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Abstract

There are two main issues in comparing different methods of measure-
ment: whether the difference between different methods is constant across
subjects and how to predict measurement of one method from others.
These issues are complicated in the case of one measurement per method
per subject because of the confounding of non-additivity and heteroscedas-
ticity. Because of the error in each measurement, the ordinary least square
(OLS) method proposed by [Carstensen(2010)] is biased. We propose a
maximum-likelihood-based procedure for estimation and prediction that
is applicable to multiple methods. We suggest testing for non-constant
difference of measurements by using Mandel’s test. The bias of the OLS
method is analytically investigated. Although the OLS method is biased,
it is shown that the test of non-constant difference for two methods used
by [Carstensen(2010)] is valid and is identical to Mandel’s test.

Keywords: method comparison; Bland-Altman plot; non-constant difference;
prediction; Mandel test

1 Introduction

In medical research there is often a need to compare two or more methods
of measurement to determine if they can be used interchangeably after cer-
tain adjustment or calibration. The Bland-Altman plot and the 95% lim-
its of agreement (LoA) are popular when the difference between the meth-
ods is constant [Bland and Altman(1986)]. This LoA method for assessing
method agreement has been extended to the case of non-constant difference
[Bland and Altman(1999)].

In a recent research, [Carstensen(2010)] proposed a prediction method for
two methods based on the ordinary least square (OLS) regression of the dif-
ferences on the averages. The goal is to achieve prediction equations that are
equivalent regardless which method is chosen to be the predicting one and which
is the predicted one. However, as we will show, because of the correlation be-
tween the averages and the regression error terms, the OLS estimate of the
regression intercept and the slope are biased and so are the prediction equa-
tions. [Carstensen(2010)] uses the regression F statistic to test whether there
is non-constant difference and claims this procedure is valid even under het-
eroscedasticity. However, as we will show, this claim is incorrect. This test is
identical to the Mandel’s F test for non-additivity [Mandel(1961)] and is valid
only under homoscedasticity. This result is interesting considering that the OLS
estimates of the intercept and the slope are biased.
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We propose a method that is based on the maximum likelihood. This method
is applicable to the case of more than two methods. We focus on the case of
no repeated measurement where there is only one measurement per method
per subject. Confounding of non-additivity and heteroscedasticity implies some
constraints on model parameters. We note that the non-constant difference
of measurements corresponds to method-subject interaction. Hence the exist-
ing tests for non-additivity, such as Tukey’s test [Tukey(1949)], Mandel’s test
[Mandel(1961)], and others [Šimeček and Šimečková(2012), Franck et al.(2013)],
apply. The Mandel’s test is especially pertinent.

This paper is organized as follows. We first define the model and discuss
parameter estimation, testing for non-additivity, and prediction in turn. An
analytical study is conducted on OLS-based method of [Carstensen(2010)]. The
analytical results are demonstrated through simulation studies. After illustrat-
ing the proposed procedure through an example, this paper concludes by a
discussion.

2 Methods

Suppose that there are I subjects and M methods. The measurement of method
m on subject i is modeled

yim = αm + βmµi + eim, eim ∼ N(0, σ2), i = 1, . . . , I, m = 1, . . . ,M (1)

where αm and βm are model parameters and µi is the true but unknown value
for individual i. That is, there is only one measurement of each method on
each subject. Non-constant βm across m implies interaction between methods
and subjects. The error terms eim are assumed to share the same variance σ2)
(i.e., homoscedasticity) as heteroscedasticity confounds with method-subject
interaction [Snee(1982)]. These models are the same as those in equation (2) of
[Carstensen(2010)] except that M is not limited to 2 and heteroscedasticity is
not allowed. Let the subscript · denote an arithmetic average over the values
corresponding to all values of that subscript. For instance, µ· = I−1

∑
i µi.

Equations in (1) can be written

yim = (αm + βmµ·) + βm(µi − µ·) + eim.

