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Abstract

When there is no “gold standard” available, it is common to recon-
cile information from multiple imperfect diagnostic tests in order to ob-
tain more accuracy. In this paper, we generalize the linear discriminant
method and the optimal risk score method to accommodate the situation
that is lack of a “gold standard”. We also study an alternative sequential
diagnostic method which does not require all tests to be applied to each
subject. All the methods are developed under some parametric distribu-
tional assumptions. A mixture of two multivariate normal distributions is
used to fit the unclassified data and the optimal diagnostic rule for each
method is derived based on the fitted model. We provide the numerical
implementation of all methods. Asymptotic results of statistical infer-
ences about the methods are also given. Simulation studies are carried
out to compared the methods and the illustration with a real-life data set
is included.

1 Introduction

In medical applications, it is common to use multiple diagnostic tests or diagnos-
tic markers for the detection and diagnosis of an illness. Diagnostic accuracy is
generally assessed by the receiver operating characteristic (ROC) curve, which
is defined as the plot of “sensitivity” against 1-“specificity” over all possible
cutoff values (Zhou et al., 2002; Pepe, 2003). Different tests may be compared
by the area under ROC curve (AUC) (Hanley and McNeil, 1982, 1983; McClish,
1987; DeLong et al., 1988), or the sensitivity at a fixed common specificity
(Greenhouse and Mantel, 1950; Linnet, 1987).

When multiple tests are involved, the performance of the diagnosis may
be improved by combining several tests as a new composite diagnostic test
since different tests may be sensitive to different aspects of case. For example,
detection of a particular antibody in a biosample may be best determined by
application of tests with more than one specificity and/or sensitivity. There have
been several methods proposed to combine multiple tests. A linear discriminant
method is proposed by Su and Liu (1993) for the scenario that the values of
diagnostic markers form multivariate normal distributions for both case and
non-case (control) populations. The linear discriminant analysis identifies the
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optimal linear combination of the tests that maximises the sensitivity over the
entire specificity range uniformly. Alternatively, McIntosh and Pepe (2002) use
a risk score derived from the Neyman-Pearson lemma (Neyman and Pearson,
1933) to combine tests. The risk score can be estimated by binary regression
models without assuming the distributions of the diagnostic markers and it has
been justified optimal to discriminate case from non-case subjects (McIntosh
and Pepe, 2002).

The aforementioned methods are developed for the situation in which the
true event status is known for study subjects, or a perfect “gold standard” as
it is often called (Zhou et al., 2002; Pepe, 2003) exists. However, the “gold
standard” is not always available, and this leads to situations for which it is dif-
ficult or impossible to establish a definite diagnosis. In a motivating example of
antibody tests for a common, nonpathogenic flavivirus (GB virus C or GBV-C),
we have two enzyme linked immunosorbent assay (ELISA) tests (Tacke et al.,
1997; McLinden et al., 2006) that were applied to 100 unique blood samples in
order to detect the presence of antibody against the major envelope glycoprotein
of GBV-C (E2) in blood samples. In immune competent individuals, GBV-C
infection is frequently cleared by the immune system, and following clearance,
antibody to E2 is detected (Tacke et al., 1997). Among people with HIV infec-
tion, persistent GBV-C co-infection is associated with prolonged survival in HIV
patients (Lefrère et al., 1999; Xiang et al., 2001; Tillmann et al., 2001; Williams
et al., 2004; Van der Bij et al., 2005; Zhang et al., 2006). Subjects without GBV-
C who have GBV-C E2 antibodies, however, also appear to survive longer from
HIV infection than those who do not have either active infection or evidence
of prior infection (E2 antibodies) (Tillmann et al., 2001; Williams et al., 2004).
Currently, for this antibody, there is no commercial or validated test available.
The data set only contains the results from the two “in-house” ELISA tests
developed to detect antibodies to GBV-C E2. One hundred independent blood
samples were analysed by both methods. One of the study aims is to develop
a diagnostic test using the results from two ELISA tests. The linear method
and the risk score method described above cannot be applied directly since no
definite classification for the E2 antibodies is available in the data.

In this article, we generalize Su-Liu’s linear discriminant method and MnIntosh-
Pape’s risk score method to the situation that no “gold-standard” exists. The
methods are developed by fitting a two-term multivariate normal mixture model
to unclassified data on the results of diagnostic tests with two terms correspond-
ing to case and non-case respectively (Hui and Zhou, 1998). The parameters of
multivariate normal distributions and the event prevalence are estimated using
maximum likelihood estimation with EM algorithm. Then Su-Liu’s test and
MnIntosh-Pepe’s test are easily evaluated as the tests can be expressed as some
functions of the parameters of the multivariate normal mixture distribution. In
addition, we also develop a diagnostic method in a sequential fashion in which
the second test is implemented only if the first test does not result in a pos-
itive diagnosis. The idea of combining tests in a sequence was first discussed
by Kraemer (1992), and Thompson (2003) discussed theoretical accuracy of a
sequence of tests. This method is practically sound when people know one test
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is definitely more sensitive to the event than the other and do not wish to con-
duct multiple diagnostic tests either due to complication of the diagnostic tests
or high cost associated with the tests.

The rest of the article is organised as follows. Section 2 presents the three
methods for combining multiple tests without “gold standard”. Section 3 de-
scribes the numerical implementation of the methods. Section 4 discusses sta-
tistical inferences about the methods. Section 5 provides simulation studies to
compare the methods and illustrates them using the data from the motivating
ELISA example. Some concluding remarks are included in Section 6 and the
technical proofs for statistical inference are outlined in the appendix.

2 Methods

For the simplicity in illustration, suppose that there are two quantitative diag-
nostic tests on each subject and for each test, a greater value of the test result
indicates a higher chance of case. Denote Xi as the random variable represent-
ing the result from test i for i = 1, 2 and D as the random variable indicating the
case presence, withD = 1 meaning case present andD = 0 meaning case absent.
Moreover, F1 and F0 are the joint distribution functions of X = (X1, X2) in the
D = 1 and D = 0 population, respectively, and f1 and f0 are the corresponding
probability density functions.

2.1 The Optimal Linear Composite Method

Suppose X is normally distributed under both D = 1 and D = 0 with different
model parameters, i.e.,X|D = 1 ∼ N(µ1, V1) andX|D = 0 ∼ N(µ0, V0). Su and
Liu (1993) considered a linear combination U = aTX of the two diagnostic tests
as a composite diagnostic test. Under the normality assumption, the coefficients
a corresponding to the optimal linear composite test, which provides the highest
sensitivity uniformly at any specificity among all possible linear composite tests,
are given by (1).

a0 ∝ V
−1/2
0

(
I + V

−1/2
0 V1V

−1/2
0

)−1

V
−1/2
0 (µ1 − µ0)

= (V0 + V1)
−1(µ1 − µ0), (1)

where I is the 2× 2 identity matrix.
The ROC curve and the AUC of the optimal linear-composite test are easily

calculated as

ROC(u) = Φ

(
aT0 (µ1 − µ0) + Φ−1(u)

√
aT0 V0a0√

aT0 V1a0

)
, (2)

AUC = Φ

(√
(µ1 − µ0)T (V0 + V1)−1(µ1 − µ0)

)
, (3)
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where Φ is the cumulative distribution function of the standard normal distri-
bution.

