(
β,Λ, σ2

)
[h] = ∂

∂σ2m2

(
β,Λ, σ2

)
[h] and

∣∣σ̆2 − σ2
0

∣∣ ≤ ∣∣σ̂2
n − σ2

0

∣∣. By the
same technique for constructing L1 (P ) brackets used in Wellner and Zhang (2007)
for

K2 =
{
ṁ2σ2

(
β,Λ, σ2

)
[(Λ0 − Λ)S] : β ∈ Rd,Λ ∈ F , σ2 ∈ R+

}
,

it is easy argued that N[ ] (ϵ,K2, L1 (P )) ≤ C exp(1/ϵ)(1/ϵ)d+1 using Conditions 1-3,
5 and 6. Hence K2 is Glivenko-Cantelli and therefore,

(Pn − P )
{
ṁ2σ2

(
β̂n, Λ̂n, σ̆

2
)
[(Λ0 − Λ̂n)S]

}
= op (1) .

By consistency of
(
β̂n, Λ̂n

)
, dominated convergence theorem and Conditions 1-3, 5

and 6, it can be also easily shown that

P
{
ṁ2σ2

(
β̂n, Λ̂n, σ̆

2
)
[(Λ0 − Λ̂n)S]

}
= op (1) .

Finally the
√
n−consitency of σ̂2

n leads to T1 = op
(
n−1/2

)
.

Since σ2 is fixed at σ2
0 in T2, the proof of T2 = op

(
n−1/2

)
follows the same lines as

those given in (Wellner and Zhang, 2007, p.2131-2133), given Conditions 1-7. Hence
A4 is justified.

A5. With the notations defined at the beginning of this section, we have

(S1n − S1) (β,Λ)− (S1n − S1) (β0,Λ0) =R1 +R2

(S2n − S2) (β,Λ)[h
∗]− (S2n − S2) (β0,Λ0)[h

∗] =Q1 +Q2

where

R1 =Pn

[(
m1

(
β,Λ, σ̂2

n

)
−m1

(
β,Λ, σ2

0

))
−
(
m1

(
β0,Λ0, σ̂

2
n

)
−m1

(
β0,Λ0, σ

2
0

))]
R2 =(Pn − P )

(
m1

(
β,Λ, σ2

0

)
−m1

(
β0,Λ0, σ

2
0

))
Q1 =Pn

[(
m2

(
β,Λ, σ̂2

n

)
[h∗]−m2

(
β,Λ, σ2

0

))
[h∗]

−
(
m2

(
β0,Λ0, σ̂

2
n

)
[h∗]−m2

(
β0,Λ0, σ

2
0

)
[h∗]

)]
Q2 =(Pn − P )m2

(
β,Λ, σ2

0

)
[h∗]− (Pn − P )m2

(
β0,Λ0, σ

2
0

)
[h∗]

Using the same arguments as given in the proof of T1 = op
(
n−1/2

)
, it can be similarly

shown that bothR1 andQ1 are op
(
n−1/2

)
for any (β,Λ) such that d ((β,Λ), (β0,Λ0)) =

Op

(
r−1
n

)
. As σ2 is fixed at σ2

0 , showing both R2 and Q2 being op
(
n−1/2

)
follows the

same lines as those given by Wellner and Zhang (2007, p.2133-2134) using Conditions
1-7. Hence A5 is justified.
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A6. Since both S1(β,Λ) and S2(β,Λ)[h
∗] do not involve σ̂2

n, the justification of A6 follows
exactly the same lines as those given in Wellner and Zhang (2007, p.2134-2135).

Following the same lines as those given in the proof of Theorem 6.1 of Wellner and Zhang
(2007, p.2139-2140), it yields that

√
n
(
β̂ − β0

)
= (A0 + o(1))−1

√
nPn{m1(β0,Λ0, σ̂

2
n)−m2(β0,Λ0, σ̂

2
n)[h

∗]}+ op(1)

= (A0 + o(1))−1
√
nPn{m1(β0,Λ0, σ

2
0)−m2(β0,Λ0, σ

2
0)[h

∗]}
+ (A0 + o(1))−1Pn{m1σ2(β0,Λ0, σ̃

2)−m2σ2(β0,Λ0, σ̃
2)[h∗]}

√
n(σ̂2

n − σ2
0)

+ op(1) for some σ̃2 such that |σ̃2 − σ2
0 | ≤ |σ̂2

n − σ2
0 |

For the log likelihood of the Gamma-Frailty Poisson process, it is easily seen that for
any σ2 > 0,

Pm1σ2(β0,Λ0, σ
2) = Pm2σ2(β0,Λ0, σ

2)[h∗] ≡ 0.

