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SUMMARY

Study of tumor growth is an important area in cancer research. In this manuscript, we propose
a nonparametric least-squares method to estimate tumor growth function for the case that tumor
onset time is subject to interval censoring. Such scenarios constantly arise in animal tumorigenic-
ity experiments and tumor screening programs, in which tumor onset time is only known within
an interval made by adjacent screening times. The proposed estimator is shown asymptotically
consistent under a specific metric using modern empirical process theory. Simulation studies are
carried out to justify validity of the proposed method. Finally the method is applied to estimate
breast tumor growth for the cohort of breast cancer patients in the state of Iowa of the United
States using the data extracted from the Surveillance, Epidemiology and End Results (SEER)
program.

Some key words: asymptotic consistency; interval censoring; nonparametric least-squares estimate; tumor
growth/progression.

1. INTRODUCTION

Study of tumor growth is an important area in cancer research that has drawn a great attention
among cancer researchers since 1970’s when some worldwide tumor screening programs were
developed aiming to design cancer intervention programs for reducing cancer incidence and
cancer mortality. For example, women were invited to attend a breast cancer screening program
in Nijmegen, Netherlands since 1975 in which serial screening mammograms were obtained to
provide information on breast tumor growth (Peer et al., 1993). The knowledge of tumor growth
will be critical in helping plan and evaluate such tumor screening programs effectively.

Study of tumor growth is also motivated by an animal tumorigenicity experiment (Albert &
Shih, 2003) in which the objective was to compare tumorigenesis in mice injected with cell
lines carrying different gene mutations in order to understand the effect of genetic mutations on
tumorigenesis. In this experiment, five clones of mice were developed for each of two different
gene mutations with five immunodeficient mice within each clone. These mice were scheduled to
have follow-up screenings at 3 to 4-day intervals after injection. At each follow-up time, the mice
were checked for the presence of a tumor and the volume of an existing tumor was measured.
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Tumor growth was assessed based on these observed volumes to compare the tumor growth
processes from different gene mutations.

Tumor growth should be regarded as a stochastic process due to variability in tumor progres-
sion among cancer patients. The key characteristic of tumor growth is the tumor growth function
which is the expected tumor size as a function of time since the tumor onset. Various parametric
models for tumor growth function have been adopted in studying tumor growth in literatures.
Peer et al. (1993) calculated the growth rate defined as the tumor volume doubling time under
the exponential growth model, using the tumor volumes measured from the serial mammogra-
phy. Similar works were done by von Fournier et al. (1980), Norton et al. (1976) and Norton
(1988) under the Gompertz growth function while Spratt et al. (1993b) used the logistic growth
function to model the tumor growth. Spratt et al. (1993a) and Hart et al. (1998) summarised all
those growth functions and compared the results among them. The aforementioned approach was
referred to as “mathematical model approach” in Heitjan (1991), as the tumor growth function is
modeled using some known mathematical functions. Non-linear regression models with random
effects and autocorrelation were also utilised in Heitjan (1991) to ascertain predictors for tumor
growth.

It is noted that tumor onset time is often unknown in study of tumor growth. However, it is
assumed known in the methods described in the preceding paragraph mainly for mathematical
convenience. Albert & Shih (2003) developed a method that jointly models tumor onset time and
the growth function. Their method can be viewed as a latent variable approach: first, a discrete
distribution function is used to estimate the distribution of tumor onset time (latent variable)
under the framework of mixed-effects model; second, similar to Heitjan’s approach, both linear
and non-linear mixed-effects regression were used to model the tumor growth with tumor onset
time and covariates as predictors; finally, integrating the latent variable out from both the mixed-
effects tumor onset and the tumor growth models, a likelihood function can be easily formed to
carry out the maximum likelihood analysis.

Though Albert-Shih’s method nicely dealt with the issue of unknown tumor onset time, it is
still an approach from the paradigm of parametric estimation method as the distribution of tumor
growth needs to be assumed which is generally hard to justify in practice. In this manuscript, we
propose to estimate the tumor growth function from the paradigm of nonparametric estimation
method that not only deals with the unknown tumor onset issue but also does not need to as-
sume the distribution of tumor growth. We will show both theoretically and numerically that the
proposed method yields a consistent estimate of the true growth function.

The rest of manuscript is organised as follows: Section 2 presents the nonparametric least-
squares method to estimate the tumor growth function; Section 3 describes the asymptotic con-
sistency of the proposed estimator; Section 4 carries out simulation studies to justify validity of
the proposed method; Section 5 applies the method to study breast tumor growth using the data
extracted from the SEER program; Section 6 summarises the outcomes of this study and outlines
the potential extension to other problems. Technical details are included in the Appendix.