For diagnoses at a given specificity p0, the threshold for the optimal linear
composite test is aT0 µ0+Φ−1(p0)

√
aT0 V0a0, and the corresponding sensitivity is

senA = Φ

(
aT0 (µ1 − µ0)− Φ−1(p0)

√
aT0 V0a0√

aT0 V1a0

)
(4)

according to (2). Su-Liu’s method can be automatically applied to the situa-
tion when no “gold standard” exists, as long as the model parameters can be
consistently estimated.

2.2 The Optimal Risk Score Composite Method

McIntosh and Pepe (2002) developed a composite diagnostic test in the frame-
work of hypothesis testing in which D = 0 and D = 1 represent the null and
alternative hypotheses, respectively. The decision rule to classify D as one is
analogous to the rule for rejecting the null hypothesis in favor of the alternative.
With this analogy, type I error corresponds to the false positive rate (FPR) and
the power corresponds to the true positive rate (TPR). Based on the Neyman-
Pearson lemma (Neyman and Pearson, 1933) for the likelihood ratio test, it is
easily established that the decision rule defined as{

D=1 if LR(X) > c(p0);
D=0 otherwise,

where LR(X) = Pr(X|D = 1)/Pr(X|D = 0) and c(p0) satisfies that Pr(LR(X) >
c(p0)|D = 0) = 1 − p0. The rule is the uniformly most sensitive (UMS) diag-
nostic test among all tests with FPR= 1− p0.

To evaluate the risk score LR(X), one needs to estimate the distributions
of the diagnostic markers X in advance. Using Bayes rule, McIntosh and Pepe
(2002) demonstrated that the decision rule can be equivalently postulated based
on an alternative risk score p(X) = Pr(D = 1|X) as{

D=1 p(X) = LR(X)q
LR(X)q+1 > c∗(p0);

D=0 otherwise,

where q = Pr(D = 1)/Pr(D = 0), and Pr(p(X > c∗(p0)|D = 0) = 1 − p0.
This risk score can be easily estimated via logistic regression logit(p(X)) =
β0+h(β,X) without the knowledge of the markers’ distribution. But MnIntosh-
Pepe’s risk score is only applicable when a ”gold standard” exists so that sub-
jects can be classified without error.

When the diagnostic markers’ distributions are estimable, the aforemen-
tioned risk score based composite test is also valid even though no “gold stan-
dard” is available. For continuous diagnostic markers, we use the original risk
score

LR(X) = f1(X)/f0(X).
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The threshold c(p0) under the specificity p0 is in fact the p0 percentile of LR(X)
evaluated for the D = 0 group. Let H1 and H0 denote the distribution function
of LR(X) under X ∼ F1 and X ∼ F0, respectively. Then the sensitivity for the
threshold c(p0) is simply

senB = 1−H1

(
H−1

0 (p0)
)
. (5)

To determine the decision rule and its sensitivity corresponding to a fixed speci-
ficity, one just need to have some consistent estimates for the distribution func-
tion H1 and the quintile of H0.

2.3 The Optimal Sequential Composite Method

The composite tests described above require subjects to undergo all the diag-
nostic tests that may not be desirable in practice in view of potential risks
associated with the diagnostic tests or the excessive financial burden with extra
tests, particularly if the tests are all expensive. In many medical diagnostic
procedures, one may start with the most sensitive test among all available di-
agnostic tools and continue to the second test only if the diagnosis based on the
first test is not conclusive. This practical diagnostic procedure motivates us to
design an optimal composite test in a sequential fashion, to study its statistical
properties, and to compare its performance with the other two composite tests.

Suppose Test 1 is superior to Test 2 judged by a greater value of AUC. The
decision rule driven by the sequential composite test is determined by a pair of
cut-off values (C1, C2) such that:

1. if X1 > C1, then this subject is classified as positive for the case; else,

2. if X2 > C2, then classified as positive;

3. otherwise, classified as negative.

Figure 1 depicts the classification partition in diagnostic test domain with the
2 cut-off sequential composite test.

Given the cut-off (C1, C2), the sensitivity and specificity for evaluating this
composite test can be expressed as follows:

Sensitivity = Pr (Positive classification|event present)
= Pr (X1 > C1|D = 1) + Pr (X1 ≤ C1, X2 > C2|D = 1)

= 1− F1(C1, C2). (6)

Specificity = Pr (Negative classification|event absent)
= Pr (X1 ≤ C1, X2 ≤ C2|D = 0)

= F0(C1, C2). (7)

We are searching for the optimal sequential composite test in the sense that
it achieves the maximum sensitivity among all the sequential composite tests
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Figure 1: Illustration of the sequential composite test.
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whose specificity is fixed at p0 . Based on (6) and (7), this task is then converted
to a constrained non-linear optimasation problem:

min
F0(C1,C2)=p0

F1(C1, C2). (8)

An efficient algorithm for finding the optimal (C1, C2) in (8) is essential in the
development of this sequential method.

3 Computation of the Methods

3.1 MLE of Multivariate Normal Mixture Model

Suppose we have a sample of diagnostic markers X1, X2, · · · , Xn that are as-
sumed to be independently and identically distributed copies of X with distri-
bution function F . The implementation of all the foregoing methods requires
estimation of F1 and F0 from observed data in the first place. Here we follow
the set-up of Su and Liu (1993) for the distribution of the diagnostic markers X,
i.e. X|D = 1 ∼ F1 ≡ N(µ1, V1) and X|D = 0 ∼ F0 ≡ N(µ0, V0). We adopted
the mixture distribution of F1 and F0 to model the observed data, that is

Fθ(·) = πF1,θ1(·) + (1− π)F0,θ0(·), (9)

where π is an unknown parameter indicating the mixture proportion, or equiv-
alently, the case prevalence, and θ = (π, θ1, θ0) = (π, (µ1, V1), (µ0, V0)) denotes
the model parameters. The log-likelihood of the observed data can be expressed
as:

l(θ) =
n∑

k=1

log fθ(X1k, X2k)

=
n∑

k=1

log [πf1,θ1(X1k, X2k) + (1− π)f0,θ0(X1k, X2k)].

In principal, the ML estimates of the parameters θ̂n can be estimated by directly
maximising the log likelihood l(θ), it is found that this approach is not numer-
ically stable. We note that if the “gold standard” does exist so that the exact
memberships D = (D1, . . . , Dn) are known, the log likelihood for the augmented
data {(X1, D1), · · · , (Xn, Dn)} is given by

la(θ) =

n∑
k=1

Dk log πf1,θ1(X1k, X2k) + (1−Dk) log(1− π)f0,θ0(X1k, X2k)

and

Pr(Dk = 1|(X1, · · · , Xn); θ) =
πf1,θ1(X1k, X2k)

πf1,θ1(X1k, X2k) + (1−Dk) log(1− π)f0,θ0(X1k, X2k)
.