By the Glivenko-Cantelli Theorem,

Pn{m1σ2(β0,Λ0, σ̃
2)−m2σ2(β0,Λ0, σ̃

2)[h∗]}
= (Pn − P ){m1σ2(β0,Λ0, σ̃

2)−m2σ2(β0,Λ0, σ̃
2)[h∗]} = op(1)

Hence due to the
√
n-consistency of σ̂2

n, it follows that

√
n
(
β̂ − β0

)
= (A0 + o(1))−1

√
nPn{m1(β0,Λ0, σ

2
0)−m2(β0,Λ0, σ

2
0)[h

∗]}+ op(1)

→d N
(
0, A−1

0 B0A
−1
0

)
The proof is complete.

A.3. Proofs for the consistency of ĥn,s, s = 1, 2, · · · d and Ân, B̂n

Denote θ = (β,Λ) and ρs
(
θ, h;σ2

)
=
(
m1,s

(
θ;σ2

)
−m2

(
θ;σ2

)
[h]
)2
, s = 1, 2, · · · , d. Note

that ĥn,s = argminh∈ϕl,Ξ
Pnρs

(
θ̂n, h; σ̂

2
n

)
, we first show that

∥ĥn − h∗∥H = max
1≤s≤d

∥ĥn,s − h∗s∥L2(µ) →p 0.

By evaluating the upper bound of the bracketing entropy number of S = {ρs
(
θ, h;σ2

)
:

θ ∈ Rd × exp(ψl,Ξ), h ∈ ϕl,Ξ, σ
2 ∈ R+} with exp(ψl,Ξ) = {f : log f ∈ ψl,Ξ} and Rd ⊂ Rd

and R+ ⊂ R+ being compact, it can be easily argued that S is Glivenko-Cantelli class.
Moreover, Condition 8 implies that there exists a h∗n,s ∈ ϕl,Ξ of order l ≥ p + 2 such that
∥h∗n,s − h∗s∥∞ = O(n−pν). (de Boor, 2001, p.145). Then using Conditions 1-3, 5 and 6,
DCT, and Glivenko-Cantelli Theorem, the same arguments used in the proof of 4.1 lead to

Pnρs

(
θ̂n, ĥn,s; σ̂

2
n

)
− Pnρs

(
θ̂n, h

∗
s; σ̂

2
n

)
= Pnρs

(
θ̂n, ĥn,s; σ̂

2
n

)
− Pnρs

(
θ̂n, h

∗
n,s; σ̂

2
n

)
+Pnρs

(
θ̂n, h

∗
n,s; σ̂

2
n

)
− Pnρs

(
θ̂n, h

∗
s; σ̂

2
n

)
≤ (Pn − P )

(
ρs

(
θ̂n, h

∗
n,s; σ̂

2
n

)
− ρs

(
θ̂n, h

∗
s; σ̂

2
n

))
+P

(
ρs

(
θ̂n, h

∗
n,s; σ̂

2
n

)
− ρs

(
θ̂n, h

∗
s; σ̂

2
n

))
= op(1).
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Since S is Glivenko-Cantelli, the above inequality can be also rewritten as

Pnρs

(
θ̂n, ĥn,s; σ̂

2
n

)
≤ Pnρs

(
θ̂n, h

∗
s; σ̂

2
n

)
+ op(1)

= (Pn − P ) ρs

(
θ̂n, h

∗
s; σ̂

2
n

)
+ Pρs

(
θ̂n, h

∗
s; σ̂

2
n

)
+ op(1)

= Pρs

(
θ̂n, h

∗
s; σ̂

2
n

)
+ op(1). (16)

Hence with Conditions 1-3, 5 and 6, it follows that

P
(
ρs

(
θ0, ĥn,s;σ

2
0

)
− ρs

(
θ0, h

∗
s;σ

2
0

))
= P

(
ρs

(
θ0, ĥn,s;σ

2
0

)
− ρs

(
θ̂n, ĥn,s; σ̂

2
n

))
− P

(
ρs
(
θ0, h

∗
s;σ

2
0

)
− ρs

(
θ̂n, h

∗
s; σ̂

2
n

))
+P

(
ρs

(
θ̂n, ĥn,s; σ̂

2
n

)
− ρs

(
θ̂n, h

∗
s; σ̂

2
n

))
= op(1) + P

(
ρs

(
θ̂n, ĥn,s; σ̂

2
n

)
− ρs

(
θ̂n, h

∗
s; σ̂

2
n

))
by the consistency of (θ̂n, σ̂

2
n) and DCT

≤ op(1)− (Pn − P ) ρs

(
θ̂n, ĥn,s; σ̂

2
n

)
by (16)

= op (1) by Glivenko-Cantelli Theorem.