2. A NONPARAMETRIC LEAST-SQUARES ESTIMATION METHOD

Let (L,R] denote the random interval that contains tumor onset time T , i.e. T ∈ (L,R]. We
consider the situation that there is only one measurement of tumor size and let Y denote the
observed tumor size at a screening time O ≥ R. In most of applications we encountered O = R.
Here we allow the situation of O > R for the sake of generality. Therefore, the observed data



3

from a tumor growth process constitute

D = (L,R,O, Y ). (1)

In this paper, the stochastic process of tumor growth is assumed to be independent of tumor
onset time, which is a common assumption made in the literatures. Suppose that F (t) is the
cumulative distribution function of tumor onset time. The following objective functional

LS(G(·)) = E(Y,L,R,O)|L<T≤R≤O (Y −H(O))2 ,

is constructed as the utility functional for deriving a nonparametric least-squares estimate of the
tumor growth function, G(t) = EY (t). Here H(·) is the expected size observed at time O and
is a functional of G. It is easily shown that the functional H(·) that minimises LS(G(·)) is given
by

H(O) = EY |(L,R,O,L<T≤R≤O)Y

= ET |(L,R,O,L<T≤R≤O)(EY |(T,L,R,O,L<T≤R≤O)Y )

= ET |(L,R,O,L<T≤R≤O)G(O − T )

=

∫ R

L
G(O − t) 1

F (R)− F (L)
dF (t).

Let a class of monotone nondecreasing functions G defined as follows,

G = {G : [0,∞)→ [0,∞), G(·) is nondecreasing on [0,∞)}. (2)

then the true growth function G0(·) satisfies

G0(·) = argmin
G∈G

LS (G(·))

= argmin
G∈G

E(Y,L,R,O)|L<T≤R≤O

(
Y −

∫ R

L
G(O − t) 1

F (R)− F (L)
dF (t)

)2

, (3)

Let Di = (Li, Ri, Oi, Yi), i = 1, . . . , n be the independent and identically distributed copies
of D. If the cumulative distribution function of tumor onset time F is known, a nonparametric
estimate of G0, G̃ may be obtained by maximising the empirical version of the least-squares
objective functional given by

L̃S(G(·)) =
n∑
i=1

(
Yi −

∫ Ri

Li

G(Oi − t)
1

F (Ri)− F (Li)
dF (t)

)2

. (4)

In real applications, however, the distribution function of the onset time is usually unknown
as exemplified in our motivating problems. We suggest to use a consistent estimate F̂ of F to
replace F in the above least-squares objective functional (4). The whole estimation procedure
for G0 is described as follows:

1. Obtain the nonparametric maximum likelihood estimate (NPMLE) F̂ of the cumulative dis-
tribution function of tumor onset time by maximising the following likelihood function

L(F (t)) =
n∏
i=1

(F (Ri)− F (Li)).

using the iterative convex minorant algorithm given by Jongbloed (1998).
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2. Construct the empirical version of the least-squares objective functional (3) with F̂ replacing
F for (4), that is

L̂S(G(·)) =
n∑
i=1

(
Yi −

∫ Ri

Li

G(Oi − t)
1

F̂ (Ri)− F̂ (Li)
dF̂ (t)

)2

. (5)

3. The nonparametric least-squares estimate Ĝ(·) of the tumor growth function will be obtained
by minimising (5), that is

Ĝ(·) = argmin
G∈G

L̂S (G(·)) .

In general, finding the minimiser of (4) forG(·) is a daunting job becauseG(·) appears in (4) in
a convolution form. Nevertheless, the use of NPMLE of F facilitates a numerically manageable
approach for estimatingG0(·) as the integral in (5) can be written as a finite sum with the NPMLE
F̂ . As a step function, suppose the NPMLE F̂ has jumps only at points in S = {s1, s2, . . . , sk}
with 0 ≤ s1 < s2 < · · · < sk <∞, the ordered distinct observation times of the set {Li, Ri, i =
1, 2, . . . , n}. Hence it results in (5) being rewritten as

L̂S(G(·)) =
n∑
i=1

Yi − ∑
sj∈(Li,Ri]

G(Oi − sj)
f̂(sj)

F̂ (Ri)− F̂ (Li)