Hence the ML estimates of the model parameters θ̂n are easily computed using
the EM algorithm (Dempster et al., 1977) due to its numerical stability and
algorithmic convenience for this problem.
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3.2 Computation of the Optimal Linear Composite Test

Obtaining θ̂n, the estimates of the coefficients of the optimal linear composite
test are directly computed by plugging θ̂n in (1) as

â0 ∝ (V̂0 + V̂1)
−1(µ̂1 − µ̂0), . (10)

Accordingly, for the fixed specificity p0, the threshold is estimated by âT0 µ̂0 +

Φ−1(p0)
√
âT0 V̂0â0, and the sensitivity by

ŝenA = Φ

 âT0 (µ̂1 − µ̂0)− Φ−1(p0)
√

âT0 V̂0â0√
âT0 V̂1â0

 . (11)

3.3 Computation of the Optimal Risk Score Composite
Test

With the multivariate normal distribution assumption for the diagnostic markers
X, the distribution functions of the risk score LR(X) under D = 0 and D = 1
can be estimated empirically by drawing a random sample from F0,θ̂0n

and
F1,θ̂1n

, respectively. The estimation of the threshold for the decision rule and
its corresponding sensitivity can be computed in the following subsequent steps:

• First, draw a random sample of Vn,1, . . . , Vn,m from F0,θ̂0n
, then form a

sample of {Zn,i = LRθ̂n
(Vn,i) = f1,θ̂1n(Vn,i)/f0,θ̂0n(Vn,i), i = 1, . . . ,m}

• Compute the empirical distribution of

H0,θ̂n,m
(Z) =

1

m

m∑
i=1

I[Zn,i≤Z]

to estimate the distribution function of H0. Then the threshold ĉ(p0) can
be estimated by the sample p0 percentile of Zn,1, . . . , Zn,m, denoted as
H−1

0,θ̂n,m
(p0);

• To estimate the sensitivity for the threshold ĉ(p0), draw a random sample
ofWn,1, . . . ,Wn,m from F1,θ̂1n

, then form a sample of {Yn,i = LRθ̂n
(Wn,i), i =

1, . . . ,m}

• Similarly, compute the empirical distribution of

H1,θ̂n,m
(Y ) =

1

m

m∑
i=1

I[Yn,i≤Y ],

and estimate the sensitivity by ŝenB = 1 − H1,θ̂n,m
(ĉ(p0)), denoted as,

1−H1,θ̂n,m

(
H−1

0,θ̂n,m
(p0)

)
.
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Figure 2: Illustration of the search for the optimal (C1, C2). The solid line is
the contour curve of F0 for the non-case population at a given specificity p0 ,
and the dashed lines are the contour lines of F1 for the case population.

3.4 Computation of the Optimal Sequential Composite
Test

Under the normality assumption, the feasible set of (C1, C2) defined by a given
specificity F0(C1, C2) = p0 constitutes a convex contour curve (Tihansky, 1972).
When the diagnostic markers are more variant for the case subjects, it is ex-
pected that the contour given by F1(C1, C2) = t is also convex but with less
curvature and moves towards the origin of (C1, C2) domain as t decreases. The
optimisation problem (8) can be illustrated geometrically in Figure 2. As seen
in the figure, the constrained optimal value t corresponds to the contour that
touches the contour of F0(C1, C2) = p0. The optimal threshold (C1, C2) for
the decision rule is simply the tangent point of the two contour lines and can
be uniquely determined. Therefore, the original optimisation problem (8) is
converted to solving the system of bivariate nonlinear equations (12) for the
tangent point of the contour lines of F1 and F0.

The first equation represents the constraint given by the fixed specificity and
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the second equation reflects that the two contour lines have the same gradient
at the tangent point. The Newton-Raphson method with the step-halving line
search procedure is utilised to solve the system (12).

G(C, θ) =


F0,θ0(C1, C2) = p0

∂F1,θ1

∂C1
(C1, C2)

∂F0,θ0

∂C2
(C1, C2)−

∂F1,θ1

∂C2
(C1, C2)

∂F0,θ0

∂C1
(C1, C2) = 0.

(12)

Let Ĉn = (Ĉ1n, Ĉ2n) denote the solution of (12) with the ML estimates

θ̂n = (θ̂1n, θ̂0n), then the sensitivity is estimated by ŝenC = 1−F1,θ̂1n
(Ĉ1n, Ĉ2n).

4 Statistical Inference

Suppose θ are the true model parameters under the mixture of bivariate normal
distribution. By the MLE properties (van der Vaart, 2000), it is known that as

n → ∞, θ̂n →P θ, and

√
n
(
θ̂n − θ

)
→d N(0, I−1),

where I is the Fisher information matrix given by −E
[

∂2

∂θ2 l(θ)
∣∣∣ θ] .

For the optimal linear composite method, the estimated sensitivity ˆsenA as
given in (11), is a continuous function of θ̂n, hence it is consistent and asymp-
totically normally distributed by the ordinary continuous mapping theorem and
the delta method.

For the optimal risk score method, the true sensitivity under the mixture
bivariate normal distribution with the true model parameters θ is given by

senB = 1−H1,θ

(
H−1

0,θ (p0)
)
.

The estimated sensitivity ŝenB can be shown consistent and asymptotically
normal using the result of Theorem 1. The proof of this theorem is outlined in
Appendix A.

Theorem 1. If m satisfies that m/n → ∞ as n → ∞, and furthermore,
if H1,θ(x) and H0,θ(x) are continuously differentiable with respect to both θ
and x and their first derivatives are bounded, then for any fixed q0 ∈ (0, 1),√
n [ŝenB − senB] converges weakly to a normal distribution with mean 0 and

variance given by (18).

Let C0 = (C10, C20) denote the solution of the system (12) under the true
parameters θ, then the true sensitivity is senC = 1 − F1,θ(C10, C20). The esti-
mated sensitivity ˆsenC is also consistent and asymptotically normal under the
mild condition (11) given in Theorem 2. The proof of the theorem is also out-
lined in Appendix B
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Theorem 2. If F0 and F1 are continuously differentiable with respect to C =
(C1, C2) and θ and satisfy the following inequality (13) at C0 and θ,[

∂2F1

∂C1∂C2

∂F0

∂C2
+

∂F1

∂C1

∂2F0

∂C2
2 − ∂2F1

∂C2
2

∂F0

∂C1
− ∂F1

∂C2

∂2F0

∂C1∂C2

]
∂F0

∂C1

−
[
∂2F1

∂C1
2

∂F0

∂C2
+

∂F1

∂C1

∂2F0

∂C1∂C2
− ∂2F1

∂C1∂C2

∂F0

∂C1
− ∂F1

∂C2

∂2F0

∂C1
2

]
∂F0

∂C2
̸= 0

(13)

then as sample size n → ∞,
√
n (ŝenC − senC) converges to a normal distribu-

tion with mean 0 and variance given by (19).

Remark 1. Condition (13) can be justified algebraically for bivariate normal
random variables when F1 and F0 have a different covariance matrix.

Remark 2. Although the asymptotic normality holds for all the three estimators
under fairly mild conditions, the asymptotic variances of the sensitivities are
hard to estimate directly. Therefore for the inference, their standard errors
are estimated using the nonparametric bootstrap method (Efron and Tibshirani,
1994). Specifically, 200 samples with the same size are drawn from the original
data with replacement. For each of the three diagnostic tests, each sample yields
an estimated sensitivity at the given specificity, and the standard error is then
estimated by the standard deviation of the 200 estimated sensitivities.

5 Numeric Results

5.1 Application: ELISA Tests for E2 antibodies

In this section, we applied all three methods to the data set from the E2 antibody
study example described in the introduction with the goal of detection of the
antibody presence in the blood sample of 100 HIV infected study participants.
The scatter plots of Figure 3 presents the results from the two ELISA tests. The
data are fitted by the mixture of two bivariate normal distributions: N(µ1, V1)
and N(µ0, V0). The maximum likelihood estimation gives µ̂1 = (1.01, 0.84)T ,
µ̂0 = (0.16, 0.24)T , and

V̂1 =

(
0.54 0.22
0.22 0.40

)
, V̂0 =

(
0.004 0.001
0.001 0.017

)
.

The estimated ROC curves based on the two individual tests are depicted in
Figure 4. It appears that Test 1 is superior to Test 2 as it is more sensitive to
the antibody presence for any given specificity and hence it is chosen to be the
initial test for our proposed sequential method.

