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ABSTRACT

The principal component method and the mixed effects model represent two

popular approaches for controlling for population structure and cryptic related-

ness in genetic association studies. There are quite few studies comparing their

performance. However, these comparisons are typically conducted using simula-

tion studies and their implications are therefore limited. We report an analytical

study of these two approaches in the presence of cryptic relatedness and popu-

lation structure in terms of their validity and efficiency. We show that in the

presence of cryptic relatedness, both methods are valid but the mixed effects

model is more powerful. In the presence of population structure, both meth-

ods can be invalid and be conservative or anti-conservative. Conditions under

which they are valid are provided. These conclusions are demonstrated through

examples and simulation studies.

Subject headings: principal component, mixed effects model, population stratification,

cryptic relatedness, genetic association
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Introduction

Population stratification is a well-known confounding factor in genetic association

studies. It can lead to spurious association if not dealt with appropriately. It exists even

in populations that seem to be homogeneous, for instance, European American1 and Han

Chinese2,3. Nowadays more and more large consortia and collaborations are routinely formed

in order to identify genetic factors of small effect. For instance, the GENEVA project4

involves 14 participating studies covering a wide range of primary phenotypes. Each study

consists of thousands of study subjects. It is not surprising that population stratification

is a pressing issue to be addressed in analyzing data from large-scale multi-center studies.

Indeed, the GENEVA coordinating center has developed its own version of software package

to handle this issue (https://www.genevastudy.org/Accomplishments/software).

The genomic control method (GC)5–9 is a popular method for handling population

stratification. It modifies the Cochran-Armitage (CA) test for trend by a deflating

factor. This factor is estimated using markers that are known to be unassociated with

the phenotype (null markers). The structured population method10–12 tries to infer

the subpopulation structure first. Subsequent analyses are then conducted within each

subpopulation and the results are summarized. The third method is to create surrogates for

population stratification using null markers. For example, the principal component analysis

(PCA) method13 uses the first few principal components of the matrix of relatedness as

covariates in a regression analysis. Similarly, one can use the first few components from

a partial least-squares regression analysis14. Given the huge amount of genome-wide SNP

genotype data, it is feasible to estimate the degree of relatedness of study subjects15–18.

This possibility has resulted in novel approaches to genome-wide association studies

(GWAS). The mixed effects model method19–22 can take into account fixed effects such as

age and gender while modeling population structure and cryptic relatedness as random
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effects. Preliminary studies have found that these methods perform better than methods

that do not model relatedness of study subjects20,21,23. Most of these methods have been

implemented in various computer programs such as STRUCTURE24,25, ADMIXTURE26,

EIGENSTRAT13, ROADTRIPS27, EMMAX20, and TASSEL19,21. A review of statistical

methods is28.

The PCA method and the mixed effects model are the most popular methods in

genetic association studies. There are quite few comparisons regarding the performance of

these two methods. However, these comparisons are almost all conducted via simulation

studies23,29–31. It is not clear whether the conclusions reached in such studies are applicable

beyond the simulated situations. To avoid the limitations of simulation studies, we

analytically compare the PCA and the mixed effects model in terms of their validity and

the efficiency in testing genetic effects.

In what follows, we will first describe the PCA method and the mixed effects model.

These two methods are then compared analytically first in the case of relatedness and then

in the case of population stratification. The main results are presented in two propositions.

Examples are used to illustrate the implication of these propositions. Simulation studies

are then conducted to demonstrate the conclusions.

Cryptic relatedness and population stratification

Let y denote the value of a quantitative trait for a study subject (the case of

dichotomous y will be discussed later). It is assumed that y is determined by the following

additive polygenetic model32

y = u+
∑
j

hj + ε
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where u is the mean value of y and hj is the contribution of the j-th genetic factor to trait

y. The variance of y, denoted by σ2
y, is the sum of the variance of the polygenic effect,

denoted by σ2
G, and the variance of the environmental effect, denoted by σ2

e . That is,

σ2
y = σ2

G + σ2
e .

