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Abstract

Complex disorders are typically characterized by multiple phenotypes. Analyzing these phenotypes jointly

is expected to be more powerful than dealing with one phenotype at a time. A recent approach [1] is to

regress the genotype at an SNP marker on multiple phenotypes and apply the proportional odds model. In

the current research, we introduce an explicit expression for the score test statistic and its non-centrality

parameter that determines its power. We demonstrate by theoretical arguments and simulation studies

that, despite its potential usefulness for multiple phenotypes, the proportional odds model method can

be less powerful than regular methods for univariate traits. We also introduce an implementation of the

proposed score statistic in the form of an R package named iGasso.
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Introduction

Complex human disorders are often characterized by multiple phenotypes. Some of them might be

categorical while others might be continuous. For instance, patients with Bardet-Biedl syndrome often

suffer from vision loss, hypertension and high cholesterol level caused by obesity, polydactyly, and other

abnormalities. In order to map the genetic variants underlying such disorders, it is highly desirable

to analyze all available phenotypes simultaneously. However, it is challenging to jointly model these

phenotypes, especially when they are of different data type [2].

Let y denote a k×1 vector of k phenotypes on an individual and g his/her genotype at a marker. If all

the components of y are continuous, one may use MANOVA given genetype g. When the components of

y are of mixed data types, the choices are limited. One popular method is first to analyze each component

individually and then combine the test statistics through a meta-analysis [3, 4]. These methods model
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the phenotype vector y in terms of the genetic data g.

For a single-nucleotide polymorphism (SNP), the distribution of its genotype g is trinomial. It is

appealing to model g as a function of y [1, 5]. Furthermore, since there is a natural ordering in the

three genotypes at the SNP (assuming that the possibility of over-dominance is ignorable), one can use

the ordinal logistic regression (a.k.a., the proportional odds model or the cumulative logit model). One

immediate advantage of using the proportional odds model is that, unlike other methods, there is no

need to make assumptions on the genetic effect such as additive, dominant, or recessive. The usefulness

of this approach has been demonstrated via analyses of various data [1].

Although the proportional odds model using multiple phenotypes jointly is more powerful than one-

phenotype-at-a-time methods [1], it remains unclear how this method performs for univariate traits. The

R software package MultiPhen (version 1.0.0) developed by the authors of [1] does analyze each phenotype

separately in addition to joint analysis. But the results of the likelihood ratio test on separate analysis are

incorrect [data available upon request]. There is an option for a score test in MultiPhen but no explicit

expression for the score test statistic is given.

This report is organized as following. We first introduce an explicit form of the score statistic and

its non-centrality parameter. The form of this score statistic provides some insights on the ability of

this method to detect association. Then we consider an important case where the phenotype vector y is

univariate and represents case-control status. Simulation studies are used to compare the performance

of the score statistic and Pearson’s chi-square test and Cochran-Armitage trend test.

Results

The score statistic

The genetic data are assumed to come from a biallelic marker such as a single-nucleotide polymorphism

(SNP). Let a denote the reference allele and A the other. For simplicity, we use 0, 1, and 2 to represent

genotypes AA, Aa, and aa, respectively. Regardless of the data types of the components of y, the

genotype g follows a trinomial distribution. In most cases, the effect of an allele is monotonic. That is,

as the number of a alleles increases from 0 to 2, the effect of genotypes AA, Aa, and aa is non-decreasing

or non-increasing. Over-dominance effect exists but is rather rare. Given this consideration, we model

the genotype g in terms of phenotype y using the proportional odds model [1].
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Let πj(y) = Pr(g = j|y) denote the probability that an individual’s genotype g is j given phenotypic

value y. In the current situation, the proportional odds model models the cumulative probabilities π0(y)

and π0(y) + π1(y) jointly as follows:

log

(
π0(y)

1− π0(y)

)
= α1 + βty, (1)

log

(
π0(y) + π1(y)

π2(y)

)
= α2 + βty. (2)

Here α1 and α2 are intercepts and β is a vector of coefficients. This model implies α2 ≥ α1 because

π0(y) + π1(y) ≥ π0(y). Since π0(y) + π1(y) = 1− π2(y), an alternative form of equation (2) is

log

(
1− π2(y)

π2(y)

)
= α2 + βty.