So without loss of generality, it can be assumed that
∑

i µi = 0 and αm can
be interpreted as the expected measurement of method m on an “average”
subject whose “true” value is µ·. Furthermore, multiplying the βms by a number
while dividing each µi by the same number does not change the product βmµi.
βm is normalized such that

∑
m βm = M . In summary, the number of αm

parameters is M ; the number of βm parameters is (M − 1) and the number
of µi parameters is (I − 1). Including σ2, the total number of parameters is
M + (M − 1) + (I − 1) + 1 = 2M + I − 1.
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2.1 MLE of model parameters

The log-likelihood function for model (1) is, up to an additive constant,

l(α1, . . . , αM , β1, . . . , βM , µ1, . . . , µI , σ
2) = −1

2

∑
i

∑
m

[
lnσ2 +

(yim − αm − βmµi)
2

σ2

]
.

Proposition 1 The maximum likelihood estimate (MLE) of αm is

α̂m = ȳ·m, i = 1, . . . ,M.

The MLEs of βm and µi are determined jointly by

β̂m = 1 +

∑
i(yim − yi·)µ̂i∑

i µ̂
2
i

, m = 1, . . . ,M

and

µ̂i =

∑
m(yim − y·m)β̂m∑

m β̂2
m

, i = 1, . . . , I.

These two expressions can be used to iteratively solve for β̂ms and µ̂is, for
instance, by setting the initial value for µi to yi· − y··. Once the MLEs for αm,
βm and µi are obtained, the MLE of σ2 is given by

σ̂2 =
1

IM

∑
i

∑
m

(yim − α̂m − β̂mµ̂i)
2.

A derivation of these equations for MLEs is given in Appendix A.

2.2 Testing for non-constant difference

One important question in comparing different methods of measurement is
whether the difference between any two methods is subject-independent. That
is, whether there exists subject-method interaction. If there is no interaction,
prediction of the measurement of one method from another method is simply
obtained by adjusting for the difference. Otherwise it is more complicated. In
terms of model (1), this mounts to test the following null hypothesis

H0 : β1 = β2 = · · · = βM .

Because of the restriction
∑

m βm = M , this hypothesis is equivalent to requiring
βm = 1,m = 1, . . . ,M . Under this hypothesis, the MLE of µi has an explicit
expression, which is yi· − y··, i = 1, . . . , I. One straightforward way of testing
H0 is to use the likelihood ratio test. However, its performance is unsatisfactory
when M is typically smalls (say, less than 10).

The model (1) is methods-linear: for any method m, the expected measure-
ment E(yim) is a linear function of µi. The test proposed by [Mandel(1961)]
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for detecting non-additivity in rows-linear models is exactly for testing H0. The
test statistic is

T =

∑
m(bm − 1)2

∑
i(yi· − y··)2∑

i

∑
m[(yim − y·m)− bm(yi· − y··)]2

· (I − 2), (2)

where

bm =

∑
i yim(yi· − y··)∑
i(yi· − y··)2

.

Under H0, T follows an F distribution with (M −1) and (M −1)(I−2) degrees
of freedom.

2.3 Prediction

Once the model parameters in (1) are estimated, model (1) can be used to
make prediction of a measurement of a method based on the measurements of
other methods. Suppose a measurement is to be predicted for method m0. Its
expected value is

E(ym0
) = αm0

+ βm0
µ.

Since the value of µ is unknown, it is estimated from the measurements of other
methods, for instance, by lease square method:

µ̂ =

∑
m6=m0

βm(ym − αm)∑
m 6=m0

β2
m

.

A prediction on ym0 is
αm0

+ βm0
µ̂.

Considering sampling error, the prediction variance is

β2
m0
V ar(µ̂) + V ar(em0) = σ2

(
β2
m0∑

m 6=m0
β2
m

+ 1

)

The αms, βms, and σ2 in the previous two expressions will be replaced by their
respective MLEs obtained from training data.

