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Abstract

Estimating parameters in a mixture of normal distributions dates back to the 19th century when Pearson
originally considered data consisting of ratios of forehead to body length of crabs from the Bay of Naples.
Since then, many real world applications of mixtures have led to various proposed methods for studying
similar problems. Among them, maximum likelihood estimation (MLE) and the continuous empirical char-
acteristic function (CECF) methods have drawn the most attention. However, the performance of these
competing estimation methods has not been thoroughly studied in the literature and conclusions have not
been consistent in published research. In this article, we review this classical problem with a focus on esti-
mation bias. An extensive simulation study is conducted to compare the estimation bias between the MLE
and CECF methods over a wide range of disparity values. We use the overlapping coefficient (OC) to mea-
sure the amount of disparity, and provide a practical guideline for estimation quality in mixtures of normal
distributions. Application to an ongoing multi-site Huntingtons disease study is illustrated for ascertaining
cognitive biomarkers of disease progression.
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1 Introduction

Mixture (or mixing) distributions refer to composite distributions constructed by mixing a number (K) of

component distributions. Estimation of mixture distributions is a classical statistical problem which has been

studied for over 100 years. The first account of mixture data being analyzed was documented by Pearson [12] in

1894, in which a series of equations were derived in order to estimate parameters denoting crab characteristics

in the case where the number of components is two (K = 2). The word mixture is used because the density

function of a random observation is a mixing of several (unique) component density functions of the form

f(x) =
∑K

i=1 ηifi(x), with
∑K

i=1 ηi = 1 and fi(x), i = 1, . . . ,K being unique densities with known form. Each

observation comes from one of the K (unique) component distributions with unknown membership status. The

aim of mixture modeling is to estimate the parameters of each component density, fi, as well as the mixing
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parameters, ηi. This problem can be also regarded as a missing data problem, as the group membership or the

component distribution from which an observation is generated is not known. We’d not only like to be able

to estimate the parameters from a mixture, but also to gain an understanding of estimation performance over

a wide range of settings. Mixtures have been used to analyze data arising in Hydrology [9], Economics [19],

Ecology [12], as well as many other fields [3]. Partial mixtures, for which group membership is known for a

certain subjects in the data set, have also been considered [5].

Several estimation methods for normal mixtures have been proposed in the literature. Among them,

the ordinary maximum likelihood estimation method (MLE) appears to be a straightforward choice, as the

likelihood for the mixture is easy to establish. However, directly calculating the MLE via optimizing the

likelihood for a mixture of normal distributions is difficult and numerical algorithms can lead to computational

issues such as non-convergence, as noted in [19]. Hosmer [5] developed an estimation method for the case

K = 2, which can be viewed as a special case of the well-known Expectation-Maximization (EM) algorithm

for computing the MLE in missing data problems [2]. He found that the MLE may not perform well with

regards to bias in the small sample case, especially when the two distributions are poorly separated. Leytham [9]

corroborated Hosmer’s work in regards to the estimation of the means and variances in normal mixtures through

simulation, but claimed that estimation of quantiles for normal mixtures may be approximately unbiased.

Moreover, results regarding the MLE for normal mixtures are inconsistent in the literature. Some researchers

report unbiased estimation via the MLE [10], but others conclude otherwise [9, 19]. Mixtures of normal

distributions may have a model identifiability issue and the likelihood can be unbounded for some special

cases [1, 20]. This means the EM algorithm may be converging to a local maximum of the likelihood and

may then yield biased estimation for model parameters of interest. In response to the unbounded likelihood

of normal mixtures, alternative methods such as the Moment Generating Functions method (MGF) [13], the

Discrete Empirical Characteristic Function method (DECF) [17], and the Continuous Empirical Characteristic

Function method (CECF) [19] have been proposed. They can be viewed as special cases of Generalized Methods

of Moments (GMM) [20]. Limited simulation studies have provided some numerical evidence for the merit of

these methods compared to MLE [19]. The question is whether this set of GMM methods performs better

than the MLE in general.

Our study of mixture distributions is motivated by empirical issues with progression marker data in Hunt-

ington Disease (HD). HD is an autosomal dominant neurodegenerative disease caused by the trinucleotide

cytosine-adenine-guanine (CAG) expansion in the gene of the protein huntingtin. Clinical symptoms of HD

include progressive motor dysfunction, cognitive decline, and psychiatric disturbance [6]. Individuals who have

a CAG repeat of length 36 or greater are referred to as at-risk of HD, and individuals who are at-risk of HD

but have not yet received the HD motor diagnosis are described as being prodromal-HD (prHD). As the disease

progresses, prHD individuals exhibit impairments noted above, often with daily functioning deterioration as
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a result, and patients with larger CAG repeats often deteriorate at much faster rates than those with smaller

CAG repeats. Although the CAG expansion is vital for determining the at-risk status of an individual, it is

estimated that fewer than 5% of those at-risk (i.e. having at least one parent diagnosed with HD in their

lifetime) of having an expansion length of 36 or greater are willing to undergo the genetic testing to ascer-

tain their at-risk status. This is because knowing their at-risk status may largely affect their family lives,

employment opportunities, and insurance coverage, in addition to adding psychological disturbance [18]. As a

result, at-risk status information is not always known, and in the past, researchers have used proxies for at-risk

status. For example, [8] used the information that at least one parent was diagnosed with HD as a proxy for

at-risk status. However, using such information as a proxy can result in biased estimation and invalid inference

for understanding disease progression in HD. We believe that discovering critical HD progression biomarkers

to serve as a proxy for the at-risk status of HD for individuals who are unwilling to undergo gene testing is

profound, because these individuals can receive a timely treatment, if available, and avoid the aforementioned

negative impacts associated with a positive result from the gene test for HD. Essentially, the task is to study the

distributions of potential HD progression biomarkers for both HD at-risk (prHD) and healthy control cohorts

when the information of CAG is unknown.

