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Summary

This work concerns two-factor unreplicated experiments in which one factor is random. The model
is presented in a columns-linear form. After applying identifiability conditions, model parameters
are estimated by the maximum likelihood and the restricted/residual maximum likelihood. For
either likelihood, likelihood ratio tests and score tests for nonadditivity of the two factors as well
as the noncentrality parameters are presented. The performance of these tests is compared to
Mandel’s test (which is designed for the same null) using simulation studies. Application of these
tests are illustrated by an example.
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1. Introduction

Research in studies of additivity in two-factor experiments that have no replication has a long
history. The most famous one is Tukey’s test of additivity (Tukey, 1949). This 1-df test is designed
for a specific non-additivity structure. A more general test is the Mendel’s test (Mandel, 1961).
Recent developments include Mandel (1971), Johnson and Graybill (1972), Boik (1993), Tusell
(1990), and Franck and others (2013). A recent review of this research on this topic is presented
in Alin and Kurt (2006).

We focus on a non-additivity structure that is columns-linear. This structure is equivalent to
the rows-linear structure considered by Mandel (1961). In particular, we allow the effect of the
row factor to be random. For instance, in studies of comparing different methods of measurement,
the effect of subjects can be regarded as random. However, tests for mixed effects in this context
seem to be non-existant. Rasch and others (2009) simply applied the tests designed for fixed
effects and studied their performance in mixed effects setting.

This research is motivated by studies comparing methods of measurement. So another focus
is parameter estimation. The estimated parameters are useful in calibrating different methods.
This is in contrast to existing studies on testing non-additivity.

This paper is organized as follows. We first define the model with special attention given to
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identifiability of model parameters. Model parameters are estimated by the maximum likelihood
and then by the restricted maximum likelihood. Likelihood ratio tests and score tests are intro-
duced for testing non-additivity. These tests and the Mandel’s test are compared in simulation
studies and an empirical study.

2. Methods

Consider a two-way unreplicated experiment with factor A and factor B. There are n levels for
factor A and m levels for factor B. The response yij corresponding to level i of A and level j of
level B is assumed to follow the following model

yij = αj + βjui + eij , eij ∼ N(0, σ2), i = 1, . . . , n, j = 1, . . . ,m, (2.1)

where αj , βj , ui, and σ2 are model parameters. In this notation, i is the row index and j the column
index. This model assumes the response is linear in each column with column-specific intercept
αj and slope βj . It is equivalent to the rows-linear model considered in Mandel (1961). However,
it appears convenient to lay out data this way in studies comparing methods of measurements:
the columns correspond to different methods while the rows correspond to subjects. Model (2.1)
is popular in studies comparing methods of measurements (Carstensen, 2010). It extends the
traditional Bland-Altman method (Bland and Altman, 1986).

Let u· = n−1
∑
i ui. Equations in (2.1) can be written

yij = (αj + βju·) + βj(ui − u·) + eij .

That is, without loss of generality, it can be assumed that
∑
i ui = 0. αj represents the mean

response of column j on an “average” subject whose value is u·. Furthermore, the term βjui
remains the same when βj is multiplied by a factor while ui is divided by the same factor and
so does when βj and ui switch their signs. So βj is normalized such that

∑
i u

2
i = 1 and β1 > 0.

Overall, the total number of parameters in (2.1) is 2m+ n− 1.
Taking each row of matrix {yij} as a response from a subject, it is natural to treat the row

effect as random. From now on it is assumed that ui follows a normal distribution with mean 0
and variance 1: ui ∼ N(0, 1). The variance 1 reflects the scale normalization on ui. Let yi be a
column vector consisting of the ith row of matrix {yij} and

α =


α1

α2

...
αm

 , β =


β1
β2
...
βm

 .

With these vector notations, model (2.1) assumes the following more concise form:

yi|ui ∼MVN(α + uiβ, σ
2I), ui ∼ N(0, 1).

This is a special case of mixed effects model. It is special because the variance of the random
effect u is fixed at 1. It can be shown that this model is equivalent to (details omitted)

yi ∼MVN(α,Σ), where Σ = ββt + σ2I. (2.2)

The null hypothesis of interest is

H0 : β1 = β2 = · · · = βj = β
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for a common β. Under this hypothesis, the effect of the row factor and that of the column factor
are additive. There is no interaction between these two factors. The alternative is that H0 does
not hold.

2.1 MLE of model parameters

The log-likelihood function for model (2.2) is

l(α,β, σ2) = −nm
2

log(2π)− n

2
log |Σ| − 1

2
tr

[
Σ−1

∑
i

(yi −α)(yi −α)t

]
.

Here tr(A) means the sum of the diagonal elements of matrix A, i.e., the trace of A. The first-
order derivatives are (Appendix)

l̇α = Σ−1
∑
i

(yi −α),

l̇β = −nΣ−1

[
β − n−1

∑
i

(yi −α)(yi −α)tΣ−1β

]
,

l̇σ2 = −n
2

[
tr(Σ−1)− tr

(
Σ−2 · n−1

∑
i

(yi −α)(yi −α)t

)]
.