The decision rules for the three optimal composite tests with specificity
p0 = 0.90 are superimposed to the scatter plot of Figure 3 to characterise the
composite tests. Their ROC curves are also plotted in Figure 4 along with those
based on the individual tests. Figure 4 indicates that all the optimal composite
tests provide a better discriminant capability than the two individual tests for
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Figure 3: Results from the two tests in 100 blood samples along with the optimal
linear composite test (dashed line), the optimal risk score composite test (dotted
line) and the optimal sequential composite test (solid line) at specificity =0.90.

this application. Both the optimal sequential and optimal risk score composite
tests are substantially better than the individual tests, but the optimal linear
composite test only adds little discriminant power to the best individual test.
While the optimal risk score composite test is superior to the optimal sequential
composite test as anticipated due to Neyman-Pearson theorem of likelihood ratio
test, the optimal sequential composite test only needs 47% of the second tests
for the blood samples.

5.2 Simulation Studies

In this section, we assess the performance of the three methods using the sim-
ulation studies described below.
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Figure 4: ROC curves for Test 2, Test 1, the optimal linear, sequential and risk
score composite tests (from bottom to top).
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In the first study, we generate two diagnostic markers for the case group
from a bivariate normal distribution N(µ1, V1) of

µ1 = (3.77, 1.51)T and V1 =

(
3.97 0.69
0.69 1.42

)
,

and the markers for the non-case group from a bivariate normal distribution
N(µ0, V0) of

µ0 = (2, 0.81)T and V0 =

(
0.68 0.03
0.03 0.18

)
.

Because it is important to evaluate the effects of sample size and latent case
prevalence on the performance of the methods, three total sample sizes (100,
200 and 400) with case prevalence of 0.25 and 0.5, respectively, are examined.
For each combination of the sample size and case prevalence, 1000 Monte-Carlo
samples are generated from the two designed bivariate normal distributions,
N(µ1, V1) and N(µ0, V0). For inference, the standard error of the estimated
sensitivity is estimated via the nonparametric bootstrap method aforementioned
and its 95%Wald confidence interval is constructed using the bootstrap standard
error as well.

We note that the exact sensitivity at a given specificity can be analytically
determined for the composite tests for the bivariate normal distributions F1 and
F0 for the optimal linear composite test and the optimal sequential test. The
exact sensitivity for the optimal risk score test could be approximated by the
aforementioned Monte-Carlo method. Therefore, for each simulated sample, we
can estimated model-based specificity and sensitivity with F1 and F0 replaced
by their corresponding ML estimates of F̂1 and F̂0 and hence the bias, root
mean square error (RMLE) and coverage probability of the 95% confidence in-
terval can be estimated with the Monte-Carlo simulation study. In addition,
since the true case status is known for the simulated data, the empirical speci-
ficity and sensitivity can be also directly computed for the three composite tests.
Table 1 summarises this simulation study based on the 1000 Monte-Carlo sam-
ples. As seen in the table, the composite tests are generally better than the
best individual test (Test 1) with the optimal risk score composite test having
the largest sensitivity for a given specificity. Though slightly less sensitive than
the optimal risk score composite test, the optimal sequential composite test has
a better sensitivity than the optimal linear composite test. The model-based
estimated sensitivities appear to be unbiased with decreasing RMSE and right
coverage probability when sample size increases, which justifies the asymptotic
normality properties stated in Section 4. By comparing the RMLE, it can be
also inferred that the estimated sensitivities may be more accurate when the
case prevalence increases. Moreover, the empirical specificity and sensitivity for
the composite tests are all in-line with their designed values for the simulation
study, indicating these tests working properly.

The second simulation study is designed to evaluate the robustness of the
tests against the normality assumption. Since the multivariate normal distri-
bution is a special form of the Gaussian copula (Nelsen, 1999), with marginally
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Table 1: The bias (Bias) and the root mean square error (RMSE) of the esti-
mated sensitivity, the average of the empirical sensitivity (ESen) and the empir-
ical specificity (ESpe), and the coverage probability of 95% confidence intervals
(CP) at the given specificities based on 1000 Monte-Carlo samples. N is the
total sample size in two groups. π is the case prevalence of the samples.

π = 0.25

Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, Sensitivity=0.640

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.038 0.145 0.701 0.797 0.836 0.044 0.138 0.634 0.898 0.852
200 0.030 0.113 0.710 0.799 0.874 0.032 0.099 0.641 0.900 0.900
400 0.010 0.077 0.705 0.799 0.945 0.011 0.070 0.640 0.899 0.948

Optimal Linear Composite Test
Specificity=80%, Sensitivity=0.738 Specificity=90%, Sensitivity=0.682

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.058 0.149 0.742 0.793 0.741 0.064 0.141 0.685 0.892 0.771
200 0.039 0.113 0.743 0.797 0.844 0.042 0.100 0.686 0.897 0.867
400 0.014 0.074 0.739 0.798 0.942 0.014 0.066 0.684 0.898 0.946

Optimal Sequential Composite Test
Specificity=80%, Sensitivity=0.802 Specificity=90%, Sensitivity=0.750

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.037 0.119 0.794 0.794 0.777 0.044 0.116 0.741 0.895 0.822
200 0.026 0.092 0.800 0.798 0.856 0.029 0.084 0.747 0.899 0.872
400 0.009 0.063 0.800 0.798 0.941 0.010 0.059 0.749 0.899 0.947

Optimal Risk Score Composite Test
Specificity=80%, Sensitivity=0.864 Specificity=90%, Sensitivity=0.809

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.033 0.087 0.843 0.790 0.765 0.045 0.080 0.787 0.891 0.781
200 0.020 0.068 0.853 0.798 0.867 0.027 0.060 0.798 0.899 0.878
400 0.007 0.050 0.861 0.799 0.943 0.011 0.045 0.807 0.898 0.945

π = 0.5

Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, Sensitivity=0.640

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.031 0.120 0.698 0.800 0.882 0.034 0.111 0.630 0.896 0.903
200 0.018 0.084 0.708 0.799 0.929 0.019 0.072 0.642 0.899 0.939
400 0.006 0.065 0.704 0.800 0.957 0.007 0.060 0.637 0.900 0.961

Optimal Linear Composite Test
Specificity=80%, Sensitivity=0.738 Specificity=90%, Sensitivity=0.682

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.044 0.122 0.732 0.792 0.818 0.048 0.111 0.674 0.891 0.839
200 0.023 0.081 0.741 0.795 0.917 0.024 0.067 0.684 0.896 0.932
400 0.009 0.061 0.737 0.799 0.959 0.010 0.054 0.681 0.898 0.960

Optimal Sequential Composite Test
Specificity=80%, Sensitivity=0.802 Specificity=90%, Sensitivity=0.750

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.029 0.098 0.788 0.795 0.848 0.034 0.091 0.730 0.893 0.894
200 0.016 0.066 0.800 0.796 0.927 0.018 0.056 0.747 0.896 0.951
400 0.007 0.053 0.800 0.799 0.947 0.007 0.048 0.747 0.898 0.961

Optimal Risk Score Composite Test
Specificity=80%, Sensitivity=0.863 Specificity=90%, Sensitivity=0.811

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.031 0.076 0.836 0.786 0.765 0.039 0.064 0.780 0.881 0.788
200 0.014 0.054 0.855 0.794 0.908 0.017 0.043 0.800 0.891 0.920
400 0.007 0.045 0.859 0.798 0.932 0.007 0.040 0.805 0.896 0.941
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normal distributed random variables, we generate the data from a mixture of
two Gaussian copulas with the same correlation in each group as in the previous
simulation study. However, the marginal distributions of the two markers are
set to be Student-t with 4 degrees of freedom and scaled to have the same means
and variances as in the previous simulation study. Although the data have the
same means and variances as in the first study, the distribution of the diagnos-
tic markers are misspecified from the mixture of bivariate normal distribution.
Figure 5 displays one data set of 100 subjects with the case prevalence 0.5 that
also appears similar to the situation presented in the motivating example.
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Figure 5: Scatter plot of a simulated data set of 100 subjects from the Gaussian
copula model with the Student-t marginal. The case prevalence is 0.5.