2

, (6)

where f̂(t) is the jump size of the NPMLE F̂ (t) at time t. The nonparametric least-squares
estimate (NPLSE) Ĝ(·) of G0(·) can be uniquely defined as a step function with jumps only at
points in V = {v1, v2, . . . , vl} with 0 < v1 < v2 < · · · < vl <∞, the ordered distinct points of
the set

{(Oi − sj)|Li < sj ≤ Ri, for i = 1, 2, . . . , n; j = 1, 2, . . . , k}

with nondecreasing constraints:

0 ≤ Ĝ(v1) ≤ Ĝ(v2) ≤ · · · ≤ Ĝ(vl). (7)

Let G = (G1, G2, . . . , Gl) ≡ (G(v1), G(v2), . . . , G(vl)). Then the objective functional (5)
can be simplified to a quadratic form of G

L̂S(G) = A1 −GTA2 +GTA3G,

where A1 =
∑n

i=1 Y
2
i , A2 is the l−dimensional vector with the uth element given by

A2[u] =

n∑
i=1

2Yi
f̂(Oi − vu)

F̂ (Ri)− F̂ (Li)
∆i,u, for u = 1, 2, . . . , l,

and A3 is the l by l symmetric matrix with the (u, u′) entry given by

A3[u, u
′] =

n∑
i=1

f̂(Oi − vu)f̂(Oi − vu′)
(F̂ (Ri)− F̂ (Li))2

∆i,u∆i,u′ , for u, u′ = 1, 2, . . . , l,

for which ∆i,u = 1[Li < Oi − vu ≤ Ri and Oi − vu ∈ S] for i = 1, 2, . . . , n, u = 1, 2, . . . , l.
Then this nonparametric estimation problem becomes a quadratic programming problem subject
to the linear inequality constraints given by (7).
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To calculate the NPLSE Ĝ, either the iterative convex minorant algorithm (ICM) developed by
Jongbloed (1998), or the projected Newton-Raphson algorithm developed by Cheng et al. (2011)
can be applied. From our experiment, it appears that the projected Newton-Raphson algorithm
converges much faster than the ICM algorithm and hence is adopted in our calculation.

3. CONSISTENCY OF THE NONPARAMETRIC LEAST-SQUARES ESTIMATOR

In this section, we state the consistency of the proposed NPLSE in a specific metric under
some mild regularity conditions. As the NPLSE is a special case of M -estimation, the modern
empirical process theory of M -estimation will be utilised throughout the technical arguments.

Let

mG,F (D) = −
(
Y −

∫ R

L
G(O − t) 1

F (R)− F (L)
dF (t)

)2

,

be a stochastic process indexed by functions G and F , where G ∈ G defined in (2) and F ∈ F ,
a class of cumulative distribution functions. Let P and Pn be the underlying true probability and
empirical measures, respectively, for the observed data (D1, D2, · · · , Dn). We define a deter-
ministic bivariate functional M(G,F ) in the index set G × F as

M(G,F ) = PmG,F (D)

and a random functional Mn(G) in the index set G as

Mn(G) = PnmG,F̂ (D)

=
1

n

n∑
i=1

−

(
Yi −

∫ Ri

Li

G(Oi − t)
1

F̂ (Ri)− F̂ (Li)
dF̂ (t)

)2

,

where F̂ is the NPMLE of the cumulative distribution function F0 of tumor onset time with
interval-censored observations.

The NPLSE Ĝ can be therefore regarded as the M -estimator defined as

Ĝn = argmax
G∈G

Mn(G).

The following regularity conditions are sufficient to warrant the consistency of the NPLSE
Ĝn:
Condition 1. The observation interval (L,R] is sampled from (L0, R0] with 0 ≤ L0 < R0 <∞
and is separable in the sense that there exists a constants µ0 > 0 such that

P (R− L > µ0) = 1.

Condition 2. The underlying density function f0(t) of tumor onset time has a positive lower
bound on (L0, R0], i.e.

f0(t) ≥ κ0 > 0, for t ∈ (L0, R0].

Condition 3. The class for the tumor growth function G as defined in (2) is uniformly bounded,
that is

sup
t∈[0,τ)

G(t) ≤ ν0, for G ∈ G,

where ν0 ∈ (0,∞) and τ = O0 − L0 is the study duration with O0 being the latest monitoring
time for tumor in the study.
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Remark. Conditions 1 and 2 are reasonable in view of real applications and they directly imply
that there exists a constant ξ0 such that F0(R)− F0(L) ≥ ξ0 for the true cumulative distribution
function F0(t) of tumor onset time. It further implies that there exists a constant ρ0 > 0 such that
P
(
F̂ (R)− F̂ (L) ≥ ρ0

)
→ 1 as sample size goes to infinity due to the fact that the NPMLE F̂

converges uniformly to F0 with probability 1 (Groeneboom & Wellner, 1992). Condition 3 is
intuitively a reasonable assumption for the tumor growth function in cancer research.