When M = 2, the prediction equation for method m = 1 from method
m = 2 is given by

E(y1) = α1 +
β1
β2

(y2 − α2). (3)

with prediction variance
σ2(1 + β2

1/β
2
2) (4)

This prediction equation and the associated prediction variance are the same
as those from [Carstensen(2010)]. However, as shown in the next section, the
estimates of the model parameters used in [Carstensen(2010)] are biased.
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3 Comparison to the method in [Carstensen(2010)]

In an effort to construct a prediction equation between two methods that is
invariant to the choice of the predicting method and the predicted method,
[Carstensen(2010)] considered the case where M = 2. The following regression
of differences on averages is used:

Di = a+ bAi + ei. (5)

This model is derived from model (1) with M = 2. Regression (5) relates to
model (1) in the following way:

a = (α1 − α2)− (α1 + α2)(β1 − β2)/(β1 + β2)

b = 2(β1 − β2)/(β1 + β2)

ei = 2(β2ei1 − β1ei2)/(β1 + β2).

In addition, ei1 and ei2 are allowed to have different variances σ2
1 and σ2

2 , respec-
tively. [Carstensen(2010)] advocates estimating a and b by their ordinary least
square (OLS) estimator in regression (5) and construct prediction equations
from these estimates (equation (6) of [Carstensen(2010)]). In the R package
MethComp by the same author, non-constant difference between the two meth-
ods is tested by the F -statistic of regression (5), which is

F =
b̂2OLS ·

∑
i(Ai −A·)2∑

i[(Di −D·)− b̂OLS(Ai −A·)]2/(I − 2)
∼ F (1, I − 2) (6)

where

b̂OLS =

∑
i(Ai −A·)(Di −D·)∑

i(Ai −A·)2
.

Unfortunately the OLS estimates of a and b are biased. This is because in
regression (5) the regressor Ai is correlated with the residual ei. Let σ2

u denote
the population variance of u. The correlation coefficient between Ai and ei is

Cor(Ai, ei) = Cor(yi1 + yi2, β2ei1 − β1ei2)

=
Cov(yi1 + yi2, β2ei1 − β1ei2)√

V ar(yi1 + yi2)
√
V ar(β2ei1 − β1ei2)

=
β2σ

2
1 − β1σ2

2√
(β2

1 + β2
2)σ2

u + σ2
1 + σ2

2

√
β2
2σ

2
1 + β2

1σ
2
2

which is not 0 unless β2σ
2
1 − β1σ2

2 = 0.
We have the following results:

Proposition 2 1. The bias in the OLS estimate of b is

plim (b̂OLS − b) =
4(β2σ

2
1 − β1σ2

2)

[(β1 + β2)2σ2
u + σ2

1 + σ2
2 ](β1 + β2)

(7)
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2. The bias in the OLS estimate of a is

plim (âOLS − a) = −plim (b̂OLS − b) ·
α1 + α2

2
(8)

3. The F -test from the regression (5) is identical to the Mandel’s test and
therefore is valid.

The OLS of b is biased even if β1 = β2 given σ2
1 6= σ2

2 . The proof of these re-
sults is given in Appendix B. Because the OLS estimates used in [Carstensen(2010)]
are biased, the prediction equations are biased as well.

4 Simulation Studies

Simulation studies were conducted to study the validity of the test of non-
constant difference used by [Carstensen(2010)]. So the value of M is fixed at 2
and β1 = β2 = 1. Without loss of generality, data from I = 101 subjects are
simulated from model (1) with

α1 = α2 = 0, µi = c(−5.0,−4.9, . . . ,−0.1, 0, 0.1, . . . , 4.9, 5.0).

Like [Carstensen(2010)], the variance of the residual ei1 is allowed to be different
from that of ei2. They are denoted by σ2

1 and σ2
2 , respectively. The number of

simulation replicates is fixed at 1000. It has been verified that the F -statistic
(6) from the regression of differences on averages is identical to the Mandes test
statistic in every single replicate. Only results from the F -statistic is reported.