In this article, we review the existing methods for estimating normal mixtures and conduct an overarching

numerical experiment to examine their estimation performance with focus on comparing the bias between the

MLE via EM algorithm and CECF method. In addition to the numerical experiment, we apply the methods to

HD data from the PREDICT-HD study. Intuitively, the estimation of a mixture distribution should be largely

influenced by the disparity between the component distributions. We use the OC [7] as a disparity index for

quantifying the difference between the two component distributions, and we study the estimation performance

over a wider range of this disparity index than considered by previous authors. We aim to provide a practical

guide for the validity of the methods in terms of estimation bias in relation to the disparity index.

The rest of the paper is organized as follows. Section 2 provides an overview of the competing methods

proposed in the literature and provides a disparity index to quantify the difference between two distributions.

Section 3 presents an extensive simulation study comparing the performance of the MLE via the EM algorithm

and the CECF method under various settings, along with the index values. Section 4 applies this index to

PREDICT-HD data to ascertain HD cognitive biomarkers as potential proxy variables for HD at-risk status.

Section 5 gives our concluding remarks and some guidance regarding analyzing normal mixtures.
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2 Overview of the Methods for Estimation of a Normal Mixture

In this section, we provide an overview of the estimation methods mentioned in Section 1, specifically in the

case that the data come from a mixture of two component normal distributions. Suppose we observe a random

sample of continuous outcomes Y1, Y2, · · · , Yn that are distributed according to a normal mixture of N(µ1, σ
2
1)

and N(µ2, σ
2
2). Let R1 and R2 denote the two latent groups, Di = 1[Yi ∈ R2] the indicator for outcome Yi

coming from Group 2 for i = 1, 2, · · · , n, and η = P (Yi ∈ R2), the probability that Yi comes from Group 2.

In the mixture problem, the information of group membership D1, D2, · · · , Dn is unknown and η, the mixing

parameter, must also be regarded as an unknown parameter in the analysis. For the two component normal

mixture, the probability density function (PDF) for Yi, i = 1, 2, · · · , n is:

fyi(y) = ηf2(y) + (1− η)f1(y) i = 1, 2, · · · , n (1)

where

fj(y) =
1√

2πσj
exp

(
−(y − µj)2

2σ2j

)
j = 1, 2.

2.1 MLE via the EM Algorithm

Although the likelihood for the unknown parameter θ = (η, µ2, µ1, σ
2
2, σ

2
1) can be easily established for the

observed data with the PDF given in (1), the numerical algorithm for computing the MLE is not stable, as

demonstrated in [19]. In a mixture setting, we do not observe the complete data, (Yi, Di), for each subject,

as component membership (Di) is missing for all individuals under study. This means that mixture problems

can be considered missing data problems. Since this is a missing data problem, the EM algorithm is a natural

alternative for computing the MLE. To apply the EM algorithm, the “complete” data likelihood is formed as

if Di are observed. It turns out the log complete likelihood is a linear function of unobserved data Di for

i = 1, 2, · · · , n. Hence, the conditional expectation of each latent observation Di, given the observed data and

current estimate of unknown parameters, needs to be evaluated and then be substituted into the (log) complete

likelihood for Di. The EM algorithm is particularly effective for this situation, because both the E-step and

the M-step have explicit solutions as given by [9, 10]. We briefly present their solutions here. Given a current

estimate of θ, θ̂(k) = (η̂(k), µ̂2,(k), µ̂1,(k), σ̂
2
2,(k), σ̂

2
1,(k)), the estimate θ̂(k+1) can be explicitly updated by
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η̂(k+1) =

∑n
i=1 qik
n

µ̂2,(k+1) =

∑n
i=1 qikyi∑n
i=1 qik

µ̂1,(k+1) =

∑n
i=1(1− qik)yi∑n
i=1(1− qik)

σ̂22,(k+1) =

∑n
i=1 qik(yi − µ̂2,(k))2∑n

i=1 qik

σ̂21,(k+1) =

∑n
i=1(1− qik)(yi − µ̂1,(k))2∑n

i=1(1− qik)

where

qik = E(Di|yi; θ̂(k)) =
η̂(k)f̂2,(k)(yi)

η̂(k)f̂2,(k)(yi) + (1− η̂(k))f̂1,(k)(yi)

with f̂j,(k)(y) = 1√
2πσ̂j,(k)

exp

(
− (y−µ̂j,(k))2

2σ̂2
j,(k)

)
for j = 1, 2. By choosing an arbitrary initial value, θ̂(0), this

iterative procedure can be easily implemented and forced to stop when the difference of the estimates in

adjacent iterations is sufficiently small, say less than 10e−6.