A generalised L2-norm d(·, ·) is defined for the class G as follow:

d(G1, G2) =

(
E(L,R,O)

(∫ R

L
(G1(O − t)−G2(O − t))

1

F0(R)− F0(L)
dF0(t)

)2
) 1

2

for any G1, G2 ∈ G.

THEOREM 1. If Conditions 1-3 satisfy, the NPLSE defined as

Ĝn = arg max
G∈G

Mn(G).

converges in probability to the true tumor growth function G0 in metric d(·, ·), that is,
d(Ĝn, G0)→p 0

The proof of Theorem 1 is given in the Appendix.

4. SIMULATION STUDY

Monte-Carlo Simulations with 1,000 repetitions for sample size n = 100, 300, and 500 are
employed, respectively, to study the asymptotic behavior of the proposed NPLSE. For each case,
data {(Li, Ri, Oi, Yi), i = 1, . . . , n} are generated in the following manner: tumor onset time
Ti is sampled from an Exponential distribution with mean 5; a series of inter-arrival screening
times are generated independently from an Exponential distribution with mean 2 and the interval
(Li, Ri] is selected from the adjacent screening times such that Li < Ti ≤ Ri. If Ti occurs before
the first screening time, Li is chosen to be 0 and Ri the first screening time. For this simulation
study, the tumor is assumed observed at time Oi = Ri and the tumor size Yi at Oi is sampled
from an Exponential distribution with mean 2(Ri − Ti) + 0.02. The NPMLE F̂ (t) and NPLSE
Ĝ(t) are computed for each of the 1,000 repetitions. All computation tasks for the simulation
study were performed with Intel Core 2 CPU 6600 @2.40GHZ and the computing software was
developed for R 2.9.1.

In Figure 1, the three plots on the left column show the single NPMLEs of the cumulative
distribution function of tumor onset time in three repetitions randomly selected from the Monte-
Carlo simulation study and the three plots on the right column present the mean, 2.5 and 97.5
percentiles of the 1,000 NPMLEs of the cumulative distribution function of tumor onset time
from the simulation study. The results clearly show that the NPMLE F̂ (t) is asymptotically
consistent and its variation decreases as sample size increases.

Figures 2 presents the simulation results for NPSLE Ĝ(t) when the Exponential distribution
with mean of 2 is used for the independent inter-arrival screening times. Again, the three plots
on the left column describe the single NPLSEs of the tumor growth function in three repetitions
from the Monte-Carlo simulation study and the three plots on the right column give the mean,
2.5 and 97.5 percentiles of the 1,000 NPLSEs of the tumor growth function from the simulation
study. The results demonstrate that the newly proposed NPLSE Ĝ(t) of the tumor growth func-
tion is asymptotically consistent and its variance decreases as sample size increases. However,
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Fig. 1: The Monte-Carlo simulation study for the nonparametric maximum like-
lihood estimate of the cumulative distribution function of tumor onset time. Left
panel: the NPMLEs in 3 random repetitions; right panel: the mean, 2.5 and 97.5
percentiles of the NPMLEs with 1,000 repetitions.
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Fig. 2: The Monte-Carlo simulation study for the nonparametric least-squares
estimate of the tumor growth function. Left panel: the NPLSEs in 3 random repe-
titions; right panel: the mean, 2.5 and 97.5 percentiles of the NPLSEs with 1,000
repetitions.
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compared to the NPMLE F̂ (t), it appears the NPLSE Ĝ(t) is more variable which may imply
that Ĝ(t) converges to the true tumor growth function in a rate slower than n1/3, the rate of
convergence of F̂ (t) (Groeneboom & Wellner, 1992).

