
Majorization Minimization by Coordinate
Descent for Concave Penalized Generalized

Linear Models

Dingfeng Jiang1, Jian Huang1,2

1. Department of Biostatistics, University of Iowa
2. Department of Statistics and Actuarial Science, University of Iowa

May 2, 2012

Abstract

Recent studies have demonstrated theoretical attractiveness of a class of concave penalties
in variable selection, including the smoothly clipped absolute deviation and minimax con-
cave penalties. The computation of concave penalized solutions in high-dimensional models,
however, is a difficult task. We propose a majorization minimization by coordinate descent
(MMCD) algorithm for computing the concave penalized solutions in generalized linear mod-
els. In contrast to the existing algorithms that use local quadratic or local linear approxima-
tion for the penalty function, the MMCD seeks to majorize the negative log-likelihood by a
quadratic loss, but does not use any approximation to the penalty. This strategy makes it
possible to avoid the computation of a scaling factor in each update of the solutions, which
improves the efficiency of coordinate descent. Under certain regularity conditions, we estab-
lish the theoretical convergence property of the MMCD. We implement this algorithm for a
penalized logistic regression model using the SCAD and MCP penalties. Simulation studies
and a data example demonstrate that the MMCD works sufficiently fast for the penalized
logistic regression in high-dimensional settings where the number of covariates is much larger
than the sample size.

Keywords: logistic regression, p � n models, smoothly clipped absolute deviation penalty, mini-
mum concave penalty, variable selection

1 Introduction

Variable selection is a fundamental problem in statistics. A subset of important variables is often

pursued to reduce variability and increase interpretability when a model is built. Subset selection

1

is generally adequate when p, the number of variables, is small. By imposing a proper penalty on

the number of selected variables, one can perform subset selection using AIC (Akaike (1974)),

BIC (Schwarz (1978)), or Cp (Mallows (1973)). However, when p, the number of variables is

large, subset selection is computationally infeasible.

Penalized methods have been shown to have attractive theoretical properties for variable se-

lection in p � n models. Here n is the sample size. Several important penalties have been

proposed. Examples include the `1 penalty or the least absolute shrinkage and selection operator

(Lasso) (Tibshirani (1996)), the smoothly clipped absolute deviation (SCAD) penalty (Fan and

Li (2001)) and the minimum concave penalty (MCP) (Zhang (2010)). The SCAD and MCP

are concave penalties that possess the oracle properties, meaning that they can correctly select

important variables and estimate their coefficients with high probabilities as if the model were

known in advance under certain sparsity conditions and other appropriate regularity conditions.

Considerable progress has been made on computational algorithms for penalized regression

models. When Efron et al (2004) introduced the least angle regression (LARS) approach for

variable selection, they showed that a modified version of the LARS can efficiently compute the

entire Lasso solution path in a linear model. This modified LARS algorithm is the same as the

homotopy algorithm proposed earlier by Osborne, Presnell and Turlach (2000). For concave

penalties, Fan and Li (2001) proposed a local quadratic approximation (LQA) algorithm for

computing the SCAD solutions. A drawback of LQA is that once a coefficient is set to zero at any

iteration step, it permanently stays at zero and the corresponding variable is then removed from

the final model. Hunter and Li (2005) used the majorization-minimization (MM) approach to

optimize a perturbed version of LQA by bounding the denominator away from zero. How to choose

the size of perturbation and how the perturbation affects the sparsity need to be determined in

specific models. Zou and Li (2008) proposed a local linear approximation (LLA) algorithm for

computing the solutions of SCAD penalized models. The LLA algorithm approximates the concave

2

penalized solutions by repeated using the algorithms for the Lasso penalty. Schifano, Strawderman

and Wells (2010) generalized the idea of LLA by MM approach to multiple penalties and proved

the convergence properties of their minimization by iterated soft thresholding (MIST) algorithm.

Zhang (2010) developed the PLUS algorithm for computing the concave penalized solutions,

including the MCP solutions, in linear regression models.

In the last few years, it has been recognized that the coordinate descent algorithm (CDA) can

efficiently compute the Lasso solutions in p� n models (Friedman, Hastie, Höfling and Tibshirani

(2007); Wu and Lange (2008); Friedman, Hastie and Tibshirani (2010)). This algorithm has a

long history in applied mathematics and has its roots in the Gauss-Siedel method for solving linear

systems (Warge (1963); Ortega and Rheinbold (1970); Tseng (2001)). The CDA optimizes an

objective function by working on one coordinate (or a block of coordinates) at a time, iteratively

cycling through all coordinates until convergence is reached. It is particularly suitable for the

problems that have a simple closed form solution for each coordinate but lack one in higher

dimensions. CDA for a Lasso penalized linear model has shown to be very competitive with

LARS, especially in high-dimensional cases (Friedman, Hastie, Höfling and Tibshirani (2007);

Wu and Lange (2008); Friedman, Hastie and Tibshirani (2010)).

Coordinate descent has also been used in computing the concave penalized solution paths.

Breheny and Huang (2011) compared the CDA and LLA algorithms for various combinations of

(n, p) and various designs of covariate matrices. They use LARS approach to compute the Lasso

solutions when implementing the LLA algorithm. Their results showed that the CDA converges

much faster than the LLA-LARS algorithm in the various settings they considered. Mazumder,

Friedman and Hastie (2011) demonstrated that the CDA has better convergence properties than

the LLA. Breheny and Huang (2011) also proposed an adaptive rescaling technique to overcome

the difficulty due to the constantly changing scaling factors in computing the solutions for MCP

penalized generalized linear models (GLM). However, the adaptive rescaling approach can not be

3

applied to the SCAD penalty. Furthermore, it is not clear what is the effective concavity applied

to the model beforehand using this approach.

We propose a majorization minimization by coordinate descent (MMCD) algorithm for com-

puting the solutions of a concave penalized GLM model, with emphasis on the logistic regression.

The MMCD algorithm seeks a closed form solution for each coordinate and avoids the computa-

tion of scaling factors by majorizing the loss function. Under reasonable regularity conditions, we

establish the convergence property of the MMCD algorithm. The MMCD algorithm is particularly

suitable for the logistic regression model due to the fact that a simple and effective majorization

can be found.

This paper is organized as follows. Section 2 defines the concave penalized solutions in GLMs.

Section 3 describes the proposed MMCD algorithm, explains the benefits of majorization and

studies its convergence property. Comparison between the MMCD and several existing algorithms

is made in this section. Section 4 implements the MMCD algorithm in a concave penalized logistic

model. Simulation studies are performed to compare the MMCD algorithm and its competitors

in terms of computational efficiency and selection performance. Section 5 extends the MMCD

algorithm to a multinomial model. Concluding remarks are given in section 6.

2 Concave Penalized solutions for GLMs

Let {(yi,xi)ni=1} be the observed data, where yi is a response variable and xi is a (p+1)-dimensional

vector of predictors. We consider a GLM with canonical link function, in which yi relates to xi

through a linear combination ηi = xTi β, with β = (β0, β1, ..., βp)
T ∈ Rp+1. Here β0 is the intercept.

The conditional density function of yi given xi is

fi(yi) = exp{yiθi − ψ(θi)

φi
+ c(yi, φ)}. (1)

4

Here φi > 0 is a dispersion parameter. The form of ψ(θ) depends on the specified model. For

example, ψ(θ) = log(1 + exp(θ)) in a logistic model. Consider the (scaled) negative log-likelihood

function as a loss function `(β),

`(β) ∝ 1

n

n∑
i=1

{ψ(xTi β)− yixTi β}. (2)

We assume xi0 = 1, 1 ≤ i ≤ n. For the other p variables, we assume they are standardized, that

is, ‖xj‖22/n = 1 with xj = (x1j, ..., xnj)
T , 1 ≤ j ≤ p. Here ‖v‖2 is the `2 norm of a n-dimensional

vector v. The standardization allows the penalization to be evenly applied to each variable.