2.2 The CECF method

Motivated by the estimation method involving minimizing a distance between the empirical characteristic

function and the population-based characteristic function originally proposed by Heathcote [4], Xu and Knight

[19] developed the CECF method. For observed continuous outcomes y = (y1, y2, · · · , yn), they consider

minimizing

c(θ,y) =

∫ +∞

−∞
‖Cn(y, r)− C(θ, r)‖2G(r)dr (2)

where Cn(y, r) =
∑n

i=1 exp(iryi)/n denotes the empirical characteristic function, C(θ, r) = E(exp(itY )) the

characteristic function, and G(r) a weight function. Specifically, for a normal mixture,

C(θ, r) = η exp(iµ2r − 1/2σ22r
2) + (1− η) exp(iµ1r − 1/2σ21r

2).

Therefore, the choice of G(r) = exp(−br2) makes (2) integrable and results in an explicit function of unknown

parameter θ and the tuning parameter b. Heathcote [4] did not consider the optimal choice of b, and instead

set it to 1, as was commonly done in the past for this type of problem. For a given value b, the minimization

problem (2) is straightforward. Xu and Knight [19] chose the optimal b by iteratively solving for the θ value that

minimizes (2) at a given b and updating the value b at the value which minimizes the trace (or determinant)

of the resulting variance matrix for the current estimate of θ. This procedure continues until the change in

the optimal θ values is sufficiently small. They demonstrated, in a limited simulation study, that the CECF
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method is comparable to the standard MLE in terms of estimation efficiency. They also showed that the CECF

may still be a valid estimation method in cases when the MLE is problematic.

2.3 The DECF Method

Similar to the CECF method, the DECF method considers minimizing the distance between sample quantities

and population analogs over a fixed set of grid points, r = (r1, r2 . . . , rm). That is, the unknown parameter θ

is estimated by minimizing

e(θ,y, r) =
m∑
i=1

‖Cn(y, ri)− C(θ, ri)‖2 (3)

where Cn(y, ri) and C(θ, ri) are the same as defined for the CECF method. The performance of the DECF

methods depends on the choice of grid points r, both the number and location of the nodes, ri, i = 1, · · · ,m.

Work has been done to show that as the grid becomes finer and more extended, the DECF becomes more

efficient [20]. As also noted in [17, 20], the DECF method is actually a special case of Generalized Methods

of Moments (GMM). Multiple authors [17, 20] have noted that the estimation efficiency of the DECF could

be increased by rescaling the weight matrix used by GMM. (the weight matrix is the identity matrix in the

presentation above) The CECF method is generally preferred over the DECF, as the distance is defined over

the whole continuum of r values in (−∞,∞) and hence, it does not require specification of the grid points r.

2.4 The MGF method

The MGF method developed in [13] is very similar in nature to the DECF method. The only difference is that

the moment generating function is used to replace the characteristic function of the DECF method. That is,

the unknown parameter θ is estimated by minimizing

m(θ,y, r) =
m∑
i=1

(Mn(y, ri)−M(θ, ri))
2 (4)

where Mn(y, r) =
∑n

i=1 exp(ryi)/n and M(θ, r) = η exp(µ2r − 1/2σ22r
2) + (1− η) exp(µ1r − 1/2σ21r

2). Again,

choice of the number of points and their location must be made to facilitate the use of this method. Moreover,

the possible non-existence of the moment generating function for fat-tailed distributions (i.e. Cauchy) makes

the MGF method less desirable than the DECF method in practice [17].
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2.5 A Disparity Index

For a mixture distribution, estimation quality largely depends on the difference between the component dis-

tributions. If the distributions have a large overlap it will be difficult to identify the group membership of

observations and to estimate each component’s parameters. Therefore, it is highly desirable to define an index

which measures the difference between the two latent distributions in order to develop a guideline regarding

estimation quality for a mixture distribution.

For normal mixtures, Hosmer [5] defined an index,

H =
‖µ2 − µ1‖

min(σ2, σ1)

to measure the separation between the two normal distributions. This measure, however, cannot capture

divergence of the two latent normal distributions due to a difference in variance alone. The simulation study

conducted in [5] only considered the performance of MLE for the case of µ1 6= µ2. Whenever µ1 = µ2, H ≡ 0

regardless of what the variances equal. For the case of σ2 > σ1, with σ2 increasing, it will be shown via

simulation that estimation quality improves, eventually resulting in negligible bias. However, the value of

H will not change in this situation, thus, H does not properly index the observed improvement in estimation

performance. As a result of these observations, the proper term for describing the difference between two normal

distributions that make up the mixture distribution is “disparity”. The disparity between two distributions

not only accounts for mean separation, but also for differences in variability. One measure that considers both

the means and the variances is Nityasuddhi’s D [10], which is defined as ,

D =
1

2

2∑
i=1

(µi − µ̄)2 +

2∑
i=1

(σ2i − σ̄2)2

where µ̄ = (µ1 + µ2)/2 and σ̄2 = (σ21 + σ22)/2. However, this index can yield similar values for two opposing

cases in which estimation quality will be very different. For instance, similar D values may result due to a

difference in means, while the variances are the same, or due to a difference in variances, while the means are

the same. That is to say, the same D value may be observed when only the variances differ, or when only

the means differ. Our simulation shows that much smaller differences in means are necessary for estimation

to have negligible bias, while differences in variances must be larger for estimation to have negligible bias.