With the uniqueness of h∗s, the event ∥ĥn,s−h∗s∥L2(µ) > ϵ is a subset of the event Pρs

(
θ0, ĥn,s;σ

2
0

)
>

Pρs
(
θ0, h

∗
s;σ

2
0

)
and the latter goes to zero in probability as n → ∞ by the preseeding in-

equality. Let ϵ→ 0 we conclude ∥ĥn − h∗∥H →p 0.

Nest, we show the consistency of both Ân and B̂n. Denote

ρ
(
θ, h;σ2

)
=
(
m1

(
θ;σ2, X

)
−m2

(
θ;σ2

)
[h]
)⊗2

and S1 = {ρ
(
θ, h;σ2

)
: θ ∈ Rd × exp(ψl,Ξ), h ∈ ϕdl,Ξ;σ

2 ∈ R+}, where ϕdl,Ξ = {h =
(h1, h2, · · · , hd) : hs ∈ ϕl,Ξ, 1 ≤ s ≤ d}. Then S1 consists of d individual S and hence a

Glivenko-Cantelli as well. By Conditions 1-3, 5 and 6, the consistency of (θ̂n, σ̂
2
n, ĥn), the

Glivenko-Cantelli and DCT theorems, it follows that

B̂n = Pnρ
(
θ̂n, ĥn; σ̂

2
n

)⊗2

= (Pn − P ) ρ
(
θ̂n, ĥn; σ̂

2
n

)⊗2

+ Pρ
(
θ̂n, ĥn; σ̂

2
n

)⊗2

→p Pρ
(
θ0, h

∗;σ2
0 , X

)⊗2
= B0.

Let ρ∗
(
θ, h;σ2

)
= m11

(
θ;σ2

)
− m21

(
θ;σ2

)
[h], we can similarly show that the class

S2 = {ρ∗
(
θ, h;σ2

)
: θ ∈ Rd × exp(ψl,Ξ), h ∈ ϕdl,Ξ;σ

2 ∈ R+} is Glivenko-Cantelli. And

Ân = −Pnρ
∗
(
θ̂n, ĥn; σ̂

2
n

)
= − (Pn − P ) ρ∗

(
θ̂n, ĥn; σ̂

2
n

)
− Pρ∗

(
θ̂n, ĥn; σ̂

2
n

)
→p −Pρ∗

(
θ0, h

∗;σ2
0

)
= A0.

The proof is complete.
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A.4. Two technical lemmas
To study the asymptotic properties of the proposed estimate of (β0,Λ0), the following
technical lemmas are critical.

Lemma A.1. Denote M
(
β,Λ, σ2

)
= Pm

(
β,Λ, σ2

)
∀
(
β,Λ, σ2

)
∈ Rd×F×R+. Suppose

Conditions 1, 3-5 hold, then

(i) M
(
β0,Λ0, σ

2
)
≥ M

(
β,Λ, σ2

)
for any (β,Λ) ∈ Rd ×F , σ2 ∈ R+ and the equality hold

iff β = β0 and Λ = Λ0 a.e with respect to µ.

(ii) There exists a constant C, such that

M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

)
≥ Cd2 ((β0,Λ0) , (β,Λ))

for any (β,Λ) in a neighborhood of (β0,Λ0) and σ
2 ∈ R+.

Proof. First, we prove the uniqueness of the maximizer. A straightforward algebra
shows that

M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

)
= P

 K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

)
−
(
Λ0,Ke

βT
0 Z + 1/σ2

)
log

Λ0,Ke
βT
0 Z + 1/σ2

ΛKeβ
TZ + 1/σ2


= PI1 + PI2

where

I1 =
K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

)
−
(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

= Λ0,Ke
βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K
log

△Λ0,j/Λ0,K

△Λj/ΛK

)
and

I2 =
(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

−
(
Λ0,Ke

βT
0 Z + 1/σ2

)
log

Λ0,Ke
βT
0 Z + 1/σ2

ΛKeβ
TZ + 1/σ2

.