Define the concave penalized GLM criterion as

Q(β;λ, γ) = `(β) +

p∑
j=1

ρ(|βj|;λ, γ), (3)

where ρ is a penalty function. Note that the intercept β0 is not penalized. We consider two

concave penalties, SCAD and MCP. The SCAD penalty (Fan and Li (2001)) is defined as

ρ(t;λ, γ) =

λ|t|, |t| ≤ λ;

γλ|t|−0.5(t2+λ2)
γ−1 , λ < |t| ≤ γλ;

λ2(γ2−1)
2(γ−1) , |t| > γλ,

(4)

with λ ≥ 0 and γ > 2. The MCP penalty (Zhang (2010)) is defined as

ρ(t;λ, γ) = λ

∫ |t|
0

(1− x

γλ
)+dx =

 λ|t| − |t|
2

2γ
, |t| ≤ λγ;

1
2
λ2γ, |t| > λγ,

(5)

with λ ≥ 0 and γ > 1. Here x+ = x1{x ≥ 0} denotes the non-negative part of x. For both

SCAD and MCP, the regularization parameter γ controls the degree of concavity, with a smaller

γ corresponding to a more concave shaped penalty. Both penalties begin by applying the same

degree of penalization as Lasso, and then gradually reduce the penalization to zero as |t| gets

larger. When γ → ∞, both SCAD and MCP converge to the `1 penalty. The SCAD and MCP

penalties are illustrated in the middle and right panels of Figure 1.

5

To have a basic understanding of these penalties, consider a thresholding operator defined as

the solution to a penalized univariate linear regression,

θ̂(λ, γ) = argmin
θ

{ 1

2n

n∑
i=1

(yi − xiθ)2 + ρ(θ;λ, γ)
}
.

Let θ̂LS =
∑n

i=1 xiyi/
∑n

i=1 x
2
i be the least squares solution. Denote the soft-thresholding operator

by S(t, λ) = sgn(t)(|t| − λ)+ for λ > 0 (Donoho and Johnstone (1994)). Then for SCAD and

MCP, θ̂(λ, γ) has a closed form solution as follows,

For γ > 2, θ̂SCAD(λ, γ) =

S(θ̂LS, λ), |θ̂LS| ≤ 2λ,

γ−1
γ−2S(θ̂LS, λγ/(γ − 1)), 2λ < |θ̂LS| ≤ γλ,

θ̂LS, |θ̂LS| > λγ,

For γ > 1, θ̂MCP (λ, γ) =

γ
γ−1S(θ̂LS, λ), |θ̂LS| ≤ λγ,

θ̂LS, |θ̂LS| > λγ.

(6)

Observe that both SCAD and MCP use the LS solution if |θ̂LS| > λγ; MCP only applies a scaled

soft-thresholding operation for |θ̂LS| ≤ λγ while SCAD apply a soft-thresholding operation to

|θ̂LS| < 2λ and a scaled soft-thresholding operation to 2λ < |θ̂LS| ≤ λγ. These thresholding

operators will be the basic building blocks of the proposed MMCD algorithm described below.

Figure 1 shows the penalty functions and the thresholding functions of Lasso (left panel),

SCAD (middle panel) and MCP (right panel), respectively. The first row shows the penalty

functions and the second row shows the thresholding operator functions. Lasso penalizes all the

variables without distinction. SCAD and MCP gradually reduce the degree of penalization for

large coefficients.

6

0 1 2 3 4 5

0
1

2
3

4
5

t

P
en

al
ty

 F
un

ct
io

n
Lasso (λ=1)

0 1 2 3 4 5

0
1

2
3

4
5

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●

t

P
en

al
ty

 F
un

ct
io

n

SCAD (λ=1)

●

γ=2
γ=4
γ=10

0 1 2 3 4 5

0
1

2
3

4
5

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

t

P
en

al
ty

 F
un

ct
io

n

MCP (λ=1)

●

γ=2
γ=4
γ=10

0 1 2 3 4 5

0
1

2
3

4
5

t

T
hr

es
ho

ld
in

g
O

pe
ra

to
r

Lasso (λ=1)

0 1 2 3 4 5

0
1

2
3

4
5

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

t

T
hr

es
ho

ld
in

g
O

pe
ra

to
r

SCAD (λ=1)

●

γ=2
γ=4
γ=10

0 1 2 3 4 5

0
1

2
3

4
5

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

t

T
hr

es
ho

ld
in

g
O

pe
ra

to
r

MCP (λ=1)

●

γ=2
γ=4
γ=10

Figure 1: Penalty functions and threshold operator functions of Lasso(left), SCAD(middle) and MCP(right). The

first row shows the penalty functions and the second row shows the operator functions. Lasso shrinks all coefficients

without distinction. SCAD and MCP reduce the rate of penalization for large coefficients. Both MCP and SCAD

converge to Lasso if γ → +∞.

3 Majorization Minimization by Coordinate Descent

3.1 The MMCD Algorithm

For a GLM, a quadratic approximation of the loss function `(β) in a neighborhood of a given

estimate β̃ leads to an iteratively reweighed least squares (IRLS) form of the loss function as

follows

`s(β|β̃) =
1

2n

n∑
i=1

wi(zi − xTi β)2, (7)

7

with wi(β̃) = ψ̈(xTi β̃) and zi(β̃) = ψ̈(xiβ̃)−1{yi − ψ̇(xTi β̃)} + xTi β̃, where ψ̇(θ) and ψ̈(θ) are

the first and second derivatives of ψ(θ) with respect to (w.r.t.) θ. Using `s(β|β̃) in the criterion

function, the CDA updates the jth coordinate by fixing the remaining k (k 6= j) coordinates. Let

β̂
m

j = (β̂m+1
0 , ..., β̂m+1

j , β̂mj+1, ..., β̂
m
p)T , the CDA updates β̂

m

j−1 to β̂
m

j by minimizing the criterion

β̂m+1
j = argmin

βj

Qs(βj|β̂
m

j−1)

= argmin
βj

1

2n

n∑
i=1

wi(zi −
∑
s<j

xijβ̂
m+1
s − xijβj −

∑
s>j

xijβ̂
m
s)2 + ρ(|βj|;λ, γ), (8)

where wi and zi depend on (β̂
m

j−1,xi, yi). The jth coordinate-wise minimizer is then obtained by

solving the equation,

1

n

n∑
i=1

wix
2
ijβj + ρ′(|βj|)sgn(βj)−

1

n

n∑
i=1

wixij(zi − xTi β̂
m

j−1)−
1

n

n∑
i=1

wix
2
ijβ̂

m
j = 0, (9)

with ρ′(|t|) the first derivative of ρ(|t|) w.r.t |t| and sgn(x) = 1,−1 or ∈ [−1, 1] for x > 0, < 0 or

x = 0.

For the MCP penalty, directly solving (9) gives the jth coordinate-wise solution as follows,

β̂m+1
j =

S(τj ,λ)

δj−1/γ , |τj| ≤ δjγλ,

τj
δj
, |τj| > δjγλ,

(10)

where the scaling factor δj , n−1
∑n

i=1wix
2
ij and τj = n−1

∑n
i=1wixij(zi − xTi β̂

m

j−1) + δjβ̂
m
j . In a

linear model, wi = 1, i = 1, ..., n, thus the scaling factor δj = n−1
∑n

i=1wix
2
ij = 1 for standardized

predictors. In a GLM, however, the dependence of wi on (β̂
m

j−1,xi, yi) causes the scaling factor δj

to change from iteration to iteration. This is problematic because δj − 1/γ can be very small and

is not guaranteed to be positive. Thus direct application of CDA may not be numerically stable

and can lead to unreasonable solutions.

To overcome this difficulty, Breheny and Huang (2011) proposed an adaptive rescaling ap-

8

proach, which uses

β̂m+1
j =

S(τj ,λ)

δj(1−1/γ) , |τj| ≤ γλ,

τj
δj
, |τj| > γλ,

(11)

for the jth coordinate-wise solution. This is equivalent to apply a new regularization parameter

γ∗ = γ/δj at each coordinate-wise iteration. Hence, the effective regularization parameters are not

the same for the penalized variables and are not known until the algorithm reaches convergence.

Numerically, the scaling factor δj requires extra computation, which is not desirable for large p. In

addition, small δj could also cause convergence issues. For SCAD, the adaptive rescaling approach

cannot be adopted because the scaled soft-thresholding operation only applies to the middle clause

of the SCAD thresholding operator as shown in (6).

The MMCD algorithm seeks a majorization of scaling factor δj. For standardized predictors,

this is equivalent to finding a uniform upper bound of the weights wi = ψ̈(xTi β), 1 ≤ i ≤ n.