The data are still fitted using the mixture of two bivariate normal distribu-
tions and the parallel results are summarised in Table 2. We note that, except
for the optimal linear composite, the exact sensitivities for the individual test
(Test 1), the optimal risk score and optimal sequential composite tests are still
able to be analytically determined based on the true Student-t distributions, F0

and F1. It is interesting to observe that although the (normal) model-based esti-
mated sensitivity from Test 1 alone is seemingly biased from the designed value,
the biases of both the optimal risk score and sequential composite methods tend
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to be negligible. The empirical specificity and sensitivity of the composite tests
are also close to their corresponding designed values indicating the composite
tests are fairly robust in terms of accurately classifying the study subjects even
though the underlying statistical model for developing the tests are misspecified.
While the estimated sensitivities based on the composite tests appear consis-
tent, the asymptotic normality of the estimates are no longer valid as indicated
by the coverage probability of the confidence interval. This is not surprising,
because the asymptotic normality of the estimated model parameters depends
on the assumption that the underlying statistical model is correctly specified.
Therefore, it should be cautious in making distributional inference about the
estimated sensitivity.
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Table 2: The bias (Bias) and the root mean square error of the estimated sensitivity
(RMSE), the average of the empirical sensitivity (ESen), the average of the empirical
specificity (ESpe), and the coverage of 95% confidence intervals (CP) at the given
specificities based on 1000 Monte-Carlo samples of Gaussian copula with the Student-
t marginal distributions . N is the total sample size in two groups. π is the case
prevalence of the samples.

π = 0.25

Test 1 alone
Specificity=80%, Sensitivity=0.783 Specificity=90%, Sensitivity=0.716

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 -0.106 0.134 0.775 0.806 0.809 -0.092 0.170 0.717 0.890 0.854
200 -0.123 0.118 0.781 0.808 0.586 -0.110 0.163 0.724 0.893 0.663
400 -0.131 0.113 0.778 0.810 0.200 -0.118 0.161 0.720 0.893 0.295

Optimal Linear Composite Test

Specificity=80%, Sensitivity=NA† Specificity=90%, Sensitivity=NA†

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 NA NA 0.790 0.790 NA NA NA 0.742 0.877 NA
200 NA NA 0.796 0.796 NA NA NA 0.747 0.884 NA
400 NA NA 0.794 0.798 NA NA NA 0.747 0.886 NA

Optimal Sequential Composite Method
Specificity=80%, Sensitivity=0.856 Specificity=90%, Sensitivity=0.786

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 -0.061 0.094 0.853 0.780 0.894 -0.034 0.119 0.807 0.864 0.947
200 -0.079 0.077 0.859 0.784 0.714 -0.052 0.110 0.812 0.868 0.940
400 -0.085 0.070 0.858 0.786 0.321 -0.059 0.106 0.814 0.868 0.744

Optimal Risk Score Composite Test
Specificity=80%, Sensitivity=0.896 Specificity=90%, Sensitivity=0.830

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.008 0.064 0.898 0.739 0.896 0.034 0.058 0.850 0.830 0.807
200 -0.002 0.052 0.904 0.739 0.953 0.022 0.049 0.859 0.829 0.860
400 -0.004 0.047 0.907 0.739 0.944 0.020 0.043 0.866 0.827 0.815

π = 0.5

Test 1 alone
Specificity=80%, Sensitivity=0.783 Specificity=90%, Sensitivity=0.716

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 -0.092 0.121 0.739 0.835 0.902 -0.081 0.159 0.668 0.909 0.942
200 -0.099 0.107 0.746 0.838 0.727 -0.088 0.147 0.678 0.910 0.844
400 -0.105 0.093 0.751 0.839 0.347 -0.093 0.141 0.684 0.911 0.564

Optimal Linear Composite Test

Specificity=80%, Sensitivity=NA† Specificity=90%, Sensitivity=NA†

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 NA NA 0.757 0.824 NA NA NA 0.697 0.901 NA
200 NA NA 0.762 0.828 NA NA NA 0.705 0.903 NA
400 NA NA 0.770 0.832 NA NA NA 0.715 0.907 NA

Optimal Sequential Composite Method
Specificity=80%, Sensitivity=0.856 Specificity=90%, Sensitivity=0.786

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 -0.049 0.085 0.819 0.811 0.952 -0.022 0.106 0.758 0.885 0.961
200 -0.056 0.071 0.826 0.810 0.899 -0.029 0.095 0.770 0.884 0.986
400 -0.059 0.056 0.836 0.813 0.612 -0.032 0.086 0.782 0.886 0.968

Optimal Risk Score Composite Test
Specificity=80%, Sensitivity=0.895 Specificity=90%, Sensitivity=0.831

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.014 0.067 0.859 0.756 0.822 0.041 0.057 0.802 0.837 0.704
200 0.008 0.057 0.868 0.757 0.912 0.033 0.047 0.816 0.837 0.773
400 0.004 0.052 0.883 0.757 0.920 0.028 0.041 0.834 0.839 0.740
† The best linear combination cannot be calculated directly from the true model because the joint
distribution of two tests in each group is not multivariate normal.
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Table 3: Average of percentage of subjects taking only one test in simulation
studies (%) under different sample sizes, case prevalences, and pre-specified
specificities.

π =0.25 π =0.5
Spe=80% Spe=90% Spe=80% Spe=90%

N Normal t Normal t Normal t Normal t
100 28.1 29.6 20.9 23.4 40.7 41.6 33.9 35.6
200 27.5 28.8 20.4 23.0 40.6 41.2 33.9 35.4
400 27.1 28.3 20.2 22.7 40.2 41.2 33.5 35.5

In the simulation studies, although it is less accurate in classification than
the optimal risk score composite test, the optimal sequential composite test
does not require all subjects to take both tests. As listed in Table 3, when the
marginal distribution of the two assays are normal, using the optimal sequential
rule, around 27% of subjects in the sample only needs to take one test to obtain
the diagnosis of the case, which prevalence is 25%. This percentage is higher,
around 40%, for the case with a prevalence of 50%. The percentages are similar
for the data with student-t marginal distributions since the patterns of the data
are similar.