Thus, two different underlying parameter values may yield the same Nityasuddhi’s D value, even if estimation

performance varies substantially in both cases.

Ideally, a good disparity index should always have a large value when estimation quality is good, and a small

value when estimation is bad. Intuitively, the shared (or overlapping) area under the two normal distributions

is key to determining the estimation quality, as the observations from this area obscure their group membership.
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Figure 1: OC Example Plots

OVL = 0.9 OVL = 0.2

Distributions with little overlap tend to be easily separated and result in parameter estimation with small bias.

However, for mixtures where the component distributions have large overlap, severe bias might result. Inman

and Edwin [7] have studied the OC for the case of normal distributions and derived an explicit formula to

calculate its value,

OC =

 2Φ
(
− |µ1−µ2|σ

)
if σ1 = σ2 = σ

1 + Φ
(
X1−µ1
σ1

)
+ Φ

(
X2−µ2
σ2

)
− Φ

(
X1−µ2
σ2

)
− Φ

(
X2−µ1
σ1

)
if σ1 6= σ2.

(5)

In (5), Φ denotes the cumulative distribution function of the standard normal distribution, X1 and X2 are

given by

X1 =
µ1σ

2
2 − µ2σ21 − σ1σ2

[
(µ1 − µ2)2 + (σ22 − σ21) log

(
σ2
2

σ2
1

)]1/2
σ22 − σ21

and

X2 =
µ1σ

2
2 − µ2σ21 + σ1σ2

[
(µ1 − µ2)2 + (σ22 − σ21) log

(
σ2
2

σ2
1

)]1/2
σ22 − σ21

.

We propose the use of DI = 1 - OC as a disparity index. Note that DI satisfies our requirements specified

in the above paragraph. Namely, large values of DI (large disparity) reflect cases where estimation quality

is good, and small values of DI (small disparity) reflect cases where estimation quality is poor. This index

does not suffer from the sub-optimal properties of the indices mentioned above, as it allows for variances

alone to contribute to the disparity between the two normal distributions. Two examples of normal mixture

distributions, one with large disparity (DI = 0.8) and one with small disparity (DI = 0.1), are shown in Figure

1 for illustration purposes. The shaded portion depicts the overlap. Notice that small values of OC reflect

cases where there is large disparity between the component distributions, and large values reflect cases where

there is small disparity.
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Table 1: Simulation Settings

Case DI η µ2 µ1 σ22 σ21
A1 0.1 0.5 1.25 1 1 1
A2 0.3 0.5 1.77 1 1 1
A3 0.55 0.5 2.51 1 1 1
A4 0.8 0.5 3.56 1 1 1

B1 0.1 0.5 1 1 1.5 1
B2 0.3 0.5 1 1 3.6 1
B3 0.55 0.5 1 1 13.2 1
B4 0.8 0.5 1 1 101 1

C1 0.1 0.5 1.1 1 1.48 1
C2 0.3 0.5 1.5 1 3.22 1
C3 0.55 0.5 2.2 1 11.5 1
C4 0.8 0.5 6.55 1 18.0 1

3 Simulation Study

In this section, we describe a simulation study to examine the estimation performance of the methods discussed

above with focus on the estimation bias. As the CECF, DECF, and MGF methods are very similar in nature

and the CECF has the merit of not requiring the identification of the optimal number and locations of the grid

points, we only include the CECF in the study and compare it to the MLE (via the EM algorithm). The DI is

used to quantify the amount of disparity between the two component distributions. Our simulation conditions

are summarized in Table 1. They describe the amount of disparity due to mean and variance differences in

various scenarios. Figure 2 provides a visual display of the two component distributions for the cases given

in Table 1 with the shading depicting distribution overlap. It is worth noting that our study covers a much

broader range of disparity values than any other studies conducted in the literature [5, 10,19].

For each case listed in Table 1, we conducted a Monte Carlo simulation study with 1000 trials. Hence, the

estimation bias and Monte Carlo Standard Deviation (MCSD) was calculated based on the results from the

1000 trials. Relative bias and relative MCSD are reported in the table. Relative bias is defined as the bias

divided by the value of the parameter being estimated. Relative MCSD is defined in an analogous manner.

For example, if the bias and MCSD are 0.05 and 1.50, respectively, and the parameter value is 2, then the

relative bias is 0.025 and relative MCSD is 0.75. It is worth noting that for approximately 5% of the trials

for cases with the least disparity, the EM algorithm for the MLE did not lead to numerical convergence, while

the CECF method did not have any numerical problems. When this occurred, data were regenerated and the

simulation continued until 1000 trials were completed. This convergence issue was not observed in cases with

at least moderate disparity between the two component distributions.