Table 1 presents the rejection rate of the F -statistic at significance level
0.1, 0.05, and 0.01 for different combination of values for (σ2

1 , σ
2
2). It clearly

shows that the F -statistic is valid only when there is homoscedasticity. It is
highly inflated otherwise. These findings are consistent with the analytical
studies presented in the previous section.

[Table 1 about here.]

Further simulation studies was conducted to demonstrate the bias of Carstensen’s
method and superiority of the MLE estimates. Data were simulated from
model (1) with the same set of parameters as in the previous simulation ex-
cept that (σ2

1 , σ
2
2) is fixed at (1, 1) and β1 and β2 are allowed to change subject

to β1 + β2 = 2. We focus on the estimate of the slope b in the regression of
differences on averages (5) because in this setting the bias in the estimate of a
by Carstensen’s method is expected to be 0 (ref. (8)). Its true value is com-
puted from the values used for β1 and β2. Results are presented in Table 2.
The maximum likelihood method computes the MLE of b by substituting the
MLEs of β1 and β2 into 2(β1 − β2)/(β1 + β2). These results indicate that the
Carstensen’s method is biased while the maximum likelihood method is consis-
tent. It is easy to verify the bias is similar in magnitude to the analytical results
computed from (7).

[Table 2 about here.]
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5 An Example

We consider the blood glucose example used in [Carstensen(2010)]. This data is
a subset of the glucose data included in the R package MethComp. It contains
measurements of glucose based on venous plasma and capillary whole blood on
46 subjects. We were able to replicate the 95%prediction limits reported in
[Carstensen(2010)], which are

Plasma = −2.695 + 1.402 Capillary± 2× 1.302

Capillary = 1.922 + 0.713 Plasma± 2× 0.928.

In comparison, the MLE of (α, β) for Plasma is (7.993, 1.183) and that for
Capillary is (7.624, 0.817). The MLE of σ2 is 0.570. By (4), the prediction error
is 1.328 for Plasma and is 0.918 for Capillary. By (3), the 95% prediction limits
are

Plasma = −3.041 + 1.447 Capillary± 2× 1.328

Capillary = 2.101 + 0.691 Capillary± 2× 0.918.

6 Discussion

We proposed a maximum likelihood method for studies of agreement of multiple
methods. We covered the main issues related to such studies such as parameter
estimation, testing, and prediction. As we have seen, it provides a general frame-
work more theoretically sound than OLS methods. Importantly, it is applicable
to comparison of more than two methods.

One natural question is that whether the likelihood ratio test can be used for
testing non-constant difference. It turns out that since the number of methods
M is typically small (for instance, < 10), simulation studies (results not shown)
indicate that the likelihood ratio test is seriously inflated. However, the Mandel’s
test performs satisfactorily.

The programming of the method proposed in this work is straightforward.
The author’s R code used for the analysis in this paper is available upon request.

Appendix A Proof of Proposition 1

The partial derivatives for the log-likelihood function l(α1, . . . , αM , β1, . . . , βM , µ1, . . . , µI , σ
2)

are

∂l

∂αm
=

1

σ2

∑
i

(yim − αm − βmµi), m = 1, . . . ,M

∂l

∂βm
=

1

σ2

∑
i

(yim − αm − βmµi)µi −
1

σ2

∑
i

(yiM − αM − βMµi)µi

=
1

σ2

∑
i

(yim − βmµi)µi −
1

σ2

∑
i

(yiM − βMµi)µi, m = 1, . . . ,M − 1
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∂l

∂µi
=

1

σ2

∑
m

[(yim − yIm)− βm(µi − µI)]βm, i = 1, . . . , I − 1

∂l

∂σ2
= −IM

2σ2
+

1

2(σ2)2

∑
i

∑
m

(yim − αm − βmµi)
2.