Equation (1) models the effect of genotype AA while equation (2) models the effect of genotype aa. We

have

π0(y) =
exp(α1 + βty)

1 + exp(α1 + βty)
,

π2(y) =
1

1 + exp(α2 + βty)
,

and π1(y) is determined by π1(y) = 1 − π0(y) − π2(y). This model assumes that the difference of the

left hand side of (1) or (2) for two phenotype vectors y1 and y2 depends only on βt(y1 − y2) and is

independent of genotype aa or AA:

log

(
π0(y1)

1− π0(y1)

)
− log

(
π0(y2)

1− π0(y2)

)
= βt(y1 − y2), (3)

= log

(
1− π2(y1)

π2(y1)

)
− log

(
1− π2(y2)

π2(y2)

)
. (4)

That is,

π0(y)π2(y)

(1− π0(y))(1− π2(y))

does not depend on the value of y.
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Let i be the index for the ith individual in a sample of size n, the log-likelihood function is

l(α1, α2,β;yi) =
∑

j=0,1,2

∑
i:gi=j

log(πj(yi)).

The hypotheses of interest are

H0 : β = 0, H1 : β 6= 0. (5)

These hypotheses can be tested by the likelihood ratio statistic. To introduce the score statistic, define

w =

 ∑
i:gi=0

yi + π̄2
∑
i:gi 6=0

yi

−
 ∑
i:gi=2

yi + π̄0
∑
i:gi 6=2

yi

 ,

where π̄0 and π̄2 are the sample proportions of the genotypes for which g = 0 and 2, respectively. w is the

difference of two weighted summations of yi. The summation in the first pair of parentheses weights yi

with gi = 0 more than other yis (i.e., 1 versus π̄2) while the summation in the second pair of parentheses

weights yi with gi = 2 more (i.e., 1 versus π̄0). Let π̄1 = 1− π̄0 − π̄2. It is shown in the Methods section

that a score statistic for testing hypotheses (5) is

S =
1

n(1− π̄0)(1− π̄1)(1− π̄2)
wtV−1w,

where

V = n−1
n∑
i=1

ytiyi − n−1
n∑
i=1

yti · n−1
n∑
i=1

yi

is the sample variance matrix of yi, i = 1, . . . , n. The non-centrality parameter of S is

NCP =
E(w)tV−1E(w)

n(1− π0)(1− π1)(1− π2)
,

where the expectation in E(w) is taken under the alternative. This NCP can be used to compute power

at significance level α in the following way:

Pr(X > χ2
1−α,k)

where X follows a chi-square distribution with df = k and non-centrality parameter NCP and χ2
1−α,k is
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the critical value from a chi-square distribution with df = k and non-centrality parameter 0.

Simulation Studies

Suppose the trait is Mendelian. Let p0, p1, and p2 denote the frequencies of genotypes AA, Aa and aa

in general population and f0, f1, and f2 their penetrances, respectively. The prevalence of the disease

would be K = p0f0 + p1f1 + p2f2. The genotype frequencies in cases are π1j = pjfj/K, j = 0, 1, 2, and

in controls are π0j = pj(1− fj)/(1−K), j = 0, 1, 2. In this situation, the variance of y is φ(1− φ) where

φ is the proportion of cases. The non-centrality parameter (NCP) of test statistic S is equal to

NCP =
E(w)2

n(1− π0)(1− π1)(1− π2) · φ(1− φ)

=
nφ(1− φ)

[K(1−K)]2
· [p2(K − f2)− p0(K − f0) + p0p2(f2 − f0)]2

(1− π0)(1− π1)(1− π2)
.

Let p be the population frequency of allele a. Assuming Hardy-Weinberg equilibrium in the population,

the frequencies of genotypes AA, Aa, and aa are p0 = (1− p)2, p1 = 2p(1− p), and p2 = p2, respectively.

Let γi = fi/f0, i = 1, 2, be the relative risk of genotype i to genotype 0. A data generating model is

completely determined by K, p, γ1, and γ2. This is because f0 = K/(p0 + γ1p1 + γ2p2), f1 = γ1f0,

and f2 = γ2f0. Hence the genotype frequencies in cases and controls are determined and data can be

simulated. We consider a dominance model (γ1 = γ2), a recessive model (γ1 = 1), and an additive model

(γ1 = (1+γ2)/2). The NCPs for the models used in simulation are reported in Table 1. So are the power

associated with these NCPs.