Table 2 summarizes the simulation results for Case A with sample sizes 100, 200 and 500. It appears that

there is substantial bias in estimating both mean and variance parameters using the MLE when the DI is less

than or equal to 0.3. When DI=0.3 the CECF has smaller bias in estimating the means but larger larger bias in
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Figure 2: Graphical Representation of Simulation Settings

Case A1
DI = 0.1

Case A2
DI = 0.3

Case A3
DI = 0.55

Case A4
DI = 0.8

Case B1
DI = 0.1

Case B2
DI = 0.3

Case B3
DI = 0.55

Case B4
DI = 0.8

Case C1
DI = 0.1

Case C2
DI = 0.3

Case C3
DI = 0.55

Case C4
DI = 0.8

Note: The above graphs are not on the same scale.
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Table 2: Simulation Results - Bias/MCSD : Case A

Bias (MCSD) of Estimation MLE/CECF Case A

MLE method CECF method

Case n η µ2 µ1 σ22 σ21 η µ2 µ1 σ22 σ21
A1 100 0.026 0.417 -0.519 -0.374 -0.383 -0.061 0.369 -0.363 -0.398 -0.352

(0.597) (0.574) (0.664) (0.424) (0.443) (0.654) (0.509) (0.570) (0.586) (0.562)
DI = 0.1 200 0.031 0.315 -0.436 -0.275 -0.301 -0.016 0.347 -0.312 -0.338 -0.357

(0.566) (0.515) (0.614) (0.414) (0.412) (0.682) (0.446) (0.510) (0.549) (0.510)
500 0.119 0.203 -0.441 -0.143 -0.266 -0.014 0.260 -0.313 -0.321 -0.309

(0.535) (0.406) (0.590) (0.396) (0.393) (0.714) (0.430) (0.518) (0.493) (0.583)

A2 100 0.033 0.181 -0.343 -0.321 -0.327 -0.019 0.105 -0.183 -0.336 -0.301
(0.717) (0.429) (0.699) (0.476) (0.493) (0.671) (0.373) (0.668) (0.628) (0.988)

DI = 0.3 200 0.063 0.129 -0.258 -0.212 -0.221 0.003 0.066 -0.134 -0.285 -0.261
(0.601) (0.411) (0.644) (0.443) (0.524) (0.698) (0.351) (0.594) (0.587) (0.698)

500 0.110 0.074 -0.236 -0.106 -0.173 0.002 0.044 -0.091 -0.257 -0.255
(0.560) (0.396) (0.608) (0.413) (0.448) (0.734) (0.305) (0.569) (0.519) (0.510)

A3 100 -0.014 0.078 -0.117 -0.202 -0.156 -0.018 0.025 -0.040 -0.228 -0.169
(0.585) (0.309) (0.689) (0.508) (0.538) (0.631) (0.278) (0.679) (0.635) (0.709)

DI = 0.55 200 -0.024 0.068 -0.079 -0.127 -0.077 0.010 0.005 -0.062 -0.146 -0.136
(0.580) (0.295) (0.638) (0.479) (0.490) (0.649) (0.257) (0.646) (0.629) (0.599)

500 -0.049 0.052 -0.026 -0.088 -0.023 0.016 0.001 -0.035 -0.098 -0.100
(0.556) (0.241) (0.557) (0.407) (0.414) (0.602) (0.220) (0.560) (0.493) (0.474)

A4 100 -0.009 0.006 -0.007 -0.040 -0.024 -0.014 -0.004 0.038 -0.005 0.041
(0.354) (0.133) (0.485) (0.492) (0.501) (0.420) (0.143) (0.518) (0.680) (0.708)

DI = 0.8 200 -0.010 0.006 0.005 -0.013 0.009 -0.021 0.004 0.028 -0.013 0.046
(0.260) (0.096) (0.345) (0.361) (0.373) (0.302) (0.100) (0.376) (0.459) (0.502)

500 -0.001 0.001 0.003 -0.002 0.011 -0.013 0.003 0.019 -0.010 0.040
(0.163) (0.058) (0.211) (0.219) (0.230) (0.189) (0.063) (0.240) (0.267) (0.301)
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Table 3: Simulation Results - Bias/MCSD : Case B

Bias (MCSD) of Estimation MLE/CECF Case B

MLE method CECF method

Case n η µ2 µ1 σ22 σ21 η µ2 µ1 σ22 σ21
B1 100 -0.075 0.005 -0.038 -0.287 -0.326 0.043 0.005 -0.471 0.055 -0.493

(0.571) (1.283) (0.590) (0.463) (0.403) (0.681) (1.073) (0.590) (0.678) (0.424)
DI = 0.1 200 -0.021 -0.045 -0.035 -0.211 -0.288 0.122 0.030 -0.497 0.076 -0.488

(0.580) (1.199) (0.567) (0.459) (0.379) (0.712) (0.973) (0.569) (0.527) (0.433)
500 -0.055 -0.070 -0.082 -0.132 -0.164 0.142 0.007 -0.490 0.097 -0.431

(0.558) (1.143) (0.444) (0.513) (0.338) (0.745) (0.899) (0.523) (0.497) (0.452)

B2 100 -0.069 -0.072 -0.0002 -0.135 -0.081 0.063 -0.009 0.017 -0.098 -0.283
(0.552) (1.595) (0.414) (0.514) (0.589) (0.630) (1.287) (0.467) (0.686) (0.634)

DI = 0.3 200 -0.060 0.043 -0.004 -0.010 -0.024 0.123 0.019 -0.002 -0.016 -0.251
(0.488) (1.218) (0.267) (0.436) (0.521) (0.608) (0.973) (0.348) (0.652) (0.618)