5. DATA ANALYSIS

The proposed estimation method is applied to the breast tumor data obtained from the Surveil-
lance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI).
This program collects and publishes cancer incidence and survival data from population-based
cancer registries covering over one quarter of the US population. The collected information by
the SEER program includes patient demographics, primary tumor site, tumor stage and size at
diagnosis, follow-up for survival status, etc. In this study, the following information for each
case can be generated directly or indirectly from the original data: birth year, tumor diagnosis
time accurate to month, tumor type and tumor size. Breast tumor is classified into four types
(SEER, 2011) denoted as 0,1,2 and 4 to represent in situ, localized, regional and distant tumors,
respectively. Tumor size is measured at diagnosis and is the largest diameter of the primary breast
tumor in millimeters. Survival status of breast cancer subjects is also known and is accurate to
month.

We study the cohort of white females in the state of Iowa who were alive in 1999. According
to the registry data obtained from the SEER program, there were a total of 1,386,855 female
subjects with age between 0 and 84 in 1999 and most of them were followed to December, 2008
with information available regarding their breast tumor incidence and survival status between
1973 and 2008. In this study, we focus on the cohort of Iowa white women who were at risk
of breast cancer by the end of 1999. Thus 17,771 Iowa women who were diagnosed of having
breast tumor prior to December 31, 1999 will be excluded from the study that results in a total
of 1,369,084 women for the study cohort and among them 20,576 women had a breast tumor
diagnosed between 2000 and 2008 for the first time.

5·1. NPMLE of the Cumulative Distribution Function for Tumor Onset Time
The focused study cohort of Iowa white women who were at risk of breast cancer on January

1, 2000 constitutes a sample of the special case in interval censored data for tumor onset time,
current status data or interval-censoring case 1 data (Groeneboom & Wellner, 1992). Either Li =
0 (left-censored case) for the ith subject who had a breast tumor diagnosed between January
1, 2000 and December 31, 2008 for the first time or Ri =∞ (right-censored case) for the ith
subject who had no breast tumor detected before December 31, 2008. We estimate the cumulative
distribution function of breast tumor onset age in months. So the observation times Ri for left-
censored case and Li for the right-censored case are the number of months since birth to the time
at diagnosis and the number of months from birth to December, 2008, respectively. Because only
the birth year is available in the data set, the birth month is randomly sampled uniformly between
1 and 12 in order to obtain Li and Ri in month. 1,000 NPMLEs of the cumulative distribution
function of tumor onset age in month can be calculated with 1,000 repetitions of random samples
for the birth month. The mean of the 1,000 NPMLEs is used as F̂ for the subsequent analysis of
tumor growth function. From F̂ as shown in Figure 3, it appears there is almost no incidence for
breast cancer prior to age of 20 years old (240 months after birth) and the incidence rate peaks
between ages from 33 and 42 years old (400 to 500 months after birth) and ages between 50 and
67 years old (600 to 800 months after birth).
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5·2. NPLSE of the Tumor Growth Function
The 20,576 Iowa white women from the aforementioned study cohort who had their first breast

tumor diagnosed between January 1, 2000 and December 31, 2008 are available for the analysis
of tumor growth. The subjects with the largest diameter of primary breast tumor greater than 50
mm are regarded as outliers and excluded from our analysis. The tumor growth functions for
the four types of breast tumor, in situ, localized, regional and distant, are estimated, respectively,
using the nonparametric least-squares estimation method developed in Section 2 with F̂ given in
Section 5·1.

Let Dk = {(Lk,i, Rk,i, Ok,i, Yk,i), i = 1, . . . , nk} denote the data sets obtained for the sub-
jects with the kth tumor type at diagnosis for k = 0, 1, 2, 4. Yk,i is the tumor size measured at
Ok,i = Rk,i. Because of the nature of registry data, information for tumor is only available when
it was diagnosed. Hence Lk,i could be naturally set at zero. However, we found that such work-
ing interval with the left end at zero for tumor growth will not generate a satisfactory outcome
and the nonparametric least-squares estimation procedure basically results in a horizontal line
at the mean tumor size for the tumor growth function. The poor estimation is largely due to
the fact that the working interval for determining the age of tumor onset is too wide so that the
nonparametric estimate of the conditional density for the age at tumor onset used in (6) tends to
be flat which equally distributes the observed tumor size at any point in the interval. To avoid
this phenomenon, we need to construct a tighter working interval that brackets the age of tumor
onset.