6 Final Remarks

In this paper, we have overviewed and extended existing methods for combin-
ing multiple quantitative tests to classify subjects without a “gold standard”.
In addition, we also implemented an alternative classification method based on
sequential tests under no “gold standard” circumstance. All the extended meth-
ods are developed under the model assumption that the diagnostic markers for
the tests for both case and non-case populations come from multivariate nor-
mal distributions. A mixture model of two multivariate normal distributions
is fitted to the unclassified data and the optimal decision rule for each method
is determined with the fitted model. All the methods are illustrated with the
real data set for two ELISA tests to detect GBV-C E2 antibody in participating
subjects, and their performance is assessed through simulation studies. For the
data presented in Figure 3 and Figure 5, the simulation studies demonstrate
that the optimal risk score composite test has the most discriminant power to
distinguish case from non-case in view of AUC and is most sensitive among
the three composite tests. The optimal sequential composite test, though lit-
tle less sensitive than its risk score counterpart, outperforms the optimal linear
composite test and has an additional advantage of engaging less tests. This
advantage of the sequential method is particularly desired when the tests are
costly or not applicable to all study subjects in some applications. The optimal
classification rules of the tests in this article is purely based on the classification
accuracy without considering risk or cost associated with the tests. If the risk
or cost ought to be considered for determining an optimal decision rule in some
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applications, the risk score composite test may not be the optimal test among
the three.

The distributional assumption plays a key role throughout this paper. First,
the optimal linear composite test is specifically designed for multivariate nor-
mal markers only. Second, the model based inference is valid only when the
underlying statistical model is indeed multivariate normal. For the optimal risk
score composite test, the underlying model assumption can be relaxed if there
is “gold standard” resulting in correct classification. McIntosh and Pepe (2002)
used logistic regression model to develop the optimal risk score composite test.
However if the logistic regression model is misspecified, the test performance
may not be optimized. In our extra simulation study (not shown here) for mul-
tivariate normal diagnostic markers, the optimal risk score composite test with
the MnIntosh-Pepe’s logistic regression model would largely reduce the poten-
tial sensitivity for normal data but the normality distribution is not utilized. In
practice, it is hard to examine the normality assumption on the unclassified data
set and the “working” model of multivariate normal distribution is probably the
most popular option of parametric approach. Not only does it provide an easily
implemented estimation procedure, it also results in a quite robust classification
rule against the underlying statistical models as long as the markers possibly
resemble normal data, which is exemplified in our second simulation study.

When multivariate normal distribution cannot be justified from a biological
perspective and is really questionable for the unclassified data in applications,
one may consider possible monotone transformations to convert the original
data to normal-like multivariate data and apply the methods to the transformed
data. The monotone transformation will likely result in same classification as
the methods would do for the original data. Alternatively, one may consider
nonparametric approaches. Hall and Zhou (2003) proposed a mixture non-
parametric model to unclassified data, but their method is very complicated to
implement and is restrictive. The tensor spline-based sieve maximum likelihood
estimation (Wu, 2010) of the multivariate distribution function is a compromise
to the Hall-Zhou’s nonparametric estimation of mixture distribution. Although
the optimal risk score and sequential composite tests can still be computed with
the tensor spline-based sieve estimation, the numerical implementation of the
tests is much more demanding and challenging than the multivariate normal
model. Moreover, the statistical properties of the tests using the spline-based
model are much harder to study. This also remains as an open problem for
further investigation.

There are multiple ways to design a sequential composite test according to
the data that reflect the study nature. The sequential test designed in this
paper is evidently supported by the biological mechanism in E2 antibody. For
a blood sample, it is known that each ELISA test returns a value reflecting the
concentration of the E2 antibody and a larger value implies a greater chance
of the antibody presence. Because antibodies have different binding sites on
the viral protein, the binding site of the E2 antibody detected in the ELISA
may not be recognised by some individuals, or the methodology may render
the binding site(s) of other human antibodies inaccessible in the assay. In this
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circumstance, the variance of the ELISA results in GBV-C E2 antibodies present
(case) population is greater than the variances in GBV-C E2 antibodies negative
(non-case) population. Graphically, a cluster of small values of the ELISA tests
represents the GBV-C E2 antibodies negative population. So the sequential
method starting with classification for case is the best option. If, for some
applications, there is a small cluster of points present in the upper right corner
of the scatter plot that likely represents the group of case, it would be more
reasonable to start with classification of non-case as shown in Figure 6 for the
sequential test.

The optimal sequential composite test is statistically equivalent to the imple-
mentation of a sequence of tests discussed by Thompson (2003). In that paper,
she focused on evaluating a sequence of tests, and only provided the theoretical
development. The choice of the optimal threshold and statistical inferences on
the estimated ROC curves were not addressed. Besides, her results are based
on an available “gold standard”. But the optimal sequential composite test
developed here has a limitation in generalization to more than two individual
tests. Although, the proposed sequential test can be similarly designed for the
situation with more than two tests, it is, however, a mathematically challenging
problem because finding the optimal cut-off values cannot be equivalently con-
verted to the problem of solving a nonlinear system as it does for the two-test
case. The grid search is a straightforward option but it can be very numerically
inefficient, especially for high dimensional data.

Appendix A Proof of Theorem 1

Throughout the rest of the paper, K is denoted as a universal constant that may
vary from place to place. For each n, Xn,1, Xn,2, . . . , Xn,m(n), where m(n)/n →
∞ as n → ∞, are i.i.d. random variables according to a probablility measure
Pn, which converges to a measure P0 in a suitable sense. Let F be the collection
of all indicator functions of form ft(x) = I[x≤t], with t ranging over R. Define
the semimetric ρP on F as

ρP (f) =
(
P |f |2

)1/2
, ∀f ∈ F ,

and define l∞(F) as the set of all uniformly bounded functionals on F : z : F 7→
R such that

sup
f∈F

|z(f)| < ∞.

Pn is the ordinary empirical measure based on the sample of Xn,1, · · · , Xn,m(n),
that is

Pn =

m(n)∑
i=1

δXn,i ,

and the centered empirical measure of Pn is defined as

Gn,Pn =
√

m(n)(Pn − Pn).
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(van der Vaart and Wellner, 1996, Ch. 2)
The following lemmas are utilized to prove Theorem 1.

Lemma 1. If the semimetric ρPn converges uniformly to ρP0 in the sense that

sup
f,g∈F

|ρPn(f, g)− ρP0(f, g)| → 0, as n → ∞ (14)

then Gn,Pn
converges in distribution to GP0

in l∞(F).

Proof. We prove this lemma using Theorem 2.8.10 of van der Vaart and Wellner
(1996). F contains all the indicator functions of form ft(x) = I[x≤t] for t ∈ R,
so it is a class of measurable functions. Since the indicator function takes values
at only 0 and 1, the constant function F = 1 is an envelope function for F ,
which is measurable and totally bounded for ρP0 . Moreover, ∀ϵ > 0, ∃N , such

that ∀n ≥ N , ϵ
√
m(n) > 1 and F 2

{
F ≥ ϵ

√
m(n)

}
= 0. Hence, the condition

that lim supn→∞ PnF
2
{
F ≥ ϵ

√
m(n)

}
= 0 is satisfied.

Next, we show that the class F is Pn-Donsker. For each n and for any
ϵ > 0, assuming that Hn is the distribution function induced by the probability
measure Pn, we construct the brackets of the form [I(−∞,ti−1], I(−∞,ti]] with a
grid of points −∞ = t0 < t1 < . . . < tk = ∞ satisfying Hn(ti−)−Hn(ti−1) < ϵ
for each i. This can be achieved by the fact that Pn is a probability measure
that converges to P0. These brackets have L1(Pn)-size ϵ, and the total number
k is bounded by 1/ϵ. Because Pnf

2 ≤ Pnf for every 0 ≤ f ≤ 1, the L2(Pn)-
size of the brackets is bounded by

√
ϵ. Thus we have the bracketing number

N[ ] (
√
ϵ,F , L2(Pn)) ≤ (1/ϵ). Equivalently, N[ ] (ϵ,F , L2(Pn)) ≤ (1/ϵ2). The

bracketing entropy of F is of the order of log(ϵ), which is o(1/ϵτ ) for any τ ∈
(0, 1) since limϵ→0 ϵ

τ log(ϵ) = 0. Therefore, the bracketing integral

J[ ] (δ,F , L2(Pn)) =

∫ δ

0

√
logN[ ] (ϵ,F , L2(Pn))dϵ

≤ K

∫ δ

0

ϵ−τ/2dϵ =
K

1− τ/2
δ1−τ/2

< ∞, for any δ > 0.