In the presence of cryptic relatedness, the polygenic effect of the study subjects are

correlated even though they seem to be otherwise. Let y = (y1, y2, . . . , yn)t be an n × 1

vector of trait values on n study subjects and S the matrix of pair-wise relatedness such as

identical by state (IBS) or Balding-Nichols similarity. Without loss of generality, assume

that S has been standardized such that its diagonal elements are all equal to 1. The

variance matrix of y is

Ω = σ2
GS + σ2

eI. (1)

The matrix S is generally unknown unless the genealogical information is given. However,

given the large amount of SNPs in a genome-wide association studies, it can be reliably

estimated33–38. For this reason, it is assumed that the S is known hereafter. Furthermore,

σ2
G and σ2

e are segregation parameters that measure the contribution of the genetic factors

and the environment factor. They can be estimated beforehand and will be treated as

known hereafter. This approach has been used elsewhere (e.g., the program EMMAX20).

If there exists population stratification, the value of u is no longer the same for all

individuals. Instead, it is population-dependent. Let uk be its value for the k-th population.

These uks are not observable otherwise the problem would be trivial: one can use indicator

variables for subpopulations. The variation in uks contributes to phenotypic variation and

inter-individual correlation since subjects from the same population share a common uk.

That is, population stratification induces correlation among study subjects. Let 1k denote

the vector of 1s whose length is the same as the number subjects from the k-th population.

Let K be the total number of populations in the data. Suppose that the subjects are
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organized in such a way that subjects from the same subpopulation are indexed next to

each other, the variance matrix of y becomes

Ω∗ = σ2
uS̃ + σ2

GS + σ2
eI

where S̃ = diag(111
′
1,121

′
2, . . . ,1K1′K) is the induced relatedness matrix by population

stratification and σ2
u is the variance of elements in vector (u11

′
1, . . . , uK1′K)′. The matrix Ω∗

can be written σ2
G′S

∗ + σ2
eI where

σ2
G′ = σ2

u + σ2
G

and

S∗ =
σ2
u

σ2
G′

S̃ +
σ2
G

σ2
G′

S.

One can estimate S∗ and σ2
G′ from genomic data but not σ2

u, σ
2
G, and S individually. The

effect of population stratification confounds with the polygenic effect.

In summary, the phenotype data y can be modeled in the following way. Let g denote

the n× 1 vector of the genotype scores at the single-nucleotide polymorphism (SNP) being

tested for association. Each component of g is a genotype score. It is the number of copies

of a reference allele an individual has and assumes value 0, 1, or 2. Let β be the effect size

of one unit change in genotype score. The phenotype vector y follows the following model:

y = u + βg + ε (2)

where ε ∼ N(0,Ω). If there is no population stratification, u is a vector of constants. That

is, u = u1 for some u. If there is population stratification, u is segment-wise constant:

u = (u11
′
1, . . . , uK1K)′. In either case, the distribution of y is multivariate normal with

mean vector u + βg and variance matrix Ω = σ2
GS + σ2

eI.
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The PCA method and the mixed effects model

The analysis model is typically different from the true model. Given the phenotype data

y, genotype data g, relatedness matrix S (or matrix S∗ if there is population stratification),

and variance-covariance matrix Ω, we describe the PCA method and the mixed effects

model below.

Let the eigenvalues of matrix S be denoted by (in descending order of their values)

λ1 ≥ λ2 ≥ . . . ≥ λn and corresponding eigenvectors denoted by x1,x2, . . . ,xn. The number

of non-zero eigenvalues is equal to the rank of S. By definition, these eigenvalues and

eigenvectors satisfy

Sxi = λixi

and x′ixi = 1, x′ixj = 0 for i 6= j. The matrix S is substituted by S∗ if there is population

stratification.

The PCA method uses the eigenvectors corresponding to the m largest eigenvalues

(a.k.a. axes of variation13) as covariates and fits the following model:

y = α01 +
m∑
i=1

αixi + βg + δ

= Zα + βg + δ

where Z = (1,Xm) with Xm = (x1, . . . ,xm) and m is a predetermined number. Note that if

1 happens to be a eigenvector, then this eigenvector needs to be removed in order to avoid

collinearity with the intercept term (see Example 1 to be introduced later for an example).