In principle, we can have a sequence of constants Ci such that Ci ≥ wi for i = 1, ..., n and use

Mj =
∑
Cix

2
ij/n to majorize δj. The standardization, however, allows a single M to majorize

all the p scaling factors. Observe that in a GLM, the scaling factor δj is equal to the second

partial derivative of the loss function, i.e. ∇2
j`(β) =

∑
ψ̈(xTi β)x2ij/n =

∑
wix

2
ij/n. Hence, a

majorization of wi results in a majorization of ∇2
j`(β). For simplicity, we put the boundedness

condition, δj ≤M on the term ∇2
j`(β) rather than the individual wi.

From the perspective of MM algorithm, the majorization of δj is equivalent to finding a sur-

rogate function `MM(βj|β̂
m

j−1) that majorizes `s(βj|β̂
m

j−1) when optimizing the criterion function

w.r.t the jth coordinate, where

`MM(βj|β̂
m

j−1) = `(β̂
m

j−1) +∇j`(β̂
m

j−1)(βj − β̂mj) +
1

2
M(βj − β̂mj)2, (12)

and

`s(βj|β̂
m

j−1) = `(β̂
m

j−1) +∇j`(β̂
m

j−1)(βj − β̂mj) +
1

2
∇2
j`(β̂

m

j−1)(βj − β̂mj)2, (13)

9

with the second partial derivative ∇2
j`(β̂

m

j−1) in the Taylor expansion being replaced by its upper

bound M . Note that the majorization is applied coordinate-wisely to better fit the CDA approach.

The descent property of the MM approach ensures that iterative minimization of `MM(βj|β̂
m

j−1)

leads to a descent sequence of the original objective function. For more details about the MM

algorithm, we refer to Lange, Hunter, and Yang (2000); Hunter and Lange (2004).

Given the majorization of δj, some algebra shows that the jth (j = 1, ..., p) coordinate-wise

solutions are

SCAD: β̂m+1
j =

1
M
S(τj, λ), |τj| ≤ (1 +M)λ,

S(τj ,γλ/(γ−1))
M−1/(γ−1) , (1 +M)λ < |τj| ≤Mγλ,

1
M
τj |τj| > Mγλ,

(14)

MCP: β̂m+1
j =

S(τj ,λ)

M−1/γ |τj| ≤Mγλ,

1
M
τj |τj| > Mγλ,

(15)

with τj = Mβ̂mj + n−1
∑n

i=1 xij(yi − ψ̇(xTi β̂
m

j−1)). The solution of the intercept is

β̂m+1
0 = τ0/M, (16)

with τ0 = Mβ̂m0 + n−1
∑n

i=1 xi0(yi − ψ̇(xTi β̂
m

)), where β̂
m

= (β̂m0 , β̂
m
1 , ..., β̂

m
p)T . In the expressions

(14) and (15), we want to ensure the denominators are positive, that is, M − 1/(γ − 1) > 0 and

M − 1/γ > 0. This naturally leads to the constraint on the penalty, inft ρ
′′
(|t|;λ, γ) > −M ,

where ρ
′′
(|t|;λ, γ) is the second derivative of ρ(|t|;λ, γ) w.r.t. |t|. For SCAD and MCP, this

condition is satisfied by choosing a proper γ. For SCAD, inft ρ
′′
(|t|;λ, γ) = −1/(γ − 1); for MCP,

inft ρ
′′
(|t|;λ, γ) = −1/γ. Therefore, we require γ > 1 + 1/M for SCAD and γ > 1/M for MCP.

The MMCD algorithm can gain further efficiency by adopting the following tip. Let η =

(η1, ..., ηn)T and X = (xT1 , ...,x
T
n)T , and η̂mj = Xβ̂

m

j be the linear component corresponding to

10

β̂
m

j . Further efficiency can be achieved by using the equation

η̂mj+1 = η̂mj + xj+1(β̂m+1
j+1 − β̂mj+1) = η̂mj + (β̂

m

j+1 − β̂
m

j)xj+1. (17)

This equation turns a O(np) operation into a O(n) one. Since this step is involved in each iteration

for each coordinate, this simple step turns out to be significant in reducing the computational cost.

We now summarize the MMCD procedure for a given (λ, γ). Assume the conditions below

hold:

(a) The second partial derivative of `(β) w.r.t. βj is uniformly bounded for standardized X, i.e.

there exists a real number M > 0 such that ∇2
j`(β) ≤M for j = 0, ..., p.

(b) inft ρ
′′
(|t|;λ, γ) > −M , with ρ

′′
(|t|;λ, γ) being the second derivative of ρ(|t|;λ, γ) w.r.t. |t|.

The MMCD algorithm proceeds as follows,

1. Given an initial value β̂
0
, compute the corresponding linear component η̂0.

2. For m = 0, 1, ..., update the intercept by form (16), and use the solution form (14) or (15) to

update β̂
m

j to β̂
m

j+1 for the penalized variables. After each iteration, also compute the corresponding

linear component η̂mj+1 using (17). Cycle through all the coordinates for j = 0, ..., p such that β̂
m

is updated to β̂
m+1

.

3. Check the convergence criterion. If converges then stop iteration, otherwise repeat step 2

until converges.

We use the convergence criterion ‖β̂m+1 − β̂m‖2/(‖β̂
m‖2 + δ) < ε. We choose δ = 0.01 and

ε = 0.001 unless mentioned otherwise.

3.2 Convergence Analysis

In this section, we present a convergence result for the MMCD algorithm. Theorem 1 establishes

that under certain regularity conditions, the MMCD solution converges to a minimum of the

objective function.

11

Theorem 1. Consider the objective function (3), where the given data (y, X) lies on a compact

set and no two columns of X are identical. Suppose the penalty ρ(|t|;λ, γ) ≡ ρ(t) satisfies ρ(t) =

ρ(−t), ρ′(|t|) is non-negative, uniformly bounded, with ρ′(|t|) being the first derivative (assuming

existence) of ρ(|t|) w.r.t. |t|. Also assume that two conditions stated in the MMCD algorithm hold.

Then the sequence generated by the MMCD algorithm {βm} converges to a local minimum of

the function Q(β).

Note that the condition on (y, X) is a mild assumption. The standardization of columns of X

can be performed as long as no columns are zero. The proof of theorem 1 is given in Appendix. It

extends the work of Mazumder, Friedman and Hastie (2011) to cover more general loss functions

other than the least squares.

3.3 Comparison with existing algorithms

The LQA (Fan and Li (2001)), perturbed LQA (Hunter and Li (2005)), LLA (Zou and Li

(2008)) and MIST (Schifano, Strawderman and Wells (2010)) algorithms share the same spirit

in the sense that they all optimize a surrogate function instead of the original penalty ρ(|t|;λ, γ).

Figure 2 illustrates the three majorizations of SCAD. The left panel of Figure 2 is majorized at

t = 3, while the right one is majorized at t = 1. In both plots, γ = 4 and λ = 2 are chosen for

better illustration purpose. To apply these methods, we need to approximate both the loss and

penalty functions. This does not take full advantage of CDA. Indeed, the approximation of the

penalty requires additional iterations for convergence and is not necessary, since exact coordinate-

wise solution exists. Thus MMCD uses the exact form of the penalty and only majorizes the

loss.

12

−10 −5 0 5 10

0
5

10
15

20
25

30

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

t (γ=4)

P
en

al
ty

Majorizations of SCAD(λ=2)

●

SCAD
LQA
PLQA
LLA

−10 −5 0 5 10

0
5

10
15

20
25

30

●

●

●

●

●

●

●

●

●

●

●

t (γ=4)

P
en

al
ty

Majorizations of SCAD(λ=2)

●

SCAD
LQA
PLQA
LLA

Figure 2: SCAD penalty and its majorizations, LQA, Perturbed LQA (PLQA) and LLA. The left plot is majorized

at t = 3, the right one is majorized at t = 1. All the curves are plotted using γ = 4 and λ = 2 for better illustration

effect.