In addition to the proposed score statistic, the other test statistics used in the simulation include

the Pearson’s chi-square test, the Cochran-Armitage trend test, and the likelihood ratio test for the

proportional odds model. The number of simulation replicates is fixed at 10,000. The number cases is

fixed at 1,000. So is the number of controls. The simulated type I error rate for all these statistics is

reported in Table 2. The actuarial rejection rates are pretty close to their nominal levels. The simulated

power is presented in Figures 1, 2, and 3. It is striking to see that for recessive models the proportional

odds model is the least powerful. For other two models, there are situations it is more powerful than

other methods. The simulated power for the S statistic is in line with the calculated power reported in

Table 1.
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Discussion

In this report, we introduced a score test statistic for the proportional odds model for testing the associa-

tion between an SNP and multiple phenotypes and provided an implementation of this statistic. We also

did simulation analyses to study the performance of proportional odds model for univariate phenotypes

which is lacking in [1]. Although appealing to studies on multiple phenotypes, our results suggest that

this method may have lower power on univariate traits than regular methods. For case-control data, the

traditional Pearson’s chi-square test and the Cochran-Armitage trend test are preferred, especially when

the disease allele frequency is less than 0.5 and the disease is recessive.

Nonetheless, the proportional odds model method provides a convenient way for analyzing multiple

phenotypes, especially when these phenotypes are of different types [1]. If the proportional odds as-

sumption is of concern one remove this assumption and adopt a multinomial logistic regression. For our

simulation studies, the multinomial logistic regression would be equivalent to the Pearson’s chi-square

test statistic. There are quite few implementations of the multinomial logistic regression, for instance,

the multinom function in R package nnet.

Methods

Derivation of the score statistic

The first-order derivatives of the log-likelihood function l(α1, α2,β) are

∂l

∂α1
=

∑
i:gi=0

(1− π0(yi))−
∑
i:gi=1

π0(yi)(1− π0(yi))

1− π0(yi)− π2(yi)
,

∂l

∂α2
=

∑
i:gi=1

π2(yi)(1− π2(yi))

1− π0(yi)− π2(yi)
−
∑
i:gi=2

(1− π2(yi)),

∂l

∂β
=

∑
i:gi=0

(1− π0(yi))yi +
∑
i:gi=1

(π2(yi)− π0(yi))yi −
∑
i:gi=2

(1− π2(yi))yi,
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and the second-order derivatives are

∂2l

∂α2
1

= −
∑
i:gi=0

π0(yi)(1− π0(yi))−
∑
i:gi=1

[
π0(yi)(1− π0(yi))(1− 2π0(yi))

π1(yi)
+
π0(yi)

2(1− π0(yi))
2

π1(yi)2

]
,

∂2l

∂α1∂α2
=

∑
i:gi=1

π0(yi)(1− π0(yi))π2(yi)(1− π2(yi))

π1(yi)2
,

∂2l

∂α1∂β
t = −

∑
i:gi 6=2

π0(yi)(1− π0(yi))y
t
i ,

∂2l

∂α2
2

= −
∑
i:gi=1

[
π2(yi)(1− π2(yi))(1− 2π2(yi))

π1(yi)
+
π2(yi)

2(1− π2(yi))
2

π1(yi)2

]
−
∑
i:gi=2

π2(yi)(1− π2(yi)),

∂2l

∂α2∂β
t = −

∑
i:gi 6=0

π2(yi)(1− π2(yi))y
t
i ,

∂2l

∂β∂βt
= −

∑
i:gi 6=2

π0(yi)(1− π0(yi))yiy
t
i −

∑
i:gi 6=0

π2(yi)(1− π2(yi))yiy
t
i .

Under H0 : β = 0, πj(yi), j = 0, 1, 2 no longer depends on yi. So their values are simply denoted by

π0, π1, and π2, respectively. Let α = (α1, α2)t. The expected Fisher information matrix evaluated at

H0 : β = 0 is

I = −


E(∂2l/∂α2

1) E(∂2l/∂α1∂α2) E(∂2l/∂α1∂β
t)

E(∂2l/∂α1∂α2) E(∂2l/∂α2
2) E(∂2l/∂α2∂β

t)

E(∂2l/∂α1∂β) E(∂2l/∂α2∂β) E(∂2l/∂β∂βt)



=
(1− π0)(1− π2)

π1


nπ0(1− π0) −nπ0π2 π0π1

∑n
i=1 y

t
i

−nπ0π2 nπ2(1− π2) π1π2
∑n
i=1 y

t
i

π0π1
∑n
i=1 yi π1π2

∑n
i=1 yi π1(1− π1)

∑n
i=1 yiy

t
i


=

 Iαα Iαβ

Itαβ Iββ

 ,

where the matrix partition is in an obvious manner. By standard asymptotic theory, the score statistic

is

S = wt[Iββ − ItαβI
−1
ααIαβ]−1w

=
1

n(1− π0)(1− π1)(1− π2)
wtV−1w,
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where w is ∂l/∂β evaluated at H0:

w = (1− π0)
∑
i:gi=0

yi + (π2 − π0)
∑
i:gi=1

yi − (1− π2)
∑
i:gi=2

yi

=

 ∑
i:gi=0

yi + π2
∑
i:gi 6=0

yi

−
 ∑
i:gi=2

yi + π0
∑
i:gi 6=2

yi


The unknown values of π0, π1, and π2 are estimated by their sample genotype proportions, respectively.