The estimate of β is

β̃ =
g′P1y

g′P1g

where

P1 = I− Z(Z′Z)−1Z′
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is the projection matrix that projects a n × 1 vector into a space orthogonal to the space

spanned by the columns of matrix Z. The variance of β̃ is

V ar(β̃) =
g′P1ΩP1g

(g′P1g)2
.

For the mixed effects model method, the fitted model is

y = β01 + βg + ε (3)

where ε ∼ N(0,Ω∗) with Ω∗ = σ2
uS̃ + Ω. Let A be the matrix generated from the

Cholesky decomposition of matrix Ω∗ that satisfies Ω∗ = AA′. The inverse of Ω∗ is

(Ω∗)−1 = (A′)−1A−1. Since Ω∗ is taken to be known, the mixed effects model estimate of β

is the same as its generalized least square estimate. To find out the latter, rewrite (3) as

A−1y = β0A
−11 + βA−1g + A−1ε.

The variance matrix of A−1ε is A−1(AA′)(A′)−1 = I. So the mixed effects model estimate

of β is

β̂ =
g′P2y

g′P2g

where

P2 = (A′)−1[I−A−11[(A−11)′A−11]−1(A−11)′]A−1

= (Ω∗)−1 − (Ω∗)−11(1′(Ω∗)−11)−11′(Ω∗)−1.

It is easy to see that P2 satisfies P21 = 0. Since the variance of y in the generating model

is Ω, the variance of β̂ is

V ar(β̂) =
g′P2ΩP2g

(g′P2g)2
.

If there is no population stratification, then Ω∗ = Ω. It is straightforward to verify that

P2ΩP2 = P2. In this case, the variance of β̂ becomes

V ar(β̂) =
1

g′P2g
.
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Main Results

We are interested in which method, the PCA method or the mixed effects model

method, is valid in the presence of cryptic relatedness or population stratification. And if

so, which method is more efficient. The main results of this report is summarized in the

following two propositions.

Proposition 1 If there exists cryptic relatedness but not population stratification (that

is, u = u1 in (2) for some value u) and the PCA method contains an intercept term, both

β̃ and β̂ are unbiased estimates of β. However, the former has a larger variance than the

latter does. That is, V ar(β̃) ≥ V ar(β̂). Consequently, the mixed effects model is more

efficient.

The proof of unbiasedness is straightforward. β̃ is unbiased because P11 = 0 and

E(β̃) = (g′P1g)−1[g′P1E(y)]

= (g′P1g)−1[g′P1(u + βg)]

= u(g′P1g)−1g′P11 + β

= β.

Since P21 = 0, the unbiasedness of β̂ can be shown in a similar way:

E(β̂) = (g′P2g)−1[g′P2E(y)]

= (g′P2g)−1[g′P2(u1 + βg)]

= β.

The second part can be shown by using the Schwarz inequality as follows. Since

Ω is positive definite, define inner product 〈·, ·〉 such that 〈x,y〉 = x′Ωy. Notice that
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P2ΩP2 = P2 and

P2ΩP1 = (I−Ω−11(1′Ω−11)−11′)P1

= P1,

we have

(g′P2g) · (g′P1ΩP1g) = 〈P2g,P2g〉 · 〈P1g,P1g〉

≥ (〈P2g,P1g〉)2

= (g′P2ΩP1g)2

= (g′P1g)2.

Using the definition of V ar(β̃) and V ar(β̂), it immediately follows that V ar(β̃) ≥ V ar(β̂).

It is a well known textbook result that β̂ is the best linear unbiased estimator of

β among generalized linear models and thus has the smallest variance. However, this

proposition is not trivially true because in this situation there are more covariates available

to the PCA model than to the mixed effects model. These variables are the principal

components from the relatedness matrix S. Actually, these covariates do not need to be

principal components of S. From the proof procedure one can see that no specific properties

of {xk} being principal components are used. This proposition remains true even when

{xk} are not eigenvectors as long as the intercept term is included.