4 The MMCD for Penalized Logistic Regression

As mentioned in the introduction, the MMCD algorithm is particularly suitable for logistic regres-

sion, which is one of the most widely used models in biostatistical applications. For a logistic

regression model, the response y is a vector of 0 or 1 with 1 indicating the event of inter-

est. The first and second derivatives of the loss function are ∇j`(β̂) = −(xj)T (y − π̂)/n and

∇2
j`(β̂) = n−1

∑
wix

2
ij, with wi = π̂i(1 − π̂i) and π̂i being the estimated probability of ith obser-

vation given the current estimate β̂, i.e. π̂i = 1/(1 + exp(−xTi β̂)). For any 0 ≤ π ≤ 1, we have

π(1− π) ≤ 1/4. Hence the upper bound of ∇2
j`(β̂) is M = 1/4 for standardized xj. Correspond-

ingly τj = 4−1β̂j + n−1(xj)T (y − π̂) for j = 0, ..., p. By condition (ii), we require γ > 5 for SCAD

and γ > 4 for MCP.

13

4.1 Computation of Solution Surface

A common practice in applying the SCAD and MCP penalties is to calculate the solution path in

λ for a fixed value of κ. For example, for linear regression models with standardized variables, it

has been suggested one uses γ ≈ 3.7 for SCAD (Fan and Li (2001)) and γ ≈ 2.7 (Zhang (2010))

for MCP. However, in a GLM model including the logistic regression, these values may not be

appropriate. Therefore, we use a data driven procedure to choose γ together with λ. This requires

the computation of solution surface over a two-dimensional grid of (λ, γ). We re-parameterize

κ = 1/γ to facilitate the description of the approach for computing the solution surface. By

condition (ii) of the MMCD algorithm, we require κ ∈ [0, κmax], with κmax = 1/5 for SCAD and

κmax = 1/4 for MCP. When κ = 0, both the SCAD and MCP become the Lasso.

Define the grid values for a rectangle in [0, κmax) × [λmin, λmax] to be 0 = κ1 ≤ κ2 ≤ · · · ≤

κK < κmax and λmax = λ1 ≥ λ2 ≥ · · · ≥ λV = λmin. The number of grid points K and V are

pre-specified. In our implementation, the κ-grid points are uniform in normal scale while those

for λ are uniform in log scale. The λmax is the smallest value of λ such that β̂j = 0, j = 1, ..., p.

For a logistic model, λmax = n−1maxj|(xj)T (y − π̂)| for every κk with π̂ = ȳJ and J being a

vector whose elements are all equal to 1. Let λmin = ελmax, with ε = 0.0001 if n > p and ε = 0.01

otherwise. The solution surface is then calculated over the rectangle [0, κmax)×[λmin, λmax]. Denote

the MMCD solution for a given (κk, λv) by β̂κk,λv .

We follow the approach of Mazumder, Friedman and Hastie (2011) to compute the solution

surface by initializing the algorithm at the Lasso solutions on a grid of λ values. The Lasso

solutions correspond to κ = 0. Then for each point in the grid of λ values, we compute the

solutions on a grid of κ values starting from κ = 0, using the solution at the previous point as the

initial value for the current point. The details of the approach are as follows.

(1) First compute the Lasso solution along λ. When computing β̂κ0,λv+1
, using β̂κ0,λv as the

14

initial value in the MMCD algorithm.

(2) For a given λv, compute the solution along κ. Here we use β̂κk,λv as the initial value in

computing the solution β̂κk+1,λv
.

(3) Cycle through v = 1, ..., V for step (2) to complete the solution surface.

Define a variable to be a causal one if its coefficient β 6= 0; otherwise call it to be a null

variable. Figure (3) presents the solution paths of a causal variable with β = 2 (plot (a)) and a

null variable with β = 0 (plot (b)) along κ using the MCP penalty. Observe that the estimates

could change substantially when κ crosses certain values. This justifies our treating κ as a tuning

parameter since a pre-specified κ might not give the optimal results. This is the reason why we

prefer a data-driven procedure to choose both κ and λ.

0 0.05 0.1125 0.175 0.25

0
1

2
3

4

Value of κ

S
ol

ut
io

ns

(a)

true value

λ=0.156

λ=0.118

λ=0.083

0 0.05 0.1125 0.175 0.25

0
1

2
3

4

Value of κ

S
ol

ut
io

ns

(b)

true value

λ=0.041

λ=0.021

λ=0.010

Figure 3: Plots of solution paths along κ. Plot (a) shows the paths for a causal variable with β = 2, while (b)

shows the paths for a null variable with β = 0. Observe that the estimates could change substantially when κ

crosses certain threshold values.

15

4.2 Design of simulation study

Let Z be the design matrix of the covariates, that is, it is a sub-matrix of X with its first column re-

moved. Let A0 ≡ {1 ≤ j ≤ p : βj 6= 0} be the set of causal variables with dimension p0. We fix p0 =

10, β0 = 0.0 and the coefficients of A0 to be (0.6,−0.6, 1.2,−1.2, 2.4,−0.6, 0.6,−1.2, 1.2,−2.4)T

such that the signal-to-noise ratio (SNR), defined as SNR =
√
βTXTXβ/nσ2, is approximately

in the range of (3, 4). The covariates are generated from a multivariate normal distribution with

zero means and variance σ2Σ, with σ2 = 1 and Σ being a positive-definite matrix with dimension

p × p. The outcomes y are generated from the Bernoulli distribution with yi ∼ Bernoulli(1, pi),

with pi = exp(βTxi)/(1 + exp(βTxi)) for i = 1, ..., n.

We consider five types of correlation structures for Σ.

(a) Independent structure (IN) for the p penalized variables. Here Σ = Ip, with Ip being the

identity matrix of dimension p× p.

(a) Separate structure (SP). The causal and null variables are independent. Let Σ0 and Σ1

being the covariance matrix for the causal variables and the null variables, respectively, then

Σ = block diagonal(Σ0,Σ1). Within each set of variables, we assume a compound symmetry

structure, that is, ρ(xij, xik) = ρ for j 6= k.

(c) Partial correlated structure (PC), i.e. part of the causal variables are correlated with part of

the null variables. Specifically, Σ = block diagonal(Σa,Σb,Σc), with Σa being the covari-

ance matrix for the first 5 causal variables; Σb being the covariance matrix for the remaining

5 causal variables and 5 null variables; Σc being the covariance matrix for the remaining

null variables. We also assume a compound symmetry structure within Σa, Σb, Σc.

(d) First-order autoregressive (AR) structure, i.e. ρ(xij, xik) = ρ(|j−k|), for j 6= k.

(e) Compound symmetry (CS) structure for p variables.

16

4.3 Numerical implementation of the LLA algorithm

The basic idea of the LLA is to approximate a concave penalty ρ(|βj|; γ, λ) by ρ̇(|β̂mj |; γ, λ)|βj| based

on the current estimate β̂
m

. For the logistic regression, we also use a quadratic approximation (7)

for the loss based on β̂
m

. To compute β̂
m+1

, we minimize a Lasso-like criterion

`s(β|β̂m) +

p∑
j=1

ρ̇(β̂mj ; γ, λ)|βj|. (18)

To compare the MMCD with the LLA, we implemented the LLA algorithm in two ways. The

first implementation strictly follows the description in Zou and Li (2008). This uses working

data based on the current estimate and separates the design matrix into two parts, U = {j :

ρ̇(|β̂mj |; γ, λ) = 0} and V = {j : ρ̇(|β̂mj |; γ, λ) 6= 0} for a current estimate β̂
m

, with ρ̇(t) being the

derivative of ρ(·). The computation of β̂
m+1

involves (X∗TU X∗U)−1, with X∗U = (Xj : j ∈ U) being

the design matrix of variables in U . Hence, the solution could be non-unique if n < pU with pU

being the number of variables in U . Therefore, this approach generally only works in the settings

with n > p.

In the second implementation, we use the coordinate descent algorithm to minimize (18). This

implementation can handle data sets with p� n. We call this implementation LLA-CD algorithm

below.

Since both implementations require an initial estimate β̂ to approximate the penalty, we use

the Lasso solutions to initiate the computation along κ for the LLA and LLA-CD algorithms.

The LLA, adaptive rescaling, LLA-CD and MMCD algorithms were programmed in Fortran with

similar programming structures for fair comparison. We observe that the adaptive rescaling algo-

rithm does not converge within 1, 000 iterations if κmax is large. Hence, we set κmax = 0.25 for the

adaptive rescaling algorithm in our computation. In the simulation, we set correlation coefficient

ρ = 0.5, the number of grids K = 10, V = 100 and the convergence criterion ε = 0.001 if n > p

and ε = 0.01 if n < p.