R function SNPass.test

The R function SNPass.test in the package iGasso implements the proposed score statistic. R users

can download and install iGasso from CRAN (http://cran.r-project.org/) or any CRAN mirror.
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Figure 1. Simulated power for recessive model. The relative genotype risks are
f1/f0 = 1, f2/f0 = 1.5. The abbreviations for the test statistics are the same as in Table 2.
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Figure 2. Simulated power for additive model. The relative genotype risks are
f1/f0 = 1.25, f2/f0 = 1.5. The abbreviations for the test statistics are the same as in Table 2.
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Figure 3. Simulated power for dominant model. The relative genotype risks are
f1/f0 = 1.5, f2/f0 = 1.5. The abbreviations for the test statistics are the same as in Table 2.
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Tables

Table 1. Non-centrality value and the associated power (presented in parentheses) for
models used in the simulation studies

Frequency of Allele a Effect of Allele a
K p Recessive Additive Dominant

0.01 0.1 0.0796 (0.0068) 4.6780 (0.2597) 14.4110 (0.8387)
0.3 2.8697 (0.1329) 9.7282 (0.6225) 18.5977 (0.9339)

0.1 0.1 0.0963 (0.0072) 5.7000 (0.3374) 17.6383 (0.9182)
0.3 3.4771 (0.1730) 11.7847 (0.7343) 22.5123 (0.9737)

The relative genotype risks are f1/f0 = 1, f2/f0 = 1.5 for recessive models; f1/f0 = 1.5, f2/f0 = 1.5 for
dominant models; and f1/f0 = 1.25, f2/f0 = 1.5 for additive models.
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Table 2. Simulated type I error rate for various generating models

Penetrance Frequency of Significance Nominal Significance Level
(K) Allele a (p) Level Trend Chi-Square LRT Score
0.01 0.1 0.9 0.085 0.095 0.091 0.091

0.99 0.007 0.007 0.006 0.007
0.995 0.005 0.004 0.004 0.004

0.3 0.9 0.077 0.091 0.082 0.082
0.99 0.009 0.008 0.010 0.010
0.995 0.006 0.002 0.005 0.005

0.1 0.1 0.9 0.096 0.099 0.101 0.102
0.99 0.011 0.009 0.010 0.010
0.995 0.006 0.006 0.007 0.007

0.3 0.9 0.116 0.117 0.109 0.108
0.99 0.009 0.011 0.010 0.010
0.995 0.006 0.007 0.003 0.003

0.01 0.1 0.9 0.085 0.095 0.091 0.091
0.99 0.007 0.007 0.006 0.007
0.995 0.005 0.004 0.004 0.004

0.3 0.9 0.077 0.091 0.082 0.082
0.99 0.009 0.008 0.010 0.010
0.995 0.006 0.002 0.005 0.005

0.1 0.1 0.9 0.096 0.099 0.101 0.102
0.99 0.011 0.009 0.010 0.010
0.995 0.006 0.006 0.007 0.007

0.3 0.9 0.116 0.117 0.109 0.108
0.99 0.009 0.011 0.010 0.010
0.995 0.006 0.007 0.003 0.003

0.01 0.1 0.9 0.085 0.095 0.091 0.091
0.99 0.007 0.007 0.006 0.007
0.995 0.005 0.004 0.004 0.004

0.3 0.9 0.077 0.091 0.082 0.082
0.99 0.009 0.008 0.010 0.010
0.995 0.006 0.002 0.005 0.005

0.1 0.1 0.9 0.096 0.099 0.101 0.102
0.99 0.011 0.009 0.010 0.010
0.995 0.006 0.006 0.007 0.007

0.3 0.9 0.116 0.117 0.109 0.108
0.99 0.009 0.011 0.010 0.010
0.995 0.006 0.007 0.003 0.003

The test statistics are: Trend — Cochran-Armitage trend test; Chi-Square — Pearson’s chi-square test;
LRT — the likelihood ratio test for the proportional odds model computed by using the polr function
in the R package MASS; Score — the proposed score statistic computed by using the SNPass.test

function in the R package iGasso.