Proposition 2 In the presence of population stratification (i.e., u = (u11
′
1, u21

′
2, . . . , uK1′K)′

in (2)), We have

1. E(β̃) = (g′P1g)−1(g′P1u) + β. That is, β̃ is a biased estimator of β unless u satisfies

g′P1u = 0. The bias is E(β̃)− β = (g′P1g)−1(g′P1u). Specifically, this bias is 0 if u

is a linear combination of the column vectors of matrix Z.
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2. E(β̂) = (g′P2g)−1(g′P2u) + β. That is, β̂ is a biased estimator of β unless u satisfies

g′P2u = 0. The bias is E(β̂)− β = (g′P2g)−1(g′P2u).

The expected value of β̃ can be computed directly as follows:

E(β̃) = (g′P1g)−1[g′P1E(y)]

= (g′P1g)−1[g′P1(u + βg)]

= (g′P1g)−1(g′P1u) + β.

Similarly, the expected value of β̂ is (g′P2g)−1[g′P2u] + β. It is not clear whether V ar(β̃)

or V ar(β̂) is larger because matrix P2 involves the additional relatedness matrix S̃ induced

by population stratification.

This proposition indicates that both methods can be biased. The direction of the bias

is determined by g′P1u and g′P2u, respectively. This observation has two implications.

First, if there is genetic association (i.e., β = 0), both methods are invalid. Second, if there

is association, the both methods can be conservative or anti-conservative. The extent of

which is affected by not only the direction of the bias in the estimate of β and the true value

of β, but also the variance of the estimate of β. It is unclear which method has smaller bias

in β estimate or smaller variance in β estimate. We will investigate this issue more in the

examples introduced next and in the simulation studies later.

So far our focus is on continuous traits. When the trait is dichotomous, a common

approach is to code the trait values as 0s and 1s and treat them as if they were continuous.

For instance,27,39, and20. This approach is asymptotically equivalent to the test based on

a logistic regression. The conclusion of Proposition 1 and Proposition 2 applies to such

recoded binary trait values.
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Examples

To better understand the main results presented in the previous section, we now

consider some examples. In each example, we develop more explicit expressions for the

bias and the variance of the estimate of β for both the PCA method and the mixed effects

model.

Example 1

We first assume that the relatedness between individuals are the same for all pairs.

That is, the matrix S is

S =


1 ρ . . . ρ

ρ 1 . . . ρ

...
...

...
...

ρ ρ . . . 1


= (1− ρ)I + ρ11′

where ρ < 1 measure the common relatedness between any two subjects. In addition, we

assume that there is no population stratification. Hence u = u1 in (2) for a value u.

Since there is no population stratification, the variance matrix used for the mixed

effects model is Ω instead of Ω∗. Because Ω = σ2
GS + σ2

eI = θ2I + ρσ2
G11′, where

θ =
√
σ2
G(1− ρ) + σ2

e , there is

Ω−1 =
1

θ2

(
I− ρσ2

G

θ2 + nρσ2
G

11′
)
.
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Since

g′Ω−1g =
1

θ2

(
g′g − ρσ2

G(1′g)2

θ2 + nρσ2
G

)
,

1′Ω−1g =
1

θ2

(
1− nρσ2

G

θ2 + nρσ2
G

)
(1′g)

=
1′g

θ2 + nρσ2
G

,

and

1′Ω−11 =
n

θ2

(
1− nρσ2

G

θ2 + nρσ2
G

)
=

n

θ2 + nρσ2
G

,

we have

[V ar(β̂)]−1 = gP2g

= g[Ω−1 −Ω−11(1′Ω−11)−11′Ω−1]g

= g′Ω−1g − (1′Ω−1g)2

1′Ω−11

=
g′g

θ2
− ρσ2

G(1′g)2

θ2(θ2 + nρσ2
G)
− (1′g)2

n(θ2 + nρσ2
G)

=
g′g

θ2
− (1′g)2

nθ2

=
nσ2

g

θ2

with

σ2
g = n−1g′g − (n−11′g)2.