500 -0.011 -0.012 0.0009 0.033 -0.022 0.123 -0.010 0.001 0.011 -0.176
(0.370) (0.414) (0.147) (0.266) (0.370) (0.510) (0.515) (0.228) (0.436) (0.481)

B3 100 -0.013 -0.002 0.013 -0.0008 0.024 0.020 -0.017 0.019 -0.010 -0.066
(0.274) (0.865) (0.227) (0.313) (0.619) (0.291) (0.922) (0.229) (0.382) (0.560)

DI = 0.55 200 -0.0010 0.013 0.004 0.003 0.006 0.025 0.010 0.005 -0.012 -0.050
(0.178) (0.385) (0.155) (0.203) (0.359) (0.194) (0.424) (0.165) (0.243) (0.390)

500 0.0012 0.009 0.004 -0.007 0.004 0.011 0.003 0.004 -0.014 -0.020
(0.109) (0.243) (0.095) (0.123) (0.195) (0.119) (0.269) (0.099) (0.141) (0.225)

B4 100 -0.005 0.015 0.008 -0.024 -0.006 0.006 0.053 0.008 -0.050 -0.021
(0.134) (1.458) (0.172) (0.215) (0.323) (0.150) (1.856) (0.182) (0.305) (0.349)

DI = 0.8 200 0.0002 0.042 0.0004 -0.011 -0.006 0.004 0.048 0.0004 -0.024 -0.008
(0.094) (0.997) (0.123) (0.160) (0.227) (0.098) (1.238) (0.131) (0.215) (0.249)

500 0.0001 0.028 0.002 -0.011 0.003 0.001 0.019 0.003 -0.016 0.003
(0.061) (0.623) (0.080) (0.099) (0.136) (0.063) (0.775) (0.086) (0.134) (0.152)
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Table 4: Simulation Results - Bias/MCSD : Case C

Bias (MCSD) of Estimation MLE/CECF Case C

MLE CECF method

Case n η µ2 µ1 σ22 σ21 η µ2 µ1 σ22 σ21
C1 100 -0.076 0.124 -0.109 -0.309 -0.341 0.038 0.030 0.043 -0.280 -0.497

(0.586) (1.191) (0.610) (0.470) (0.396) (0.678) (0.990) (0.604) (0.671) (0.415)
DI = 0.1 200 -0.028 0.084 -0.092 -0.207 -0.280 0.140 0.025 -0.0005 -0.247 -0.492

(0.582) (1.063) (0.530) (0.470) (0.382) (0.694) (0.858) (0.576) (0.517) (0.420)
500 -0.032 0.091 -0.124 -0.121 -0.171 0.127 0.003 0.017 -0.242 -0.415

(0.551) (1.006) (0.448) (0.500) (0.338) (0.743) (0.839) (0.513) (0.468) (0.486)

C2 100 -0.121 0.302 -0.049 -0.197 -0.076 0.030 0.191 0.007 -0.149 -0.262
(0.559) (1.006) (0.412) (0.464) (0.565) (0.644) (0.874) (0.457) (0.681) (0.626)

DI = 0.3 200 -0.089 0.275 -0.022 -0.068 -0.033 0.079 0.204 -0.033 -0.117 -0.230
(0.529) (0.820) (0.277) (0.438) (0.522) (0.609) (0.654) (0.349) (0.523) (0.585)

500 -0.063 0.136 -0.008 0.004 0.003 0.064 0.124 -0.028 -0.040 -0.141
(0.418) (0.449) (0.176) (0.291) (0.391) (0.523) (0.474) (0.229) (0.401) (0.469)

C3 100 -0.019 0.072 0.003 -0.030 0.027 -0.0001 0.114 -0.006 -0.057 -0.013
(0.296) (0.459) (0.237) (0.292) (0.625) (0.334) (0.507) (0.233) (0.409) (0.606)

DI = 0.55 200 -0.003 0.029 -0.011 -0.004 0.004 0.006 0.040 -0.010 -0.014 -0.005
(0.190) (0.208) (0.157) (0.198) (0.373) (0.231) (0.276) (0.167) (0.278) (0.429)

500 -0.0004 0.010 -0.0008 -0.008 0.004 -0.005 0.015 0.001 0.004 0.018
(0.115) (0.115) (0.099) (0.122) (0.210) (0.134) (0.140) (0.103) (0.163) (0.253)

C4 100 -0.046 0.047 0.027 -0.100 0.055 -0.044 0.031 0.025 -0.158 0.040
(0.158) (0.145) (0.183) (0.249) (0.400) (0.193) (0.180) (0.194) (0.343) (0.433)

DI = 0.8 200 -0.022 0.025 0.007 -0.044 0.028 -0.024 0.019 0.010 -0.078 0.020
(0.111) (0.099) (0.124) (0.179) (0.257) (0.134) (0.128) (0.135) (0.272) (0.294)

500 -0.011 0.012 0.005 -0.026 0.022 -0.016 0.014 0.006 -0.054 0.026
(0.067) (0.059) (0.080) (0.107) (0.148) (0.086) (0.085) (0.089) (0.179) (0.180)
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estimating the variances compared to the MLE. Both methods lead to negligible bias for estimating the means

in the case of DI=0.55, especially when sample size is greater than 200. But the estimation of the variances

for the CECF is still seemingly biased even when n = 500, with 9.8% and 10% relative bias for σ22 and σ21,

respectively. When there is a large amount of disparity between the two component distributions, for instance

when DI=0.8 in our study, both MLE and CECF work very well. However, the MLE method outperforms the

CECF method with regards to both estimation bias and standard error. This is not surprising, as the MLE is

the efficient estimation method when it works.