17

4.4 Comparison of computational efficiency

Since the adaptive rescaling approach can only be applied to the MCP penalty, we compare the

efficiency of the LLA, adaptive rescaling, LLA-CD and MMCD algorithms for MCP penalized

logistic regression models. The computation is done on Inter Xeon CPU (W3540@2.93GHZ)

machines with Ubuntu 10.04 operating system (Kernel version 2.6). We consider two settings

with n < p and n < p.

Figure 4 shows the average elapsed times measured in seconds based on 100 replications for

p = 100, 200 and 500 with a fixed sample size n = 1, 000. Observe that the time for the adaptive

rescaling algorithm increases dramatically when n = 1, 000 and p = 500. This suggests that the

ratio of p/n has a greater impact on the efficiency of the adaptive rescaling algorithm. LLA-CD

algorithm is also impacted by the p/n ratio to a certain extend. MMCD and LLA are fairly stable

to the change of p/n ratio. Overall, the MMCD algorithm is the fastest one. It is worth noting

that in the setting with (n = 1, 000, p = 500), the adaptive rescaling and LLA-CD algorithms do

not converge within 1, 000 iterations for a convergence criterion ε = 0.001 in some replications.

For high dimensional data with p � n, we focus on the comparison between the adaptive

rescaling, LLA-CD and MMCD algorithms. Figure 5 presents the average elapsed times in seconds

based on 100 replications for n = 100 and figure 6 presents those for n = 300. The numbers of

variables, p, is chosen to be 500, 1, 000, 2, 000, 5, 000 and 10, 000. Both plots show that as p

increases, the advantage of MMCD algorithm becomes more apparent. For a fixed p, the MMCD

algorithm gains more efficiency when the predictors are correlated and n is large. In addition, the

MMCD algorithm has the smallest standard error of computation times, followed by the LLA-CD

and adaptive rescaling algorithms. This suggests the MMCD is the most stable one among the

three algorithms in high-dimensional settings.

18

100 200 500

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
IN

●

●

●

100 200 500

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

SP

●

●

●

100 200 500

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

PC

●

●

●

100 200 500

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

AR

●

●

●

100 200 500

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
CS

●

●

●

●

MMCD

LLA−CD

Adaptive rescaling

LLA

Figure 4: Computational efficiency of the LLA, adaptive rescaling, LLA-CD and MMCD algorithms with fixed

sample size (n = 1, 000). The solid line is the average elapse time of the MMCD algorithm, the dash line is that of

the LLA-CD algorithm, the dotted line is that of the adaptive rescaling algorithm and the dashed line with dark

circles is that of the LLA algorithm. Here, IN, SP, PC, AR and CS refers to the five design matrix described in

Subsection 4.2.

4.5 Comparison of selection performance

We further compare the selection performance of the LLA, adaptive rescaling, LLA-CD and

MMCD algorithms for the MCP penalized logistic models. Since we are not addressing the issue

of tuning parameter selection in this article, the algorithms are compared based on the model

with the best predictive performance rather than the models chosen by a particular tuning pa-

rameter selection approach. This is done as follows. We first compute the solution surface over

[0, κmax) × [λmin, λmax] by each algorithm based on training datasets. Given the solution surface

19

500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
IN

500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

SP

500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

PC

500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

AR

500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
CS

MMCD

LLA−CD

Adaptive rescaling

Figure 5: Computational efficiency of the adaptive rescaling, LLA-CD and MMCD algorithms for p� n models.

The sample size is fixed at n = 100. The solid line is the average elapse time of the MMCD algorithm, the dash

line is that of the LLA-CD algorithm and the dotted line is that of the adaptive rescaling algorithm. Here, IN, SP,

PC, AR and CS refers to the five design matrix described in Subsection 4.2.

β̂κk,λv , we compute the predictive area under ROC curve (PAUC) AUC(κk,λv) for each β̂κk,λv based

on a validation set with n∗ = 3, 000. The well-known connection between AUC and the Mann-

Whitney U statistics (Bamber (1975)) is used, that is, AUC = max {1− U1/n1n2, U1/n1n2}, with

U1 = R1 − (n1(n1 + 1)/2), where n1 is the number of observations with outcome y∗i = 1 in the

validation set, R1 is the sum of ranks for the observations with y∗i = 1 in the validation set. The

rank is based on the predictive probability of validation samples with π̂(κk, λv) computed from

β̂κk,λv . The model corresponding to the maximum predictive AUC(κk,λv) is selected as the final

model for comparison.

20

500 1000 2000 5000 10000

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
IN

500 1000 2000 5000 10000

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

SP

500 1000 2000 5000 10000

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

PC

500 1000 2000 5000 10000

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds

AR

500 1000 2000 5000 10000

0
50

0
10

00
15

00

of variables (p)

E
la

ps
e

tim
e

in
 s

ec
on

ds
CS

MMCD

LLA−CD

Adapative rescaling

Figure 6: Computational efficiency of the adaptive rescaling, LLA-CD and MMCD algorithms for p� n models.

The sample size is fixed at n = 300. The solid line is the average elapse time of the MMCD algorithm, the dash

line is that of the LLA-CD algorithm and the dotted line is that of the adaptive rescaling algorithm. Here, IN, SP,

PC, AR and CS refers to the five design matrix described in Subsection 4.2.

The results are compared in terms of model size (MS) defined as the total number of selected

variables; false discover rate (FDR), defined as the proportion of false positive variables among the

total selected variables; the maximum predictive area under ROC curve (PAUC) of the validation

dataset. The results reported below are based on 1, 000 replicates.

Table 1 presents the comparison among four algorithms in n > p settings with n = 1000

and p = 100. The results show that the models selected by four approaches have similar PAUC.

In terms of models size and FDR, the MMCD and LLA-CD algorithms performs similarly, both

having smaller model size and lowest FDR than the adaptive rescaling and LLA approaches. Table

21

2 presents the comparison among the adaptive rescaling, LLA-CD and MMCD algorithms in high

dimensional settings with n = 100 and p = 2, 000. Similar to the low dimensional case, the PAUC

of three methods are almost identical in p � n models. In terms of model size and FDR, the

MMCD and LLA-CD algorithms have very similar results.

4.6 Application to a Cancer Gene Expression Dataset

The purpose of this study is to discover the biomarkers associated with the prognosis of breast

cancer (van’t Veer et al (2002); Van de Vijver et al (2002)). Approximately 25, 000 genes were

scanned using microarrays for n = 295 patients. Metastasis within five years is modeled as the

outcome. A subset of 1,000 genes with highest Spearman correlations to the outcomes are used in

the penalized models to stabilize the computation. For the same reason as in the simulation study,

we do not resort to any tuning parameter selection procedure to choose models for comparison.

Instead, we randomly partition the whole dataset n = 295 into a training (approximately 1/3 of the

observations) and a validation dataset (approximately 2/3 of the observations). The model fitting

is solely based on the training dataset; the solution corresponding to the maximum predictive

AUC of the validation dataset is chosen as the final model for comparison. We repeat this random

partition process for 900 times.

Table 3 shows the results for the SCAD penalty using the MMCD algorithm, and the MCP

penalty using the adaptive rescaling, LLA-CD and MMCD algorithms. Three PAUCs are close to

each other. The model size of LLA-CD algorithm for MCP penalty happens to be the largest.

22

4.7 Analysis results of the cancer study using tuning parameter selec-

tion method

We now present the results for the breast cancer study using the cross-validated area under ROC

curve (CV-AUC) as a tuning parameter selection method. This method uses a combination of

cross validation and ROC methodology. The logistic regression model is fitted based on a training

sample and the (predictive) AUC of the fitted model is calculated for the test sample. Both the

training and test samples are created by the cross validation. Repeat the process for multiple

times to compute the average predictive AUC, which is defined as the CV-AUC. A models with

the highest CV-AUC is chosen as the final model. For details of using the CV-AUC for tuning

parameter selection in penalized logistic regression, we refer to Jiang, Huang, and Zhang (2011).

We use 5-fold cross validation to compute the CV-AUC.

For this dataset, the SCAD penalty with the MMCD algorithm, the MCP penalty with the

adaptive rescaling and LLA-CD algorithms select the same model with 67 variables and CV-AUC

0.7808. The MCP penalty with the MMCD algorithm selects 16 variables with CV-AUC 0.8024.

5 Further example of the MMCD algorithm

When the outcome variable has K > 2 levels, the logistic model can be extended to a baseline-

category logit model. Let yik be the indicator of the outcome of the ith observation in the kth

level, k = 1, ..., K and xi be the corresponding covariates. The baseline-category logit model

assumes that

log(
πk(x)

πK(x)
) = xTβk, (19)

with πk(x) being the probability of the outcome in the kth level, and βk being the corresponding

coefficients. As in the case of Logistic regression, we assume βk ∈ Rp+1 and βk0 being the intercept

23

and not penalized.