Define
S = n−1

∑
i

(yi − y·)(yi − y·)
t

and y· = n−1
∑
i yi. Setting each of the three first-order derivatives to 0 and solving them

simultaneously for α,β, and σ2, we obtain the following relationships their maximum likelihood
estimates (MLE) obey (Appendix):

α̂ = y·

β̂ = (β̂
t
β̂ + σ̂2)−1Sβ̂,

σ̂2 = m−1(tr(S)− β̂
t
β̂).

There is an explicit solution for α̂ but not for σ̂2 and β̂. However, the last two expressions can
be used iteratively to find approximate solutions for σ̂2 and β̂.

Under the null hypothesis H0, the MLEs of β and σ2 are directly available. The MLE of β is
equal to the square root of β̂2, where

β̂2 =
1tS1− tr(S)

m(m− 1)

is the average of the off-diagonal elements of S. The MLE of σ2 is equal to

σ̂2
0 =

tr(S)

m
− β̂2,

which is the difference between the averages of the diagonal elements of S and its off-diagonal
elements. These results are easily interpretable.
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Having the MLEs of the model parameters under both the null and the alternative, the
likelihood ratio test can be formed:

Λ = 2[log l(α̂, β̂, σ̂2)− log l(α̂, β̂1, σ̂2
0)].

Note that the MLE of α is the same under the null as under the alternative. When H0 holds, Λ
asymptotically follows a chi-square distribution with degrees of freedom equal to m− 1.

The Fisher information matrix is block-diagonal (Appendix):

F =

(
nΣ−1 0

0 F1

)
, (2.3)

where

F1 = n

(
(βtΣ−1β)Σ−1 + Σ−1ββtΣ−1 Σ−2β

βtΣ−2 0.5tr(Σ−2)

)
.

According to standard asymptotic theory, a score statistic is defined by

T = (l̇αt , l̇βt , l̇σ2)F−1(l̇αt , l̇βt , l̇σ2)t evaluated at the null.

It is easy to verify that l̇α = 0, therefore

T = (l̇βt , l̇σ2)F−11 (l̇βt , l̇σ2)t evaluated at the null.

It is also straightforward to verify that l̇σ2 = 0 under the null. Using block-matrix inverse formula,

T = n−1 l̇βt

[
(βtΣ−1β)Σ−1 + Σ−1ββtΣ−1 − 2

tr(Σ−2)
Σ−2ββtΣ−2

]−1
l̇β.

Since

Σ−1β =
1

σ2

(
I− 1

βtβ + σ2
ββt

)
β

=
1

βtβ + σ2
β,

each of the last two terms between the brackets is proportional to ββt. Using the Sherman-
Morrison formula,

T = n−1
l̇βtΣl̇β

(βtΣ−1β)
+ terms depending on (βt l̇β)2.

The terms depending on (βt l̇β)2 are 0 because β = β1 under the H0 and

βt l̇β ∝ 1t(1− Σ̂
−1

S1)

= 0.

Plugging in the MLE estimates of β and σ2
0 under H0 and simplifying (details omitted), the score

statistic for H0 is

T = n−1
βtβ + σ2

βtβ
l̇βtΣl̇β

=
n

σ̂2
0 · 1tS1

[1tS21−m−1(1tS1)2]
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Since 1tS21 = (S1)t(S1), statistic T depends on the variation of in the row sums of S. If H0

holds, no variation is expected.
The non-centrality parameter (NCP) of T is

lim
n→∞

n−1T =
1tΣ21−m−1(1tΣ1)2

σ2(1tΣ1)

=
m2[Ave(β)]2

σ2(m[Ave(β)]2 + σ2)
·D(β),

where
Ave(β) = m−1

∑
j

βj

is the average of the βjs and

D(β) = m−1
∑
j

β2
j − [Ave(β)]2

measures the divergence in βjs. The power of T at significance level α is

Pr(X > χ2
1−α,m−1)

where X follows a chi-square distribution with df = m−1 and non-centrality parameter NCP and
χ2
1−α,m−1 is the critical value from a chi-square distribution with df = m− 1 and non-centrality

parameter 0.
Since the likelihood ratio statistic Λ is asymptotically equivalent to the score statistic T , they

share the same NCP.

2.2 Restricted maximum likelihood estimation

The maximum likelihood method is known to generate biased estimate of variance components
such as σ2. A restricted maximum likelihood is useful in reducing the bias. We consider n −m
linear combinations of the responses yij such that the distribution of these linear combinations
are free of the parameters in the mean structure (i.e., the α parameter). Define

y∗ =


y∗1
y∗2
...

y∗n−1


(n−1)m×1

where y∗i = yi − yn, i = 1, 2, . . . , n− 1. The distribution of y∗ is multivariate normal with mean
vector 0 and covariance matrix Ω equal to

Ω =


2Σ Σ . . . Σ
Σ 2Σ . . . Σ
...