Setting these equations to 0 and solve them for the unknown parameters,
only α̂m has an explicit solution:

α̂m =
1

I

∑
i

(yim − β̂mµ̂i) = y·m.

Other parameters mutually dependent. After simplification, we have

σ̂2 =
1

IM

∑
i

∑
m

(yim − α̂m − β̂mµ̂i)
2

βm = 1 +

∑
i(yim − yi·)µi∑

i µ
2
i

and

µ̂i − µ̂I =

∑
m(yim − yIm)β̂m∑

m β̂2
m

,

or

µ̂i =

∑
m(yim − y·m)β̂m∑

m β̂2
m

, i = 1, . . . , I.

Appendix B Proof of Proposition 2

1.

plim b̂OLS − b = plim

∑
i(Ai −A·)(Di −D·)∑

i(Ai −A·)2
− 2(β1 − β2)

β1 + β2

=
2[(β1 + β2)(β1 − β2)σ2

u + σ2
1 − σ2

2 ]

(β1 + β2)2σ2
u + σ2

1 + σ2
2

− 2(β1 − β2)

β1 + β2

=
4(β2σ

2
1 − β1σ2

2)

[(β1 + β2)2σ2
u + σ2

1 + σ2
2 ](β1 + β2)

2.

plim âOLS − a = plim (D· − b̂OLSA·)− a
= plim [(b− b̂OLS)A· + (D· − bA· − a)]

= − (α1 + α2) + (β1 + β2)µ·
2

(plim b̂OLS − b)

= −α1 + α2

2
(plim b̂OLS − b)

8



3. The term b1 in expression (2) satisfies

b1 − 1 =
1∑

i(yi· − y··)2
∑
i

(yi· − y··)(yi1 − yi· + y··)

=
1∑

i(Ai −A·)2
∑
i

(Ai −A·)(Di/2 +A·)

=
1

2
∑

i(Ai −A·)2
∑
i

(Ai −A·)Di

=
b̂OLS

2
.

Similarly,

b2 − 1 = −
b̂OLS

2
.

Furthermore,

yi1 − y·1 − b1(yi· − y··) = yi1 − y·1 − (b̂OLS/2 + 1)(Ai −A·)
= (yi1 − y·1 −Ai +A·)− (b̂OLS/2 + 1)(Ai −A·)

=
1

2
[(Di −D·)− b̂OLS(Ai −A·)]

and

yi2 − y·2 − b2(yi· − y··) = −1

2
[(Di −D·)− b̂OLS(Ai −A·)]

Hence the denominator of the Mandel’s test in (2) is one fourth times the
residual sum of squares of the regression (5). Combining all these results,
the T statistic in (2) is indeed equal to the F statistic in (6).
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Table 1: Simulated rejection rate when there are two methods and their differ-
ence is constant (i.e., β1 = β2 = 1)

Nominal Significance Level
(σ2

1 , σ
2
2) 0.1 0.05 0.01

(1, 1) 0.101 0.048 0.011
(1, 2) 0.236 0.155 0.049
(1, 3) 0.492 0.380 0.165
(1, 4) 0.724 0.599 0.333
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Table 2: Estimated slope b in the regression of differences on averages (5) by
Carstensen’s method and the maximum likelihood method. The value in the
parenthesis is the standard error over 1000 simulation replicates.

True Value Method
(β1, β2) (= 2(β1 − β2)/(β1 + β2)) Carstensen Maximum Likelihood
(1, 1) 0 0.001411 (0.048420) 0.001498 (0.051221)

(1.2, 0.8) 0.4 0.378420 (0.045241) 0.400397 (0.048032)
(1.4, 0.6) 0.8 0.756821 (0.048581) 0.800738 (0.145569)
(1.6, 0.4) 1.2 1.133011 (0.054472) 1.198421 (0.058434)
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