Table 3 summarizes the simulation results for Case B with sample sizes 100, 200 and 500, respectively. In

this scenario, the bias in estimation of the means is small and for the most part negligible for all cases for

the MLE, but it is not the case for the CECF when DI = 0.1. Clearly when DI = 0.1, the MLE outperforms

the CECF, but both methods are too biased in estimating the variances to be useful in practice. When DI

= 0.3, the estimation bias appears to be acceptable for the MLE if sample size is greater than or equal to

200. But the estimation bias for the smaller variance is still relatively large for the CECF. When DI≥0.55,

the estimation bias is virtually negligible for all the model parameters under both methods, but the MLE is

apparently preferred over the CECF as it has smaller MCSD. The estimation bias of the mixing parameter η

is relatively small for the MLE, even in the case of small disparity. As the disparity increases, the MLE works

better than the CECF, in terms of having smaller MCSD. However, estimation of the mixing parameter is

highly variable (under both methods) in cases with small disparity (DI≤0.3).

Table 4 summarizes the simulation results for Case C with sample sizes 100, 200 and 500, respectively.

When both means and variances are allowed to vary between the two component distributions, the simulation

results are similar to Case A. That is, in the small sample or small disparity cases (n = 100/200 or DI =

0.1/0.3), the CECF tends to have smaller estimation bias for the means but larger bias for variances. When

the amount of disparity is large (DI≥0.45), the MLE is clearly the winner between the two competing methods.

As a concluding remark for the simulation study, the MLE may be generally preferred over the CECF

when a variance difference is the source of the disparity between the two distributions or when the DI is large,

say greater than or equal to 0.55. However, use of the MLE in cases where the DI is less than 0.55 should be

with caution, particularly when the disparity between the distributions is purely due to a separation of the

means. Though the CECF is an alternative method for estimating the means with less bias than the MLE

when separation of the means is the source of small disparity between the distributions, it still results in biased

estimation for the means when the DI is small. In general, the MLE is a better method for estimating the

variances than the CECF, as it results in less estimation bias as well as smaller standard error.
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4 Application to the PREDICT-HD Data

The PREDICT-HD study is an ongoing observational study of prHD participants at 32 sites in the United

States, Canada, Australia, Germany, Spain and the United Kingdom [11]. Comprehensive longitudinal data

have been collected, including more than 80 variables from over 1300 research participants who underwent

genetic testing for the HD mutation. As mentioned in the introduction, if an individual’s CAG repeat length

is greater than or equal to 36, they are considered at-risk for HD, or prHD.

In this section, we apply the DI to the PREDICT-HD data with the aim of identifying possible sensitive

cognitive biomarkers that may distinguish between prHD (at-risk) individuals and healthy (non-at-risk) con-

trols, particularly when CAG repeat length is masked or unknown. If CAG repeat length is not observed for

individuals under study, then the observed data are a mixture from the control group and the prHD group.

The size of the study sample and the longitudinal nature of the study may facilitate opportunities to discover

disease biomarkers whose progress may indicate an individual’s at-risk status without knowledge of their CAG

repeat length. We focus on the following five cognitive measures: Symbol Digit Modalities Test (SDMT),

Stroop Color Test (STROOP-C), Stroop Word Test (STROOP-W), Trail Making Test A (TRAILS-A), and

Trail Making Test B (TRAILS-B).

We now provide some background regarding the potential biomarkers from Predict-HD that we will analyze.

SDMT [15] involves a simple substitution task to pair specific numbers with given geometric figures within a

fixed amount of time. Individuals with cerebral dysfunction usually perform poorly on the SDMT, which is

indicated by a smaller value of this measure. The task of the Stroop tests [16] is to look at pages of colored

words, reading words or naming colors as quickly as possible within a fixed amount of time. A smaller value

of these measures may determine the individual’s cognitive inflexibility. The Trails A test [14], a measure

of speeded attention, requires individuals to draw the lines connecting the numbers 1,2,3,4 etc in order until

reaching the end. The Trails B test [14] asks individuals to draw the lines connecting the numbers 1,2,3,4 etc

and the letters A,B,C,D etc in alternating order. The total times (in seconds) needed to complete each of these

tasks are recorded. A larger value of these measures is indicative of cognitive impairment.