That is,

V ar(β̂) =
θ2

nσ2
g

.

The variance of β̃ depends on the principal components included in the regression. The

largest characteristic root of matrix S is λ1 = 1 + (n − 1)ρ with associated characteristic
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vector x1 = (n−1/2, n−1/2, . . . , n−1/2)′. This eigenvector confounds with intercept term

and needs to be excluded. All other eigenvalues are equal to 1 − ρ. The corresponding

eigenvectors are not unique. One set of eigenvectors is

x2 =

(
1√
2
,− 1√

2
, 0, . . . , 0

)′
,

...

xi =

(
1√

(i− 1)i
, . . . ,

1√
(i− 1)i

,− i− 1√
(i− 1)i

, 0, . . . , 0

)′
,

...

xn =

(
1√

(n− 1)n
, . . . ,

1√
(n− 1)n

,− n− 1√
(n− 1)n

)′
.

Switching any two elements in these vectors at the same time yields another set of

eigenvectors.

Excluding x1, redefine Xm by Xm = (x2, . . . , xm), the matrix formed by the first m− 1

eigenvectors. To compute P1, we note that

Z′Z =

 n 1′Xk

X′k1 X′kXk


=

 n 0

0 Ik

 .

The inverse of Z′Z is

(Z′Z)−1 =

1/n 0

0 Im

 .

Therefore, Z(Z′Z)−1Z′ = n−111′ + XmX′m and

P1 = In − Z(Z′Z)−1Z′

= (In − n−111′)−XmX′m.
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Since P1 is idempotent and 1′P1 = 0, we have P1ΩP1 = θ2P1 and

V ar(β̃) =
g′P1ΩP1g

(g′P1g)2

=
θ2

g′P1g

=
θ2

g′g − n−1(1′g)2 − g′XmX′mg

=
θ2

nσ2
g − g′XmX′mg

=
θ2

nσ2
g − [(g′x2)2 + . . .+ (g′xm)2]

,

where σ2
g = n−1g′g − (n−11′g)2 is the variance of the components of vector g. One can see

from this relationship that adding more PCs increases the variance of β̃ unless the added

PCs are orthogonal to g (i.e., each of the added ones satisfies g′xm = 0). In addition, for

the same number of PCs used (i.e., the value of m is fixed), different choices of PCs could

result in a difference in efficiency. The ratio V ar(β̃)/V ar(β̂) is

nσ2
g

nσ2
g − g′XmX′mg

which is 1 if and only if X′mg = 0. This happens if no principal component is used. We

note that this ratio does not depend on ρ.

Example 2

Next we assume that there are K populations. There are nk subjects in population

k. The vector u in (2) is u = (u11
′
1, . . . , uK1′K)′. The variance of the elements in vector

u is denoted by σ2
u. That is, σ2

u = n−1u′u − (n−11′u)2. Assuming that there is no cryptic

relatedness, we have Ω = σ2
eI and Ω∗ = σ2

uS̃ + Ω with S̃ = diag(111
′
1, . . . ,1K1′K), the

relatedness matrix induced by population stratification. The matrix Ω∗ is block diagonal:

Ω∗ = diag(Ω∗1, . . . ,Ω
∗
k, . . . ,Ω

∗
K) where Ω∗k = σ2

eIk + σ2
u1k1

′
k. The largest eigenvalue for 1k1

′
k

is nk with corresponding eigenvector 1k, k = 1, . . . , K. All other eigenvalues are equal to 0.
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Each eigenvalue λ for matrix S̃ is a root to the equation |S̃− λI| = 0. This implies

|diag(111
′
1, . . . ,1k1

′
k, . . . ,1K1′K)− λI| =

K∏
k=1

|1k1′k − λIk|

= 0.