Note that
∑K

j=1

(
△Λ0,j

Λ0,K
log

△Λ0,j/Λ0,K

△Λj/ΛK

)
is the Kullback-Leibler’s information Kp0 (p0, p)

with p0,j =
△Λ0,j

Λ0,K
and pj =

△Λj

ΛK
for j = 1, 2, · · · ,K. So, it is nonnegative and the equality

hold when
△Λ0,j

Λ0,K
=

△Λj

ΛK
, j = 1, 2, · · · ,K. Therefore, PI1 ≥ 0 and PI1 = 0 iff

Λ = CΛ0 a.e. w.r.t µ. for some constant C (17)

To show PI2 ≥ 0, we denote x = Λ0,Ke
βT
0 Z > 0, b = ΛKe

βTZ − Λ0,Ke
βT
0 Z for the

notational simplicity and let

f(b) = xlog
x

x+ b
−
(
x+ 1/σ2

)
log

x+ 1/σ2

x+ 1/σ2 + b
, x > 0, x+ b > 0
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A straightforward algebra yields that ∂f(b)/∂b = 0 only if b = 0 and

∂2f(b)

∂b2
=

{
> 0 for − x < b ≤

√
x (x+ 1/σ2)

< 0 for b >
√
x (x+ 1/σ2)

This implies that f (b) reaches its minimum at b = 0 and f (0) = 0. So PI2 ≥ 0 and the
equality hold when

Λeβ
TZ = Λ0e

βT
0 Z a.e. w.r.t. µ.

Then the result of the first part follows using the same argument as given by Wellner and
Zhang (2007).

Now we prove the second part of the lemma. I1 can be rewritten as following,

I1 = Λ0,Ke
βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K
log

△Λ0,j/Λ0,K

△Λj/ΛK

)

= Λ0,Ke
βT
0 Z

K∑
j=1

[
△Λj

ΛK

(
△Λ0,j/Λ0,K

△Λj/ΛK
log

△Λ0,j/Λ0,K

△Λj/ΛK
− △Λ0,j/Λ0,K

△Λj/ΛK
+ 1

)]

≥ 1

4
Λ0,Ke

βT
0 Z

K∑
j=1

△Λj

ΛK

(
△Λ0,j/Λ0,K

△Λj/ΛK
− 1

)2

=
1

4
Λ0,Ke

βT
0 Z

K∑
j=1

1

△Λj/ΛK

(
△Λ0,j

Λ0,K
− △Λj

ΛK

)2

≥ 1

4
Λ0,Ke

βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K
− △Λj

ΛK

)2

The first inequality is due to the fact that xlogx−x+1 ≥ 1
4 (x−1)2 for x in a neighborhood

of x = 1, the equality hold only when x = 1.
Performing Taylor expansion for f(b) at 0 yields

f(b) =
1/σ2

[
x
(
x+ 1/σ2

)
− ξ2

]
2 (x+ ξ)

2
(x+ 1/σ2 + ξ)

2 b
2 for a |ξ| < |b|

When b is in a neighborhood of zero, |b| < |x| at almost everywhere in µ. It follows that
the numerator of I2 can be bounded below by

1/σ2
[
x
(
x+ 1/σ2

)
− ξ2

]
b2 ≥ 1/σ2

[
x
(
x+ 1/σ2

)
− x2

]
b2 =

(
1/σ2

)2
xb2;

and the denominator can be bounded above by

2 (x+ ξ)
2 (
x+ 1/σ2 + ξ

)2 ≤ 2(2x)2(x+ 1/σ2 + x)2 = 8x2(2x+ 1/σ2)2.

Hence f(b) ≥ (1/σ2)
2

8x(2x+1/σ2)2 b
2 and therefore

I2 ≥
(
1/σ2

)2
8Λ0,Keβ

T
0 Z
(
2Λ0,Keβ

T
0 Z + 1/σ2

)2 (Λ0Ke
βT
0 Z − ΛKe

βTZ
)2

a.e. w.r.t. µ

Combine the inequalities for I1 and I2, we have,

I1 + I2 ≥ 1

4
Λ0,Ke

βT
0 Z × 1

k2

K∑
j=1

[
k2 (θj1 − θj2)

2
+ (l1 − l2)

2
]
a.e. w.r.t. µ,



Analysis of Over-dispersed Panel Count Data 27

where

k =

√
2KΛ0,Ke

βT
0 Z
(
2Λ0,Ke

βT
0 Z + 1/σ2

)
1/σ2

,

θj1 =
△Λ0,j

Λ0,K
, θj2 =

△Λj

ΛK
, l1 = Λ0,Ke

βT
0 Z and l2 = ΛKe

βTZ .

When l1 = l2, I1 + I2 ≥ 1
4Λ0,Ke

βT
0 Z ×

∑K
j=1 (θj1 − θj2)

2
. Therefore

P (I1 + I2) ≥ CP

K∑
j=1

(
△Λ0,je

βT
0 Z −∆Λje

βTZ
)2
.