This indicates that F is a Pn-Donsker class, and it also indicates that

lim
δn→0

J[ ] (δn,F , L2(Pn)) = 0.

Therefore, all the conditions in Theorem 2.8.10 of van der Vaart and Wellner
(1996) are satisfied, so Gn,Pn ⇝ GP0 in l∞(F).

Lemma 2. Suppose that the condition (14) in Lemma 1 is satisfied. If fn
is a sequence of functions in F such that

∫
(fn − f0)

2
dP0 converges to 0 in

probability for some f0 ∈ F , then Gn,Pn (fn − f0) →P 0 and Gn,Pnfn ⇝ GP0f0.
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Proof. The proof of this lemma is similar to the proof of Lemma 19.24 of van der
Vaart (2000). Define a functional g : l∞(F)×F 7→ R by g(z, f) = z(f)− z(f0).
The semimetrics on l∞(F) and F are denoted by ∥ · ∥∞ and ∥ · ∥2, respectively.
We need to show that g is continuous with respect to the product semimetric
at every (z, f) such that f 7→ z(f) is continuous.

Actually, if (zn, fn) → (z, f) in l∞(F) × F , then ∥zn − z∥∞ → 0, and
∥fn − f∥2 → 0. Hence,

|g(zn, fn)− g(z, f)| = | (zn(fn)− zn(f0))− (z(f)− z(f0)) |
= |zn(fn)− z(fn) + z(fn)− z(f)− (zn(f0)− z(f0)) |
≤ |zn(fn)− z(fn)|+ |z(fn)− z(f)|+ |zn(f0)− z(f0)|
≤ ∥zn − z∥∞ + |z(fn)− z(f)|+ ∥zn − z∥∞
= o(1) if z is continuous at f .

Now let zn = Gn,Pn , and z = GP0 . By the assumption, fn →P f0 in
metric space F , and by Lemma 1, Gn,Pn ⇝ GP0 in l∞(F). Then (Gn,Pn , fn)⇝
(GP0 , f0) in the space l∞(F)×F . By Lemma 18.15 of van der Vaart (2000), GP0

is continuous on F for almost all sample paths, thus g is continuous at almost
every point of (GP0 , f0). By the continuous mapping theorem, Gn,Pn(fn−f0) =
g(Gn,Pn , fn)⇝ g(GP0 , f0) = 0. It is equivalent to Gn,Pn(fn − f0) →P 0.

The second assertion follows because Gn,Pnfn = oP (1) + Gn,Pnf0 ⇝ GP0f0
due to the result of Lemma 1.

Lemma 3. Suppose Fn is the underlying distribution function of Xn,1, . . . , Xn,m(n)

with Fn ⇝ F0
1, and Fn is the empirical distribution function of Xn,1, . . . , Xn,m(n).

If Fn and F0 are continuously differentiable at F−1
n (c) and F−1

0 (c) with bounded
and strictly positive derivative fn

(
F−1
n (c)

)
and f0

(
F−1
0 (c)

)
for ∀c ∈ (0, 1), re-

spectively, then,
√

m(n)
(
F−1
n (c)− F−1

n (c)
)
converges in distribution to a nor-

mal distribution with mean 0 and variance c(1− c)/f2
0

(
F−1
0 (c)

)
.

Proof. Define a function ϕ as ϕ(P ) = F−1(c), then ϕ(Pn) = F−1
n (c) and ϕ(Pn) =

F−1
n (c). By the von Mises expansion (van der Vaart, 2000, Ch. 20),

ϕ(Pn)− ϕ(Pn) ≈
1√
m(n)

ϕ′(Gn,Pn) =
1

m(n)

m(n)∑
i=1

ϕ′
Pn

(δXn,i − Pn),

where the influence function ϕ′
Pn

(δx − Pn) can be computed as

ϕ′
Pn

(δx − Pn) =
d

dt |t=0
ϕ ((1− t)Pn + tδx) .

Let In(x) = ϕ′
Pn

(δx−Pn) and Pntx = (1−t)Pn+tδx. For any t, FPntx (ϕ(Pntx)) =
(1 − t)Fn (ϕ(Pntx)) + tGx (ϕ(Pntx)) = c, where Gx(t) = I[x,∞)(t). Taking the

1Fn ⇝ F0 if and only if Fn(t) → F0(t) at every t where F0 is continuous.
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derivative with respect to t and evaluating it at t = 0 on both sides, we get

−Fn (ϕ(Pn)) + fn (ϕ(Pn)) In(x) +Gx (ϕ(Pn))

= −c+ fn (ϕ(Pn)) In(x) + I[x≤ϕ(Pn)] = 0.

So the influence function is given by

In(x) = −
I[x≤ϕ(Pn)] − c

fn (ϕ(Pn))
,

and√
m(n)

(
F−1
n (c)− F−1

n (c)
)
=
√
m(n) (ϕ(Pn)− ϕ(Pn)) =

1√
m(n)

In(Xn,i) + oP (1)

=
1

fn
(
F−1
n (c)

) · 1√
m(n)

m(n)∑
i=1

(
I[Xn,i≤F−1

n (c)] − c
)
+ oP (1).

Note that fn = F ′
n and f0 = F ′

0 are the density functions of Fn and F0,
respectively. F−1

n (c) → F−1
0 (c), because Fn ⇝ F0 by Lemma 21.2 of van der

Vaart (2000). Hence fn
(
F−1
n (c)

)
→ f0

(
F−1
0 (c)

)
.

Furthermore, I(−∞,F−1
n (c)] is a sequence of functions in F that converges to

I(−∞,F−1
0 (c)] in the sense that

∫ (
I(−∞,F−1

n (c)] − I[(−∞,F−1
0 (c)]

)2
dP0 =


∫ F−1

n (c)

F−1
0 (c)

dP0

→ 0.

Thus by Lemma 2,

1√
m(n)

m(n)∑
i=1

(
I[Xn,i≤F−1

n (c)] − c
)
= Gn,PnI[(−∞,F−1

n (c)] ⇝ GP0I[(−∞,F−1
0 (c)].

Taking together,
√
m(n)

(
F−1
n (c)− F−1

n (c)
)
⇝ 1

f2
0 (F

−1
0 (c))

GP0I[(−∞,F−1
0 (c)], which

is the normal distribution with mean 0 and variance c(1− c)/f2
0

(
F−1
0 (c)

)
.