That is, the eigenvalues of S̃ consist of those of 1k1
′
k, k = 1, . . . , K. So the only non-zero

eigenvalues are nk, k = 1, . . . , K. It is straightforward to verify that the eigenvector

corresponding to n1 is (1′1,0
′
(−1))

′, where the subscript (−1) implies the part of the vector

excluding the first n1 elements. Eigenvectors corresponding to eigenvalues nk, k = 2, . . . , K

can be similarly constructed. If n1 = n2 = · · · = nK , the vector 1 = (1′1,1
′
2, . . . ,1

′
K)′ is

also associated with the largest eigenvalue of S̃ which is the common value n1. However, it

confounds with the intercept term and can not be used in the PCA method.

Assume that n1 > nk, k = 2, . . . , K. The eigenvector associated with the largest

eigenvalue of S̃ is x1 = (1′1,0
′
(−1))

′. Let’s use only this eigenvector in the principal

components method (i.e. m = 1). The matrix P1 turns out to be

P1 = I−

 n−11 111
′
1 010

′
(−1)

0′(−1)01 (n− n1)
−11(−1)1

′
(−1)

 .

Furthermore, it can be shown that

g′P1u = (n− n1)Cov(u(−1),g(−1))

g′P1g = n1σ
2
g1

+ (n− n1)σ
2
g(−1)

where

Cov(u(−1),g(−1)) = (n− n1)
−1
∑
i 6=1

niuiḡi − (n− n1)
−2

(∑
i 6=1

niui

)
·

(∑
i 6=1

niḡi

)

is the covariance between u(−1) and g(−1) and

σ2
g(−1)

= (n− n1)
−1g′(−1)g(−1) + (n− n1)

−2(g′(−1)1(−1))
2.
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is the variance of g(−1). So the bias of β̃ is

g′P1u

g′P1g
=

(n− n1)Cov(u(−1),g(−1))

n1σ2
g1

+ (n− n1)σ2
g(−1)

.

We note that this bias does not depend on σ2
e . If there are only two populations (i.e.,

K = 2), u(−1) = u212 is a vector of constants and Cov(u(−1),g(−1)) = 0. That is, β̃ is

unbiased. Another explanation of this fact is that u is a linear combination of 1 and x1, two

vectors contained in Z. If there are more than 2 populations, this conclusion is no longer

true.

Since Ω = σ2
eI, there is P1ΩP1 = σ2

eP1. So the variance of β̃ is

g′P1ΩP1g

(g′P1g)2
=

σ2
e

g′P1g

=
σ2
e

n1σ2
g1

+ (n− n1)σ2
g(−1)

.

Note that this variance does not depend on σ2
u.

We now investigate the bias of β̂. To this end, we note first that the inverse Ω−1 is also

block-diagonal with the kth block equal to

Ω−1k =
1

σ2
e

[
Ik −

σ2
uαk
nk

1k1
′
k

]
, k = 1, . . . , K,

where αk = 1/(σ2
e/nk + σ2

u). To compute the bias of β̂, which is (g′P2g)−1(g′P2u), we note
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that Ω−1k 1k = n−1k αk1k, 1′kΩ
−1
k 1k = αk. For simplicity, assume that K = 2. We have

P2u =

(
Ω−1 − Ω−111′Ω−1

1′Ω−11

)
·

 u111

u212


=

 u1Ω
−1
1 11

u2Ω
−1
2 12

− u11
′
1Ω
−1
1 11 + u21

′
2Ω
−1
2 12

1′1Ω
−1
1 11 + 1′2Ω

−1
2 12

 Ω−11 11

Ω−12 12


=

u1 − u2
1′Ω−11

 (1′2Ω
−1
2 12)Ω

−1
1 11

−(1′1Ω
−1
1 11)Ω

−1
2 12


=

α1α2(u1 − u2)
α1 + α2

 n−11 11

−n−12 12


g′P2u =

α1α2(u1 − u2)(ḡ1 − ḡ2)
α1 + α2

.