The PREDICT-HD study has collected these cognitive measures longitudinally for both prHD individuals

and healthy controls. Having at-risk information allows us to estimate the group characteristics for these

outcomes and their corresponding DI values. For this analysis, let us denote R1 and R2 as the two latent

groups with R1 representing the control group and R2 the prHD group. The parameters of interest are:

θ = (η, µ1, µ2, σ
2
1, σ

2
2), and parameters with the subscript 2 correspond to the prHD group, while those with

the subscript 1 correspond to the control group. Since PREDICT-HD records CAG length, we can estimate

the means and variances using their sample estimates and substitute them into (5) to obtain an estimate of
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Table 5: Characteristics of the Five Cognitive Measures in the PREDICT-HD Study

Cognitive Sample Sizes
Variables (n1, n2) µ̂1 µ̂2 σ̂1 σ̂2 DI∗

At 40-42 Age Window:
SDMT (31,231) 56.48 52.03 9.59 12.45 0.192
STROOP-C (31,229) 85.77 78.54 9.19 14.84 0.308
STROOP-W (31,230) 104.29 98.88 15.42 19.05 0.153
TRAILS-A (20,153) 20.45 26.29 6.39 10.92 0.343
TRAILS-B (20,151) 48.05 66.81 19.33 36.06 0.370

At 50-52 Age Window:
SDMT (65,183) 54.54 48.11 7.76 11.88 0.308
STROOP-C (65,183) 82.11 71.90 10.96 13.02 0.336
STROOP-W (65,183) 105.63 90.88 16.16 16.00 0.354
TRAILS-A (42,103) 25.10 29.96 6.20 11.56 0.344
TRAILS-B (41,104) 54.34 78.70 18.39 43.38 0.465

OC, OC∗ and calculate the DI by DI∗ = 1−OC∗. The results are summarized in Table 5.

Table 5 presents the characteristics of the two cohorts and their corresponding DI∗ for the five cognitive

measures mentioned above at two age windows: 40-42 and 50-52. We considered the 40-42 age window

and 50-52 age window so that we could determine whether the ability to estimate parameters for prHD and

control individuals changed over time. We anticipated that there would be more disparity between the prHD

and control groups by age 50-52, as prHD individuals will have had more time to progress, which would

be reflected by higher DI values and thus, better estimation performance. Based on the simulation results

presented above, it appears that only the Trails-B measure in the age window 50-52 may have a chance of

providing a reasonable estimate of the model parameters when the genetic information of CAG repeat length

is unknown or not considered. This is because the DI for Trails-B in the 50-52 window is the largest, at DI =

0.465. To estimate all parameters, including means/variances/the mixing proportion, we then apply both the

MLE (via the EM algorithm) and the CECF methods to the Trails-B data, as if CAG repeat length were not

observed, and compare their performance in light of our simulation results presented above. These estimates

are summarized in Table 6. This real data example resembles the simulation scenario C3 with sample size

around 100 where the estimation is less biased for the CECF method. In this setting, we can only compare

our incomplete data estimation results with the complete data estimation results from Table 5, since we do not

know the true parameter values. The complete data estimation serves as reference, because estimation based

on the complete data should result in smaller variances, less biased estimation, and more efficiency in general.

Indeed, the CECF method yields closer estimates than the MLE method when inspecting the values given at

the bottom row of Table 5. Nevertheless, the resulting estimates for the mixing parameter are far from the

complete data mixing proportion for both methods, since estimation under the complete information yields

η̂ = 104
145 = 0.717. This is mainly due to the fact that the estimation standard error is quite large for η̂ and

implies that when there is quite bit overlap between the two distributions, the methods may yield reasonable

estimates for the mean and variance parameters but could have difficulty correctly estimating the mixing
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Table 6: Estimates of Model Parameters in TRAILS-B at Age Window 50-52 for the PREDICT-HD data

Methods η̂ µ̂1 µ̂2 σ̂1 σ̂2
MLE 0.26 55.87 118.05 13.83 51.14
CECF 0.31 53.96 96.95 14.15 43.37

parameter. Both methods largely overestimate µ2, and slightly underestimate σ1. This is not a surprise, as

the DI is only 0.465 and our sample size is 145.

5 Final Remarks

Estimation of normal mixtures is a classical problem that has been widely researched. While the MLE and the

CECF appear to be the most popular methods among many others, their estimation properties have not been

extensively studied. This is probably due to the well-known fact that the normal mixture can be an ill-posed

model when the disparity between the component distributions is small [1,20]. In this article, we utilize the OC

to quantify the disparity between the two distributions and then empirically examined when the methods can

lead to reasonable estimates of the model parameters. The results provide an instructive guideline regarding

the use of the existing methods. Generally speaking, when there is enough disparity, the MLE is still a more

favorable method in practice, particularly when a difference in variances is the major source of the disparity

between the two component distributions. When a difference in means is the major source of the disparity, the

MLE may not lead to estimation with negligible bias when the DI is small, and in this case, the CECF may

be a reasonable alternative.

Our simulation study implies that neither the MLE nor the CECF method will yield a satisfactory outcome

with regards to accurately estimating parameters for prHD individuals and healthy controls based on cross-

sectional cognitive measures in PREDICT-HD data, as the DI values for these measures are too small at the

times considered. The amount of overlap present led to the CECF and MLE largely overestimating the mean

for prHD individuals and underestimating the amount of variability in the control group, relative to estimation

when complete information is known. Since HD is a progressive disease, investigating the disparity between

longitudinal trajectories of these cognitive measures between the prHD and healthy control may provide better

estimation of parameters for these cohorts. A future research direction is to develop an index which measures

the disparity between the two groups based on longitudinal data. Latent class modeling of generalized linear

mixed-effects models could be used for the groups’ longitudinal trajectories, in order to identify sensitive

cognitive markers for indirectly ascertaining at-risk status in similar cohorts.
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