Denote βT = (βT1 , ...,β
T
K−1) as the vector of regression coefficients. Given the structure of (19),

we have πk(x) = exp(xTβk)/{1 +
∑K−1

k=1 exp(xTβk)}. Hence the loss function for the multinomial

case is

`(β) =
1

n
{

n∑
i=1

log{1 +
K−1∑
k=1

exp(xTi βk)} −
n∑
i=1

K−1∑
k=1

yikx
T
i βk}. (20)

Correspondingly, the penalized regression model for the multinomial outcome is

Q(β) =
1

n
{

n∑
i=1

log{1 +
K−1∑
k=1

exp(xTi βk)} −
n∑
i=1

K−1∑
k=1

yikx
T
i βk}+

K−1∑
k=1

p∑
j=1

ρ(|βkj|;λ, γ). (21)

Take second derivative of `(β) w.r.t. βk, we have

∇2
k`(β) =

1

n

n∑
i=1

∑K−1
k=1 exp(xTi βk)

[1 +
∑K−1

k=1 exp(xTi βk)]
2
xTi xi (22)

Therefore, for the jth component in βk, the upper bound can be easily identified as

∇2
kj`(β) ≤

n∑
i=1

1/4x2
ij = 1/4.

Thus, we could still use M = 1/4 to meet the condition (ii) of the MMCD algorithm for the model.

However, because of the multinomial outcome, we need two levels of cycling in the implementation

of MMCD algorithm, first cycling through all the jth coordinates within βk, then cycling through

the k = 1, ...K − 1 to update β.

We below outline the MMCD approach for the concave penalized baseline-category logit model.

the MMCD Algorithm for the penalized baseline-category logit model

1. Given any initial value of β̂
0
, computing the corresponding linear component η̂1.

Outer cycling:

2. At step m = 0, 1, ..., update β̂
m

k to β̂
m+1

k by the inner cycling.

Inner cycling:

a. Given the current estimate of β̂
m

kj = (β̂m+1
k0 , ..., β̂m+1

kj , β̂mk(j+1), ..., β̂
m
kp), update the estimate

24

to β̂
m

k(j+1) = (β̂m+1
k0 , ..., β̂m+1

kj , β̂m+1
k(j+1), ..., β̂

m
kp) by using the solution in (14 or 15) for the penalized

variables and (16) for the intercept, with

τkj =
β̂mkj
4

+
1

n

n∑
i=1

{
K−1∑
k=1

yik −
∑K−1

k=1 exp(xTi β̂k)

[1 +
∑K−1

k=1 exp(xTi β̂k)]
2
}xij,

with β̂k being the latest estimate of βk. After each iteration, also update the corresponding linear

component.

b. Cycle through all the coordinate j = 0, ..., p such that β̂
m

k is updated to β̂
m+1

k .

3. Repeat the inner cycling and cycle through the k = 1, ..., K − 1 blocks of β, update β̂
m

to

β̂
m+1

.

4. Check the convergence criterion. If converges then stop the iteration, otherwise repeat step

2 and 3 until converge.

6 Concluding Remarks

In this article, we propose an MMCD algorithm for computing the concave penalized solutions in

the GLMs. Our simulation studies and data example demonstrate that this algorithm is efficient

in calculating the concave penalized solution in logistic regression models with p� n. Unlike the

existing algorithms for computing concave penalized solutions, such as the LQA, LLA and MIST

that approximates the penalty term, the MMCD seeks a closed form solution for each coordinate

by using the exact penalty term. The majorization is only applied to the loss function. This

approach increases the efficiency of CDA in high-dimensional settings. The convergence of the

MMCD algorithm is proved under certain regularity conditions.

The comparison among the LLA, adaptive rescaling, LLA-CD and MMCD algorithms indicates

that the MMCD is more efficient than the other approaches especially for large p and correlated

covariates. Our results suggest that the LLA-CD algorithm is very competitive to the adaptive

rescaling approach, in some cases, even better. The LLA-CD algorithm implements the adjacent

25

initiation idea to reduce the computational cost, i.e. uses β̂κk,λv as the initial values to compute

β̂κk+1,λv
. Within the CDA component, the solutions are updated in a sequential manner, i.e.

using β̂m+1
j to compute β̂m+1

j+1 , rather than in a vector form, which uses β̂
m

to compute β̂
m+1

.

This is different from the the LLA-LARS implementation by Breheny and Huang (2011). The

adjacent initiation and the sequential updating scheme may be the main reasons why the two

implementation of LLA performs so differently.

The application of the MMCD algorithm to the logistic regression is facilitated by the fact that

a simple and effective majorization function can be constructed for the logistic likelihood. However,

in some other important models in the GLM family such as the log-linear model, it appears that no

simple majorization function exists. One possible approach is to design a sequence of majorization

functions according to the solutions at each iteration. This is an interesting problem that requires

further investigation.

Acknowledgments The research of Huang is supported in part by NIH grants R01CA120988,

R01CA142774 and NSF grant DMS 0805670.

SUPPLEMENTAL MATERIALS

R-package for MMCD Algorithm: R-package ‘cvplogistic’ is available at www.r-project.

org (R Development Core Team (2011). It implements the adaptive rescaling, LLA-CD

and MMCD algorithms for the logistic regressions with concave penalties.

References

Akaike, H. (1974) A new look at the statistical model identification. IEEE T Automat Contr,

19(6): 716–723.

26

www.r-project.org
www.r-project.org

Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver

operating characteristic graph. J Math Psychol 12(4), 387–415.

Breheny, P., and Huang, J. (2011) Coordinate descent algorithms for nonconvex penalized regres-

sion, with application to biological feature selection. Ann Appl Stat, 5(1), 232–253.

Donoho, D. L., and Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika 81(3), 425–455.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004) Least angle regression. Ann Stat, 322:

407–451.

Fan, J., and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle

properties. J Am Stat Assoc 96(456), 1348–13608.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007) Pathwise coordinate optimization.

Ann Appl Stat 1(2), 302–332.

Friedman, J., Hastie, T., and Tibshirani, R. (2010) Regularization paths for generalized linear

models via coordinate descent. J Stat Softw 33(1), 1–22.

Hunter, D. R., and Lange, K. (2004) A tutorial on MM algorithms. J Am Stat Assoc 58(1),

30–37.

Hunter, D. R., and Li, R. (2005) Variable selection using MM algorithms. Ann Stat 33(4),

1617–1642.

Jiang, D., Huang, J., and Zhang, Y. (2011) The cross-validated AUC for MCP-Logistic regression

with high-dimensional data. Stat Methods Med Res, Accepted.

Lange, K., Hunter, D., and Yang, I. (2000) Optimization transfer using surrogate objective

functions (with discussion). J Comput Graph Stat, 9: 1–59.

27

Mallows, C. L. (1973) Some comments on Cp. Technometrics, 12: 661–675.

Mazumder, R., Friedman, J., and Hastie, T. (2011) SparseNet : Coordinate descent with non-

convex penalties. J Am Stat Assoc 106(495): 1125–1138.

Ortega, J. M., and Rheinbold, W. C. (1970). Iterative solution of nonlinear equations in several

variables. Academic Press, New York, NY.

Osborne, M. R., Presnell, B., and Turlach, B. A. (2000). A new approach to variable selection in

least square problems. IMA Journal of Numerical Analysis, 20(3): 389-403.

Schifano, E. D., Strawderman, R. L., and Wells, M. T. (2010) Majorization-minimization al-

gorithms for nonsmoothly penalized objective functions. Electronic Journal of Statistics, 4:

1258–1299.

Schwarz, G. (1978) Estimation the dimension of a model. Ann Stat, 6(2): 461–464.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58(1),

267–288.

Tseng, P. (2001) Convergence of a Block Coordinate Descent Method for Nondifferentiable Mini-

mization. J Optimiz Theory App, 109(3), 475–494.

van’t Veer, L. J., Dai, H., van de Vijver, M. J., et al (2002) Gene expression profiling predicts

clinical outcome of breast cancer. Nature, 415(31), 530–536.

van de Vijver, M. J., He, Y. D., van’t Veer, L. J., et al (2002) A gene-expression signature as a

predictor of survival in breast cancer. N Engl J Med, 347(25), 1999–2009.