Furthermore,

g′kgk = nk(σ
2
gk

+ ḡ2k)

g′kΩ
−1
k gk =

g′kgk
σ2
e

− σ2
unkαkḡ

2
k

σ2
e

=
nkσ

2
gk

σ2
e

+ αkḡ
2
k

g′kΩ
−1
k 1k = αkḡk

g′P2g = g′Ω−1g − (g′Ω−11)2

1′Ω−11

=
n1σ

2
g1

+ n2σ
2
g2

σ2
e

+ α1ḡ
2
1 + α2ḡ

2
2 −

(g′Ω−11)2

1′Ω−11

=
n1σ

2
g1

+ n2σ
2
g2

σ2
e

+
α1α2(ḡ1 − ḡ2)2

1′Ω−11

=
n1σ

2
g1

+ n2σ
2
g2

σ2
e

+
α1α2(ḡ1 − ḡ2)2

α1 + α2

.

So the bias is

g′P2u

g′P2g
=

(u1 − u2)(ḡ1 − ḡ2)
n1σ2

g1
+n2σ2

g2

σ2
e

(1/α1 + 1/α2) + (ḡ1 − ḡ2)2
.
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Generally, if there are more that two populations (i.e., K > 2), it can be shown that

g′P2u =

∑
k nkḡk

∑
l 6=k nl(uk − ul)

(
∑

k αk)(
∏

i nk/αk)

=

∑
k<l nknl(uk − ul)(ḡk − ḡl)

(
∑

k αk)(
∏

k nk/αk)

and

g′P2g =
∑
k

[nkσ
2
gk
/σ2

e + αkḡ
2
k]−

(
∑

k αkḡk)
2∑

k αk

=
1

σ2
e

∑
k

nkσ
2
gk

+

∑
k<l αkαl(ḡk − ḡl)2∑

k αk

from which one would be able to compute the bias (g′P2u)/(g′P2g). Both the bias and the

variance of β̂ depend on σ2
e .

Example 3

The magnitude of pair-wise relatedness in a population does not need to be constant.

For instance, if there are two nuclear families from a single population, the relatedness

matrix may be modeled as a block diagonal matrix consisting of two blocks, one block for

each nuclear family. On the other hand, such a block diagonal matrix can also be explained

as a relatedness matrix for individuals from different populations (Example 2). Different

interpretation implies different estimates of the genetic effect size and the variance of these

estimates. The technical details are omitted since the computation is similar as those in

Example 1 and Example 2.
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Simulation studies

The data-generating model used in the simulation studies is (2), which is

y = u + βg + ε.

The value of σ2
e is fixed at 1. Each component of ε are independently and identically

normally distributed with mean 0 and variance σ2
e . The number of simulation replications

in an experiment is 1000. The matrix Ω, vector u, and the genotype score vector g are

fixed. In each replication, ε is randomly generated.

The first simulation study corresponds to Example 1 with u = 1. There are 500

subjects in a sample. The genotype score is 0 for the first 50, 1 the next 150, and 2 the last

300. The relatedness between any pair of subjects is ρ = 0.5. The polygenic variance is

σ2
G = 1. The first two eigenvectors from matrix S are used. The first one is x1 = 1. The

choice of the second eigenvector has great impact on the variance of β̃. To illustrate this

point, we choose x2 to be proportional to a vector whose first 200 elements are equal to 1,

the next 200 are equal to −1, and the last 100 are equal to 0. The ratio V ar(β̃)/V ar(β̂)

is equal to nσ2
g/(nσ

2
g − (g′x2)

2) = nσ2
g/(nσ

2
g − (−12.5)2) = 3.252. In comparison, if x2

is chosen to be a vector whose first element is 1/
√

2, last element −1/
√

2, and all other

elements 0, this ratio would be merely 1.009. Figure 1 presents the simulation result with

β = 0. It shows that β̃ has larger variance and the distributions of the squared t-statistic

from both methods conform with the 1-df chi-square distribution. To investigate the power

loss due to the use of principal components, we also consider the case where β = 0.1 (Figure

2). V ar(β̃) continue to have larger variance. The mixed effects model is more powerful as

indicated by its tendency of having larger (squared) t-statistic.

[Figure 1 about here.]

[Figure 2 about here.]
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In the second simulation study, it is assumed that data are from 4 populations.