We now show that this inequality is also true when l1 ̸= l2. We claim that for C =
1
2 ∧ k2

(l1∧l2)2
, we have

k2 (θ1 − θ2)
2
+ (l1 − l2)

2 ≥ C (l2θ2 − l1θ1)
2 ∀0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1, l1 ≥ γ1, l2 ≥ γ2

for some γ1 > 0 and γ2 > 0.
First we discuss the case when l1, l2 and θ1, θ2 are concordant, e.g. (l1 − l2) (θ1 − θ2) ≥ 0.

Without lost of generality, we assume l1 > l2 and θ1 ≥ θ2.

k2 (θ1 − θ2)
2
+ (l1 − l2)

2 ≥ 1

2
(k (θ1 − θ2) + (l1 − l2))

2

≥ 1

2
(k (θ1 − θ2) + (l1 − l2) θ1)

2

=
1

2
(l1θ1 − l2θ2 + (k − l2) (θ1 − θ2))

2
(18)

Since

k =

√
2KΛ0,Ke

βT
0 Z
(
2Λ0,Ke

βT
0 Z + 1/σ2

)
1/σ2

≥
√
2KΛ0,Ke

βT
0 Z ≥ Λ0,Ke

βT
0 Z

≥ min
(
Λ0,Ke

βT
0 Z ,ΛKe

βTZ
)
= l2. a.e. w.r.t. µ

By (18), k2 (θ1 − θ2)
2
+ (l1 − l2)

2 ≥ 1
2 (l1θ1 − l2θ2)

2
a.e. w.r.t. µ.

For a discordant pair, say, l1 < l2, θ1 ≥ θ2, we further discuss the claim in two cases:

(a) When l1θ1 ≥ l2θ2 we have

θ1 − θ2 =
1

l1
(l1θ1 − l1θ2) >

1

l1
(l1θ1 − l2θ2) ≥ 0

So (θ1 − θ2)
2
> 1

l21
(l1θ1 − l2θ2)

2
.

(b) When l1θ1 < l2θ2 we have

l2 − l1 ≥ l2θ2 − l1θ2 ≥ l2θ2 − l1θ1 > 0

So (l2 − l1)
2
> (l1θ1 − l2θ2)

2
.
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Therefore, k2 (θ1 − θ2)
2
+ (l1 − l2)

2 ≥ C (l1θ1 − l2θ2)
2
with C = 1

2 ∧ k2

(l1∧l2)2
.

So,

P (I1 + I2) ≥P

1

4
Λ0,Ke

βT
0 Z ×

(
1

2k2
∧ 1

(Λ0,Keβ
T
0 Z ∧ ΛKeβ

TZ)2

)
K∑
j=1

(l2θj2 − l1θj1)
2


≥CP

K∑
j=1

(
△Λ0,je

βT
0 Z −∆Λje

βTZ
)2

due to the compactness of the parameter space of β,Λ and the boundness of the (Z,K, TK)
specified in Conditions 1,2 and 5.

Finally, following the same proof as in Wellner and Zhang (2007), with Condition 4 the
above inequality further implies

M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

)
≥ C

{
|β − β0|2 + ∥Λ− Λ0∥2L2(µ)

}
Hence the proof for Lemma A.1 is complete.

Let

ϕl,Ξ(δ) =

{
qn∑
i=1

aiBi :

qn∑
i=1

aiBi ∈ ϕl,Ξ and

qn∑
i=1

|ai| ≤ δ for some constant δ

}

Lemma A.2. The entropy of ϕl,Ξ(δ), logN(ϵ, ϕl,Ξ(δ), ∥·∥) with L1-, L2- and L∞- norms

can be shown bounded above by Cqnlog(q
1/2
n × δ

ϵ ), Cqnlog(
δ
ϵ ) and Cqnlog

(
δ

q
1/2
n ϵ

)
, respec-

tively.

The proof of this lemma follows exactly the same lines as those for the proof of Lemma 5
in Shen and Wong (1994) and is omitted.

Let

ψl,Ξ(δ) =

{
qn∑
i=1

aiBi :

qn∑
i=1

aiBi ∈ ψl,Ξ and

qn∑
i=1

|ai| ≤ δ for some constant δ

}
.

Because ψl,Ξ(δ) ⊂ ϕl,Ξ(δ), the entropy of ψl,Ξ(δ) with the three different norms aforemen-

tioned are also bounded by Cqnlog(q
1/2
n × δ

ϵ ), Cqnlog(
δ
ϵ ) and Cqnlog

(
δ

q
1/2
n ϵ

)
, respectively.
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