With the intuition that a smaller tumor is expected to have a shorter growing time, we propose
to construct a tighter working interval for each subject based on the individual tumor size and
the growth rate for each tumor type, which may be estimated from the ordinary least-squares
estimation method (OLSE) in an ad-hoc approach. Initially, we suppose that each observed tumor
has the onset time within 60 months to the diagnosis as it is very unlikely that a breast tumor
was undiagnosed for more than 5 years since the onset nowadays. So the estimated growth rate
β̂k for each type of breast tumor (k = 0, 1, 2, 4) can be obtained as the estimated slope from the
OLSE model with the working interval fixed at 60 months. The estimated standard error in the
OLSE model for the kth type of breast tumor is given by σ̂2k =

∑nk
i=1 ê

2
k,i/(nk − 1), where

êk,i = Yk,i −
∫ Rk,i

Rk,i−60
β̂k(Rk,i − t)

dF̂ (t)

F̂ (Rk,i)− F̂ (Rk,i − 60)
.

The results of OLSE for tumor growth rate of all four types are summarised in Table 1.
Then the working left end point of the observation interval for each subject is chosen as

Lk,i = Rk,i −min((Yk,i − ek,i)/β̂k, 60),

where ek,i is sampled from the normal distribution with mean 0 and variance σ̂2k, and it is set as
0 if Yk,i − ek,i < 0.

With the working interval constructed as above, the NPLSEs of the tumor growth function for
different types of breast tumor are computed and plotted in Figure 4. It appears that a in situ or
localized tumor has a slower growth rate and a regional or distant tumor grows much rapidly.

6. DISCUSSION

In this manuscript, we developed a nonparametric estimation method aiming to study tumor
growth when the exact information about tumor onset time is not available. The proposed method
is shown consistent using modern empirical process theory. Extensive simulation studies are
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carried out to provide numerical evidence for validity of the method. This method is robust
and can be generally used in estimation of a monotone function that characterises a underlying
stochastic process for the case of incomplete observation that the starting time of the process
is subject to interval censoring. Particularly, this method can be naturally applied to HIV/AIDS
study for estimating the AIDS incubation time with both HIV infection and AIDS onset times
being interval censored that has been widely researched in literatures by, for example, Padian
et al. (1987), DeGruttola & Lagakos (1989), Gomez & Lagakos (1994), Gomez & Calle (1999),
Tu (1995), Sun (1995) and Sun (1997).

Though not theoretically justified, the outcome from the extensive simulation study suggests
that the rate of convergence of the proposed estimation procedure should not be high and is
possibly well below n1/3. The lower rate of convergence implies that a large sample is required
for the method to yield a satisfactory estimate of the underlying tumor growth function.

The proposed method is developed for data structure D = (L,R,O, Y ), where (L,R] pro-
vides the information for tumor onset time and Y is the only measurement for tumor size avail-
able at timeO. This data structure fits many real scientific problems. Nonetheless, a more general
data structure consisting of a random vector

D = {(L,R,K,OK,1, . . . , OK,K , YK,1 . . . , YK,K),

withK being the random number of measurements made for tumor progression and YK,j the size
measured at time OK,j , is also seen in practice of cancer research, for example,Albert & Shih
(2003). To accommodate this data structure, we may extend the proposed method by treating
multiple measurements for the tumor progression on a same subject as independent observations
of tumor size on different subjects. This will results in an ad-hoc approach for estimating the
tumor growth function with low estimation efficiency. To improve the estimation efficiency, one
has to account for the correlation structure among subsequent measurements of tumor size. The
statistical model to be considered for possible correlations is not trivial and remains an open
research problem for further investigation.

There is no formal nonparametric inference procedure for comparing tumor growth curves un-
der the circumstance considered in this manuscript. Although a nonparametric permutation test
based on the difference of the area under the estimated tumor growth curves can be constructed,
the inference of this test procedure can be very time-consuming. The study of asymptotic dis-
tribution of a class of functionals of the proposed NPLSE may be similarly conducted as those
in Zhang (2006) and Balakrishnan & Zhao (2009). The result can be potentially useful in devel-
oping a nonparametric test statistic for group comparison of tumor growth curves and hence is
highly desired. It is, however, a technically challenging task as the rate of convergence of NPLSE
is unknown and it remains an open question for future research.

APPENDIX: THE PROOF OF THEOREM 1
We prove Theorem 1 by verifying the conditions for the general consistency theorem of M -estimation

given by van der Vaart (1998) (Theorem 5·7). For this particular setting, we shall verify the following
three conditions:

(a) supG∈G |Mn(G)−M(G,F0)| P→ 0,
(b) supG:d(G,G0)>εM(G,F0) < M(G0, F0),
(c) The sequence of estimates Ĝn satisfying

Mn(Ĝn) ≥Mn(G0)− op(1).
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using modern empirical process theory. Throughout the rest of paper, K is denoted as a universal constant
that may vary from place to place.