Now using the preceding lemmas, Theorem 1 is proved as follows.
It is noted that

√
n
[
H1,θ̂n,m

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)]

=

√
n√
m

√
m
[
H1,θ̂n,m

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)]
(15)

+

√
n√
m

√
m
[
H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ̂n

(
H−1

0,θ̂n
(q0)

)]
(16)

+
√
n
[
H1,θ̂n

(
H−1

0,θ̂n
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)]

. (17)
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Now we examine the asymptotic properties of (15) - (17) one at a time.
First we show that (15) = oP (1). Let θ be the true model parameters, so

the MLE θ̂n →P θ, and supt∈R |H1,θ̂n
(t) −H1,θ(t)| →P 0 due to the condition

that the derivative of H1,θ with respect to θ is uniformly bounded in θ. Suppose
g1(x) = I[x≤t1] and g2(x) = I[x≤t2] (∀t1, t2 ∈ R) are two indicator functions from
F and without loss of generality, t1 < t2, then under the L2(P )-metric as the
semimetric on F , namely,

ρPn(g1, g2) =

√∫
(g1 − g2)2dPn =

√∫ (
I[t1≤x≤t2]

)2
dH1,θ̂n

(x)

=
√
H1,θ̂n

(t2)−H1,θ̂n
(t1),

and

ρP0(g1, g2) =

√∫
(g1 − g2)2dP0 =

√∫ (
I[t1≤x≤t2]

)2
dH1,θ(x)

=
√

H1,θ(t2)−H1,θ(t1),

we can show that,

sup
g1,g2∈F

|ρPn(g1, g2)− ρP0(g1, g2)| = sup
t1,t2∈R

√H1,θ̂n
(t2)−H1,θ̂n

(t1)−
√

H1,θ(t2)−H1,θ(t1)


→ 0 as n → ∞.

This justifies Lemma 1.
Similarly, it is easily shown that supt∈R |H0,θ̂n

(t)−H0,θ(t)| →P 0, by Lemma
3,

√
m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)
→d N

(
0, q0(1− q0)/h

2
0,θ

(
H−1

0,θ (q0)
))

,

where h0,θ is the density function of H0,θ. This implies that H−1

0,θ̂n,m
(q0) −

H−1

0,θ̂n
(q0) = oP (1), and hence∫ (
I[x≤H−1

0,θ̂n,m
(q0)]

− I[x≤H−1
0,θ(q0)]

)2

dH1,θ0(x) =
H1,θ

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)→P 0,

by the continuous mapping theorem.
Let fn(x) = I[

x≤H−1

0,θ̂n,m
(q0)

], and f0(x) = I[x≤H−1
0,θ(q0)]

. Therefore, by Lemma

2,
√
m
[
H1,θ̂n,m

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)]
=

√
m

[
1

m

m∑
i=1

I[
Yn,i≤H−1

0,θ̂n,m
(q0)

] −
∫

I[x≤H−1

0,θ̂n,m
(q0)]

dH1,θ̂n
(x)

]

=
√
m

[
1

m

m∑
i=1

fn(Yn,i)−
∫

fn(x)dH1,θ̂n
(x)

]
= Gn,Pnfn ⇝ GP0f0 = OP (1).
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Accordingly,

(15) =
√

n/m
√
m
[
H1,θ̂n,m

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)]
=
√

n/mOP (1) = oP (1),

since limn→∞(n/m) = 0.
Next we show that (16) is also oP (1).

(16) =

√
n

m

√
m
[
H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)]
=

√
n

m

√
m
[
h1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)
+OP

(H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

2
)]

=

√
n

m

[
h1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)√
m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)
+
√
m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)2
OP (1)

]
=

√
n

m
(OP (1) + oP (1)) = oP (1),

since

h1,θ̂n

(
H−1

0,θ̂n,m
(q0)

)√
m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)
→d N

0, q0(1− q0)
h2
1,θ

(
H−1

0,θ (q0)
)

h2
0,θ

(
H−1

0,θ (q0)
)
 ,

by Lemma 3 and

√
m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)2
=
[√

m
(
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)](
H−1

0,θ̂n,m
(q0)−H−1

0,θ̂n
(q0)

)
= OP (1) · oP (1) = oP (1).

Finally,

(17) =
√
n
[
H1,θ̂n

(
H−1

0,θ̂n
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)]

=
√
n
{
H1,θ̂n

(
H−1

0,θ̂n
(q0)

)
−H1,θ̂n

(
H−1

0,θ (q0)
)
+H1,θ̂n

(
H−1

0,θ (q0)
)
−H1,θ0

(
H−1

0,θ (q0)
)}

=
√
n
{
h1,θ̂n

(
H−1

0,θ (q0)
)(

H−1

0,θ̂n
(q0)−H−1

0,θ (q0)
)
+∇θH1,θ

(
H−1

0,θ (q0)
)
(θ̂n − θ)

}
+ oP (1)

=
√
n
{
h1,θ̂n

(
H−1

0,θ (q0)
)
∇θH

−1
0,θ (q0)(θ̂n − θ) +∇θH1,θ

(
H−1

0,θ (q0)
)
(θ̂n − θ)

}
+ oP (1)

=
{
h1,θ̂n

(
H−1

0,θ (q0)
)
∇θH

−1
0,θ (q0) +∇θH1,θ

(
H−1

0,θ (q0)
)}√

n(θ̂n − θ) + oP (1).
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By the continuous mapping theorem and the delta method, (17) is asymptoti-
cally normal with mean 0 and covariance matrix V = AI−1AT , where

A = h1,θ

(
H−1

0,θ (q0)
)
∇θH

−1
0,θ (q0) +∇θH1,θ

(
H−1

0,θ (q0)
)
. (18)

In summary, as n → ∞,

√
n(ŝenB − senB) =

√
n
[
H1,θ̂n,m

(
H−1

0,θ̂n,m
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)]

= (15) + (16) + (17)

= oP (1) + oP (1) +
√
n
[
H1,θ̂n

(
H−1

0,θ̂n
(q0)

)
−H1,θ

(
H−1

0,θ (q0)
)]

→d N(0, V ).

Appendix B Proof of Theorem 2

Since F1 and F0 are the CDF of bivariate normal distributions, the function
G(C, θ) is continuously differentiable with respect to C and θ. Condition (13)
is equivalent to the statement that the matrix ∇CG(C0, θ) is invertible, hence,
according to the implicit function theorem (Kudryavtsev, 2001), there exists an
open set U containing θ, an open set V containing C0, and a unique continuous
differentiable function g : U → V such that C = g(θ) and G(g(θ), θ) = 0 for all
θ ∈ U .

Based on the MLE properties, it is known that θ̂n →p θ and
√
n(θ̂n − θ) →d

N(0, I−1). So for any ϵ > 0 and δ > 0, there exists an N , such that n > N ,

Pr(|θ̂n−θ| > δ) < ϵ. This implies that for any n > N , θ̂n ∈ U in probability, and

hence the proposed method for finding the cut-off Ĉn = (Ĉn,1, Ĉn,2) through

solving for G(Ĉn, θ̂n) = 0 results in Ĉn = g(θ̂n) in probability.
Further note that F1(C, θ) = F1(g(θ), θ) is a continuously differentiable func-

tion of θ, and consequently, by the continuous mapping theorem and the delta
method, we have

√
n (ŝenC − senC) =

√
n
(
F1(Ĉn, θ̂n)− F1(C0, θ)

)
=

√
n
(
F1(Ĉn, θ̂n)− F1(C0, θ̂n) + F1(C0, θ̂n)− F1(C0, θ)

)
=

√
n
(
∇CF1(C0, θ̂n)(Ĉn −C0) +∇θF1(C0, θ)(θ̂n − θ)

)
+ op(1)

=
√
n
(
∇CF1(C0, θ̂n)∇θg(θ)(θ̂n − θ) +∇θF1(C0, θ)(θ̂n − θ)

)
+ op(1)

=
(
∇CF1(C0, θ̂n)∇θg(θ) +∇θF1(C0, θ)

)√
n(θ̂n − θ)

→d N(0, BI−1BT ),

where

B = ∇CF1(C0, θ)∇θg(θ) +∇θF1(C0, θ). (19)
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