Warge, J. (1963). Minimizing certain convex functions. SIAM Journal on Applied Mathematics,

11, 588-593.

28

Wu, T. T., and Lange K. (2008) Coordinate descent algorithms for Lasso penalized regression.

Ann Appl Stat 2(1), 224–244.

Zhang, C. H. (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat

38(2), 894–942.

Zou, H., and Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models.

Ann Stat, 364: 1509–1533.

R Development Core Team R: a Language and environment for statistical computing. R Founda-

tion for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org

7 Appendix

In the Appendix, we prove Theorem 1. The proof follows the basic idea of Mazumder, Friedman

and Hastie (2011). However, there are also some important differences. In particular, we need to

take care of the intercept in Lemma 1 and Theorem 1, the quadratic approximation to the loss

function and the coordinate-wise majorization in Theorem 1.

Lemma 1. Suppose the data (y, X) lies on a compact set and the following conditions hold:

1. The loss function `(β) is (total) differentiable w.r.t. β for any β ∈ Rp+1.

2. The penalty function ρ(t) is symmetric around 0 and is differentiable on t ≥ 0; ρ′(|t|) is non-

negative, continuous and uniformly bounded, where ρ′(|t|) is the derivative of ρ(|t|) w.r.t. |t|.

3. The sequence {βk} is bounded.

4. For every convergent subsequence {βnk} ⊂ {βn}, the successive differences converge to zero:

βnk − βnk−1 → 0.

29

Then if β∞ is any limit point of the sequence {βk}, then β∞ is a minimum for the function

Q(β); i.e.

lim inf
α↓0+

{Q(β∞ + αδ)−Q(β∞)

α
} ≥ 0, (23)

for any δ = (δ0, ..., δp) ∈ Rp+1.

Proof. For any β = (β0, ..., βp)
T and δj = (0, ..., δj, ..., 0) ∈ Rp+1, we have

lim inf
α↓0+

{Q(β + αδj)−Q(β)

α
} = ∇j`(β)δj + lim inf

α↓0+
{ρ(|βj + αδj|)− ρ(|βj|)

α
}

= ∇j`(β)δj + ∂ρ(βj; δj), (24)

for j ∈ {1, ..., p}, with

∂ρ(βj; δj) =

 ρ′(|βj|)sgn(βj)δj, |βj| > 0;

ρ′(0)|δj|, |βj| = 0,

(25)

where

sgn(x) =

1, if x > 0;

−1, if x < 0;

any u ∈ (−1, 1), if x = 0.

Assume βnk → β∞ = (β∞0 , ..., β
∞
p), and by assumption 4, as k →∞

βnk−1
j = (βnk

0 , ..., βnk
j−1, β

nk
j , β

nk−1
j+1 , ..., βnk−1

p)→ (β∞0 , ..., β
∞
j−1, β

∞
j , β

∞
j+1, ..., β

∞
p) (26)

By (25) and (26), we have the results below for j ∈ {1, ..., p}.

∂ρ(βnk
j ; δj)→ ∂ρ(β∞j ; δj), if β∞j 6= 0; ∂ρ(β∞j ; δj) ≥ lim inf

k
∂ρ(βnk

j ; δj), if β∞j = 0. (27)

By the coordinate-wise minimum of jth coordinate j ∈ {1, ..., p}, we have

∇j`(β
nk−1
j)δj + ∂ρ(βnk

j ; δj) ≥ 0, for all k. (28)

Thus (27, 28) implies that for all j ∈ {1, ..., p},

∇j`(β
∞)δj + ∂ρ(β∞j ; δj) ≥ lim inf

k
{∇j`(β

nk−1
j)δj + ∂ρ(βnk

j ; δj)} ≥ 0. (29)

30

By (24,29), for j ∈ {1, ..., p}, we have

lim inf
α↓0+

{Q(β∞ + αδj)−Q(β∞)

α
} ≥ 0. (30)

Following the above arguments, it is easy to see that for j = 0

∇0`(β
∞)δ0 ≥ 0. (31)

Hence for δ = (δ0, ..., δp) ∈ Rp+1, by the differentiability of `(β), we have

lim inf
α↓0+

{Q(β∞ + αδ)−Q(β∞)

α
} = ∇0`(β

∞)δ0

+

p∑
j=1

[∇j`(β
∞)δj + lim inf

α↓0+
{
ρ(|β∞j + αδj|)− ρ(|β∞j |)

α
}]

= ∇0`(β
∞)δ1 +

p∑
j=1

lim inf
α↓0+

{Q(β∞ + αδj)−Q(β∞)

α
}

≥ 0, (32)

by (30, 31). This completes the proof.

Proof of Theorem 1

Proof. To ease notation, write χjβ0,...,βj−1,βj+1,...,βp
≡ χ(u) for Q(β) as a function of the jth coordi-

nate with (β0, ..., βj−1, βj+1, ..., βp) being fixed. We first deal with the j ∈ {1, ..., p} coordinates,

then the intercept (0th coordinate) in the following arguments.

For j ∈ {1, ..., p}th coordinate, observe that

χ(u+ δ)− χ(u) = `(β0, ..., βj−1, u+ δ, βj+1, ..., βp)− `(β0, ..., βj−1, u, βj+1, ..., βp)

+ ρ(|u+ δ|)− ρ(|u|) (33)

= ∇j`(β0, ..., βj−1, u, βj+1, ..., βp)δ +
1

2
∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp)δ

2

+ o(δ2) + ρ′(|u|)(|u+ δ| − |u|) +
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2, (34)

31

with |u∗| being some number between |u+ δ| and |u|. Notation ∇j`(β0, ..., βj−1, u, βj+1, ..., βp) and

∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp) denote the first and second derivative of the function ` w.r.t. the

jth coordinate (assuming to be existed by condition (1)).

We re-write the RHS of (34) as follows:

RHS(of 34) = ∇j`(β0, ..., βj−1, u, βj+1, ..., βp)δ + (∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp)−M)δ2

+ ρ′(|u|)sgn(u)δ

+ ρ′(|u|)(|u+ δ| − |u|)− ρ′(|u|)sgn(u)δ +
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2

+ (M − 1

2
∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp))δ

2 + o(δ2). (35)

On the other hand, the solution of the jth coordinate (j ∈ {1, ..., p}) is to minimize the

following function,

Qj(u|β) = `(β) +∇j`(β)(u− βj) +
1

2
∇2
j`(β)(u− βj)2 + ρ(|u|), (36)

By majorization, we bound ∇2
j`(β) by a constant M for standardized variables. So the actual

function being minimized is

Q̃j(u|β) = `(β) +∇j`(β)(u− βj) +
1

2
M(u− βj)2 + ρ(|u|). (37)

Since u is to minimize (37), we have, for the jth (j ∈ {1, ..., p}) coordinate ,

∇j`(β) +M(u− βj) + ρ′(|u|)sgn(u) = 0, (38)

Because χ(u) is minimized at u0, by (38), we have

0 = ∇j`(β0, ..., βj−1, u0 + δ, βj+1, ..., βp) +M(u0 − u0 − δ) + ρ′(|u0|)sgn(u0)

= ∇j`(β0, ..., βj−1, u0, βj+1, ..., βp) +∇2
j`(β0, ..., βj−1, u0, βj+1, ..., βp)δ + o(δ)

− Mδ + ρ′(|u0|)sgn(u0), (39)

if u0 = 0 then the above holds true for some value of sgn(u0) ∈ (−1, 1).