To justify (a), we rewrite

sup
G∈G
|Mn(G)−M(G,F0)| ≤ sup

G∈G
|Mn(G)−M(G, F̂ )|+ sup

G∈G
|M(G, F̂ )−M(G,F0)|. (A1)

and we show that both supG∈G |Mn(G)−M(G, F̂ )| and supG∈G |M(G, F̂ )−M(G,F0)| converge to 0
in probability. The first term in (A1) can be rewritten as

sup
G∈G
|Mn(G)−M(G, F̂ )| = sup

G∈G
|PnmG,F̂ (D)− PmG,F̂ (D)|

= sup
m∈M

|(Pn − P )mG,F̂ (D)|,

whereM = {mG,F̂ (D) : G ∈ G}. Hence to show supG∈G |Mn(G)−M(G, F̂ )| converges to 0 in prob-
ability, it suffices to show thatM is P-Glivenko-Cantelli when n is sufficiently large.

By Theorem 2·7·5 in van der Vaart & Wellner (1996), we have that for any ε > 0,
logN[ ](ε,G, L1(P )) ≤ K

(
1
ε

)
. This implies that there exists a set of ε−brackets

{[li, ui] : i = 1, 2, . . . , exp(Kε−1), P (ui − li) < ε}

and for any G ∈ G, there exists some i ∈ [1, exp(Kε−1)] such that li(t) ≤ G(t) ≤ ui(t) for t ∈ [0, τ).
We construct the following set of brackets forM, {[ml

i,m
u
i ] : i = 1, 2, . . . , exp(Kε−1)}, where

ml
i = −

Y 2 − 2Y

∫ R

L

li(O − t)
1

F̂ (R)− F̂ (L)
dF̂ (t) +

(∫ R

L

ui(O − t)
1

F̂ (R)− F̂ (L)
dF̂ (t)

)2
 ,

and

mu
i = −

Y 2 − 2Y

∫ R

L

ui(O − t)
1

F̂ (R)− F̂ (L)
dF̂ (t) +

(∫ R

L

li(O − t)
1

F̂ (R)− F̂ (L)
dF̂ (t)

)2
 .

It follows that

P (mu
i −ml

i) = E(Y,L,R,O)(m
u
i −ml

i) = E(L,R,O)EY |(L,R,O)(m
u
i −ml

i)

= E(L,R,O)EY |(L,R,O)

{∫ R

L

(ui(O − t)− li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t)(

2Y +

∫ R

L

(ui(O − t) + li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t)

)}

= E(L,R,O)

{∫ R

L

(ui(O − t)− li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t)(

2EY |(L,R,O)Y +

∫ R

L

(ui(O − t) + li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t)

)}
.

We note that

EY |(L,R,O)Y =

∫ R

L

G0(O − t) 1

F0(R)− F0(L)
dF0(t),

where F0 is the true cumulative distribution function of tumor onset time and G0 the true tumor growth
function. With Condition 3 given in Section 3, it can be made that for any G ∈ G, G(O − t) ≤ ν0
for t ∈ (L,R]. Because [li, ui] is a ε−bracket for some G ∈ G, for a sufficiently small ε, it is rea-
sonable to let li(O − t) ≤ ν0, ui(O − t) ≤ 2ν0 for t ∈ (L,R]. Hence it follows that EY |(L,R,O)Y ≤
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ν0
∫ R
L

1
F0(R)−F0(L)

dF0(t) = ν0 and

∫ R

L

(ui(O − t) + li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t) ≤ 3ν0

∫ R

L

1

F̂ (R)− F̂ (L)
dF̂ (t) = 3ν0.

Therefore,

P (mu
i −ml

i) ≤ KE(L,R,O)

{∫ R

L

(ui(O − t)− li(O − t))
1

F̂ (R)− F̂ (L)
dF̂ (t)

}

≤ KE(L,R,O)

{∫ R

L

(ui(O − t)− li(O − t))dF0(t)

}
= KP (ui − li) ≤ Kε

due to the arguments made in the Remark in Section 3 and the uniformly consistency of F̂ shown by
Groeneboom & Wellner (1992). This implies that logN[ ](ε,M, L1(P )) ≤ K

(
1
ε

)
and henceM is indeed

P-Glivenko-Cantelli by Theorem 19·4 of van der Vaart (1998).
For the second term in (A1), it can be shown that

|M(G, F̂ )−M(G,F0)| =
∣∣E(Y,L,R,O)[(a− b)(2Y − a− b)]