Accordingly, the vector u has four segments. The elements of u are equal to 1 for segment 1,

2 for segment 2, 3 for segment 3, and 4 for segment 4. Hence the matrix Ω is σ2
u ·S+ I where

S = diag(111
′
1,121

′
2,131

′
3,141

′
4). Sample size and Genotype counts for each population is

shown in Table 1. We first investigate the validity of the PCA method and the mixed effects

model method when there is genetic effect does not exist (i.e., β = 0). We first used the

first two principal components of S in the PCA method (Figure 3) and then the first four

principal components (Figure 4). The first two principal components are indicator vectors

for population 1 and population 4, the populations have the largest number of subjects.

The first four principal components are indicator vectors for each of the four populations.

Due to their collinearity with the regression intercept, using four of them is equivalent to

using any three of them.

[Table 1 about here.]

The PCA method in Figure 3 is clearly invalid. Since the rank of S is 4, there are still

some population structure unexplained by the first two principal components. The PCA

method treats the residuals as iid while they are actually not. Bias in β̃ and inflation of

the squared t-statistic are expected (Figure 3). However, when 4 principal components are

used, β̃ is no longer biased (Figure 4). In Figure 3 and Figure 4, there is no change to the

mixed effects model method.

[Figure 3 about here.]

[Figure 4 about here.]
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Discussion

Large scale genetic association studies is a popular means for identifying genetic factors

underlying complex human traits. Cryptic relatedness and population stratification are

deemed to be issues unavoidable in such studies. In this work, we have conducted an

analytical comparison of two popular methods, i.e., the PCA method and the mixed effects

model, that are supposed to address these issues. We focused not only on the efficiency of

each method, but also on their validity through investigation of the bias and the variance

of genetic effect estimates. The findings are enlightening.

If there exists cryptic relatedness but there does not population stratification, the

mixed effects model is preferred as it has overall better performance. When there is no

association, both methods are valid. However, if there is association, the mixed effects

model is more powerful (Proposition 1). If there exists population stratification, both

methods can lead to biased estimates of the genetic effect (Proposition 2). In other

words, none of them can eliminate the confounding effect of population stratification.

However, simulation studies suggest that the mixed effects model is much less affected by

population stratification (Figure 3) and is almost as good as the PCA method in which the

population stratification is completely eliminated (Figure 4). These findings are consistent

to simulation studies reported previously23,29.

The eigenvectors are useful in graphically representing population stratification. But

the PCA method is generally not better than the mixed effects model in controlling for the

confounding effect of population stratification for reasons discussed previously. In addition,

our research has also revealed some issues not discussed before in using the PCA method.

Previous research has focused on the number of principal components to use. The issue of

what specific components to use appears to be ignored. As indicated by our examples, it

is not uncommon in genetic studies that eigenvalues are repeated. Our research indicates
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that different choices of the eigenvalues have an impact on the bias of the genetic effect

estimate and efficiency of association testing. This impact can be larger than the impact of

the choice of the number of eigenvectors (Example 1).
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Fig. 1.— Simulation result for the case of one population. The first two principal components
are used for the PCA method. The genetic effect is β = 0.
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Fig. 2.— Simulation result for the case of one population. The first two principal components
are used for the PCA method. The genetic effect is β = 0.1.
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Fig. 3.— Simulation result for the case of four populations. The first two principal compo-
nents are used in the PCA method. Genetic effect size is β = 0.
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Q−Q Plot: PCA Method

Quantiles of 1−df Chi−square Distribution
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Q−Q Plot: Mixed Effects Model

Quantiles of 1−df Chi−square Distribution
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Fig. 4.— Simulation result for the case of four populations. The first four principal compo-
nents are used in the PCA method. Genetic effect size is β = 0.
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Q−Q Plot: PCA Method

Quantiles of 1−df Chi−square Distribution
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Q−Q Plot: Mixed Effects Model

Quantiles of 1−df Chi−square Distribution
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Table 1: Genotype counts in each population for the simulation study involving four popu-
lations.

Genotype Score
Population 0 1 2 Total

1 240 30 30 n1 = 300
2 20 160 20 n2 = 200
3 20 70 60 n3 = 150
4 70 70 160 n4 = 300