32

Observe that ρ′(|x|) ≥ 0, then

ρ′(|u|)(|u+ δ| − |u|)− ρ′(|u|)sgn(u)δ = ρ′(|u|)[(|u+ δ| − |u|)− sgn(u)δ] ≥ 0 (40)

Therefore using (39, 40) in (35) at u0, we have, for j ∈ {1, ..., p},

χ(u0 + δ)− χ(u0) ≥
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2

+ δ2(M − 1

2
∇2
j`(β0, ..., βj−1, u0, βj+1, ..., βp)) + o(δ2)

≥ 1

2
Mδ2 +

1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2 + o(δ2). (41)

By condition (ii) of the MMCD algorithm inft ρ
′′(|t|;λ, γ) > −M and (|u+ δ| − |u|)2 ≤ δ2. Hence

there exist θ2 = 1
2
(M + infxρ

′′
(|x|) + o(1)) > 0, such that for the jth coordinate, j ∈ {1, ..., p},

χ(u0 + δ)− χ(u0) ≥ θ2δ
2. (42)

Now consider β0, observe that

χ(u+ δ)− χ(u) = `(u+ δ, β1, ..., βp)− `(u, β1, ..., βp)

= ∇1`(u, β1, ..., βp)δ +
1

2
∇2

1`(u, β1, ..., βp)δ
2 + o(δ2)

= ∇1`(u, β1, ..., βp)δ + (∇2
1(`(u, β1, ..., βp)−M)δ2

+ (M − 1

2
∇2

1`(u, β1, ..., βp))δ
2 + o(δ2), (43)

By similar arguments to (39), we have

0 = ∇1`(u0 + δ, β1, ..., βp) +M(u0 + δ − u0)

= ∇1`(u0, β1, ..., βp) +∇2
1`(u0, β1, ..., βp)δ + o(δ)−Mδ. (44)

Therefore, by (43, 44), for the first coordinate of β

χ(u0 + δ)− χ(u0) = (M − 1

2
∇2

1`(u0, β1, ..., βp))δ
2 + o(δ2)

=
1

2
Mδ2 +

1

2
(M −∇2

1`(u0, β1, ..., βp))δ
2 + o(δ2)

≥ 1

2
δ2(M + o(1)). (45)

33

Hence there exists a θ1 = 1
2
(M + o(1)) > 0, such that for the first coordinate of β

χ(u0 + δ)− χ(u0) ≥ θ1δ
2. (46)

Let θ = min(θ1, θ2), using (42,46), we have for all the coordinates of β,

χ(u0 + δ)− χ(u0) ≥ θδ2, (47)

By (47) we have

Q(βm−1j)−Q(βm−1j+1) ≥ θ(βmj+1 − βm−1j+1)2

= θ ‖ βm−1j − βm−1j+1 ‖22, (48)

where βm−1j = (βm1 , ..., β
m
j , β

m−1
j+1 , ..., β

m−1
p). The (48) establishes the boundedness of the sequence

{βm} for every m > 1 since the starting point of {β1} ∈ Rp+1.

Apply (48) over all the coordinates, we have for all m

Q(βm)−Q(βm+1) ≥ θ ‖ βm+1 − βm ‖22 . (49)

Since the (decreasing) sequence Q(βm) converges, (49) shows that the sequence {βk} have a unique

limit point. This completes the proof of the convergence of {βk}.

The assumption (3) and (4) in lemma 1 holds by (49). Hence, the limit point of {βk} is a

minimum of Q(β) by lemma 1. This completes the proof of the theorem.

34

Table 1: Comparison of selection performance among four algorithms with n = 1, 000 and p = 100.

PAUC refers to the maximum predictive area under ROC curve (PAUC) of the validation dataset.

MS is model size. FDR is false discovery rate. SE is the standard errors based on 1, 000 replications.

Here, IN, SP, PC, AR and CS refers to the five design matrix described in Subsection 4.2.

Structure (SNR) Algorithm PAUC(SE*105) MS(SE*101) FDR(SE*103)

IN LLA 0.947 (4.58) 10.96 (0.55) 0.07 (3.32)

(4.32) Adp res 0.948 (4.35) 16.28 (1.21) 0.36 (4.23)

LLA-CD 0.948 (3.45) 10.79 (0.57) 0.06 (3.09)

MMCD 0.948 (3.37) 10.90 (0.56) 0.07 (3.31)

SP LLA 0.915 (7.74) 11.39 (0.77) 0.10 (3.96)

(3.05) Adp res 0.916 (6.93) 14.14 (0.87) 0.27 (3.90)

LLA-CD 0.917 (7.24) 11.35 (0.84) 0.10 (4.10)

MMCD 0.917 (6.67) 11.27 (0.64) 0.10 (3.57)

PC LLA 0.945 (5.95) 14.25 (1.50) 0.24 (5.72)

(3.89) Adp res 0.947 (5.25) 15.55 (1.09) 0.33 (3.97)

LLA-CD 0.947 (5.61) 11.61 (1.07) 0.11 (4.46)

MMCD 0.947 (5.07) 11.41 (0.79) 0.10 (3.93)

AR LLA 0.921 (8.83) 13.83 (1.28) 0.24 (5.34)

(3.20) Adp res 0.924 (6.73) 18.76 (1.34) 0.44 (3.94)

LLA-CD 0.924 (7.88) 11.29 (0.76) 0.10 (3.49)

MMCD 0.925 (5.98) 12.11 (0.82) 0.15 (4.45)

CS LLA 0.919 (8.13) 12.42 (1.07) 0.16 (4.70)

(3.06) Adp res 0.921 (7.02) 14.15 (0.90) 0.27 (3.98)

LLA-CD 0.922 (6.61) 10.64 (0.54) 0.05 (2.80)

MMCD 0.922 (6.60) 10.94 (0.58) 0.07 (3.32)

35

Table 2: Comparison of selection performance among the adaptive rescaling, LLA-CD and MMCD

algorithms with n = 100 and p = 2, 000. PAUC refers to the maximum predictive area under ROC

curve (PAUC) of the validation dataset. MS is model size. FDR is false discovery rate. SE is

the standard errors based on 1, 000 replications. Here, IN, SP, PC, AR and CS refers to the five

design matrix described in Subsection 4.2.

Structure (SNR) Algorithm PAUC(SE*103) MS(SE*103) FDR(SE*104)

IN Adp res 0.828 (1.30) 12.25 (3.01) 0.60 (6.95)

(4.33) LLA-CD 0.842 (1.28) 5.56 (2.02) 0.25 (8.42)

MMCD 0.844 (1.27) 6.41 (2.09) 0.28 (9.06)

SP Adp res 0.778 (1.96) 12.06 (3.77) 0.62 (6.05)

(3.05) LLA-CD 0.795 (1.74) 5.25 (2.15) 0.26 (8.16)

MMCD 0.797 (1.76) 5.75 (2.25) 0.28 (8.34)

PC Adp res 0.872 (0.64) 7.12 (1.37) 0.42 (6.43)

(3.87) LLA-CD 0.877 (0.54) 5.19 (1.29) 0.24 (7.48)

MMCD 0.877 (0.54) 5.37 (1.27) 0.26 (7.46)

AR Adp res 0.812 (1.21) 6.21 (1.69) 0.49 (8.53)

(3.19) LLA-CD 0.830 (1.10) 3.02 (0.71) 0.17 (7.73)

MMCD 0.831 (1.07) 3.21 (0.94) 0.18 (8.10)

CS Adp res 0.770 (1.79) 11.89 (3.58) 0.64 (6.32)

(3.04) LLA-CD 0.776 (1.80) 6.99 (3.09) 0.37 (9.27)

MMCD 0.781 (1.80) 7.39 (2.99) 0.39 (9.49)

36

Table 3: Application of SCAD and MCP in a microarray dataset. The average and standard error

are computed based on the 900 split processes. The predictive AUC is calculated as the maximum

predictive AUC of the validation dataset created by the random splitting process. In each split

process, approximately n = 100 samples are assigned to the training dataset and n = 200 samples

into the validation dataset.

Solution surface PAUC(SE*103) MS(SE)

SCAD (MMCD) 0.7567 (0.99) 35.50 (0.47)

MCP(Adap res) 0.7565 (1.15) 39.06 (0.68)

MCP(LLA-CD) 0.7537 (0.99) 43.07 (0.63)

MCP(MMCD) 0.7570 (0.99) 35.66 (0.49)

37

	Introduction
	Concave Penalized solutions for GLMs
	Majorization Minimization by Coordinate Descent
	The MMCD Algorithm
	Convergence Analysis
	Comparison with existing algorithms

	The MMCD for Penalized Logistic Regression
	Computation of Solution Surface
	Design of simulation study
	Numerical implementation of the LLA algorithm
	Comparison of computational efficiency
	Comparison of selection performance
	Application to a Cancer Gene Expression Dataset
	Analysis results of the cancer study using tuning parameter selection method

	Further example of the MMCD algorithm
	Concluding Remarks
	Appendix