∣∣
≤ E(Y,L,R,O)[|a− b||2Y − a− b|] = E(L,R,O)EY |(L,R,O)[|a− b||2Y − a− b|]
≤ E(L,R,O)

[
|a− b|(EY |(L,R,O)Y + a+ b)

]

where a =
∫ R
L
G(O − t) 1

F̂ (R)−F̂ (L)
dF̂ (t) ≤ ν0, b =

∫ R
L
G(O − t) 1

F0(R)−F0(L)
dF0(t) ≤ ν0, and c =

EY |(L,R,O)Y =
∫ R
L
G0(O − t) 1

F0(R)−F0(L)
dF0(t) ≤ ν0. It follows that

|M(G, F̂ )−M(G,F0)| ≤ KE(L,R,O)|a− b|.
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With Conditions 1-3, we can show that

E(L,R,O)|a− b| = E(L,R,O)

∣∣∣∣∣
∫ R

L

G(O − t)

(
1

F̂ (R)− F̂ (L)
dF̂ (t)− 1

F0(R)− F0(L)
dF0(t)

)∣∣∣∣∣
= E(L,R,O)

∣∣∣∣∣
∫ R

L

G(O − t) 1

F̂ (R)− F̂ (L)
d
(
F̂ (t)− F0(t)

)
+

∫ R

L

G(O − t)

(
1

F̂ (R)− F̂ (L)
− 1

F0(R)− F0(L)

)
dF0(t)

∣∣∣∣∣
≤ E(L,R,O)

∣∣∣∣∣
∫ R

L

G(O − t) 1

F̂ (R)− F̂ (L)
d
(
F̂ (t)− F0(t)

)∣∣∣∣∣
+E(L,R,O)

∣∣∣∣∣
∫ R

L

G(O − t) (F0(R)− F0(L))− (F̂ (R)− F̂ (L))

(F̂ (R)− F̂ (L))(F0(R)− F0(L))
dF0(t)

∣∣∣∣∣
≤ KE(L,R)

∣∣∣∣∣
∫ R

L

d
(
F̂ (t)− F0(t)

)∣∣∣∣∣
+KE(L,R)

∣∣∣∣∣((F0(R)− F0(L))− (F̂ (R)− F̂ (L))
)∫ R

L

dF0(t)

∣∣∣∣∣
≤ KE(L,R)

∣∣∣(F̂ (R)− F0(R))− (F̂ (L)− F0(L))
∣∣∣

+KE(L,R)

∣∣∣((F̂ (L)− F0(L))− (F̂ (R)− F0(R))
)∣∣∣

≤ K
(
ER

∣∣∣F̂ (R)− F0(R)
∣∣∣+ EL

∣∣∣F̂ (L)− F0(L)
∣∣∣) .

Since

P

{
lim
n→∞

sup
t∈R
|F̂ (t)− F0(t)| = 0

}
= 1

as given in Gnoeneboom & Wellner (1992), using Lebesgue’s dominated convergence theorem results in

ER

∣∣∣F̂ (R)− F0(R)
∣∣∣→p 0 and EL

∣∣∣F̂ (L)− F0(L)
∣∣∣→p 0.

Therefore E(L,R,O)|a− b| →p 0 and it follows that |M(G, F̂ )−M(G,F0)| →p 0. So (a) holds.
It is straightforward to show that

M(G0, F0)−M(G,F0) = E(Y,L,R,O)

(
(Y − b)2 − (Y − c)2

)
= E(L,R,O)

[
(c− b)EY |(L,R,O)(2Y − b− c)

]
= E(L,R,O)(b− c)2

= E(L,R,O)

(∫ R

L

(G(O − t)−G0(O − t)) 1

F0(R)− F0(L)
dF0(t)

)2

= d2(G,G0).

This immediately justifies (b). Because the estimate Ĝn is obtained by maximising the objective function
Mn(G) over the parameter space G, so (c) automatically holds. Hence the proof is complete.
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Fig. 3: The average of NPMLEs of the cumulative distribution function of breast
tumor onset age in month.

Table 1: The Ordinary Least-Squares Estimates of Tumor Growth Rate

Type β̂k Std (σ̂k) Expected Size with 60 month
In situ 0.2891 9.39 17
Localized 0.3847 9.69 23
Regional 0.6264 12.10 37
Distant 0.7127 13.18 42
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Fig. 4: The NPLSEs of breast tumor growth functions