...
...

...
Σ Σ . . . 2Σ


= (I + 11t)(n−1)×(n−1) ⊗Σm×m.
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Here “⊗” denotes the Kronecker product of two matrices. In this formulation, subject n is used
as the reference. It turns out that the choice of the reference subject does not affect the restricted
likelihood. The likelihood for y∗ is the restricted likelihood for the untransformed, or the original,
data. The logarithm of this likelihood is

l∗(β, σ2) = − (n− 1)m

2
log(2π)− 1

2
log |Ω| − 1

2
tr
[
Ω−1y∗(y∗)t

]
.

Since

|Ω| = |I + 11t|m|Σ|n−1 = nm|Σ|n−1,
Ω−1 = (I + 11t)−1 ⊗Σ−1

= (I− n−111t)⊗Σ−1,

and

tr
[
Ω−1y∗(y∗)t

]
= tr

[
Σ−1

(
n−1∑
i=1

y∗i (y
∗
i )
t − n−1

n−1∑
i=1

y∗i

n−1∑
i=1

(y∗i )
t

)]

= tr

[
Σ−1

(
n∑
i=1

y∗i (y
∗
i )
t − n−1

n∑
i=1

y∗i

n∑
i=1

(y∗i )
t

)]
(define y∗n = yn − yn = 0)

= tr

[
Σ−1

(
n∑
i=1

(yi − yn)(yi − yn)t − n−1
n∑
i=1

(yi − yn)

n∑
i=1

(yi − yn)t

)]

= tr

[
Σ−1

(
n∑
i=1

yiy
t
i − n−1

n∑
i=1

yi
∑
i=1

yti

)]
= ntr

(
Σ−1S

)
,

the likelihood function l∗(β, σ2) can be written

l∗(β, σ2) = − (n− 1)m

2
log(2π)− m

2
log(n)− n− 1

2
log |Σ| − n− 1

2
tr
(
Σ−1S∗

)
with S∗ = n

n−1S. This likelihood does not depend on α. Similar to likelihood l(α,β, σ2), the
restricted maximum likelihood estimates (REMLEs) of β and Σ satisfy the following relationship:

β̃ = (β̃
t
β̃ + σ̃2)−1S∗β̃,

σ̃2 = m−1(tr(S∗)− β̃
t
β̃).

Under H0, the REMLE of β and σ2 can be solved explicitly:

β̃2 =
1tS∗1− tr(S∗)
m(m− 1)

,

σ̃2 =
tr(S∗)

m
− β̃2.

These REMLEs relate to those from l(α,β, σ2) in the following way:

β̃ =

√
n

n− 1
β̂, σ̃2 =

n

n− 1
σ2, β̃ =

√
n

n− 1
β̂, σ̃2

0 =
n

n− 1
σ2
0 . (2.4)
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The likelihood ratio statistic is

Λ∗ = (n− 1) · [max
β,σ2

(− log |Σ| − tr(Σ−1S∗)−max
β,σ2

(− log |Σ| − tr(Σ−1S∗)].

It is straightforward to show that

Λ∗ =
n− 1

n
Λ.

It is also straightforward to verify that

T ∗ =
n− 1

n
T .

2.3 A Prediction problem

A prediction problem in studies of methods of measurement is how to predict the measurement
of method j, denoted by yj , given the measurements of the others, denoted by y−j , on a subject.
Let u be the unknown “true” value of the subject. The joint distribution of (yt−j , u)t is(

y−j
u

)
∼ N

((
α−j

0

)
,

(
Σ−1−j,−j β−j
βt−j 1

))
.

Here a subscript −j means the jth row (or the jth column for Σ−1) is removed. We have

E(u|y−j) = βt−jΣ
−1
−j,−j(y−j −α−j)

=
βt−j(y−j −α−j)

βt−jβ−j + σ2
,

V ar(u|y−j) = 1− βt−jΣ
−1
−j,−jβ−j

=
σ2

βt−jβ−j + σ2
.

A prediction of the measurement by method j is

ypj = αj + βjE(u|y−j)

=

(
αj −

βj · βt−jα−j
βt−jβ−j + σ2

)
+

βj

βt−jβ−j + σ2
· βt−jy−j . (2.5)

This is a linear function in y−j . The prediction variance is

V ar(ypj ) = V ar(u|y−j) + σ2

= σ2 +
σ2

βt−jβ−j + σ2
. (2.6)

A 95% prediction limits for yj is

ypj ± 1.96
√
V ar(ypj ).

In this calculation, the unknown parameters α, β, and σ2 are to be substituted by their respective
MLEs or REMLEs.
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Table 1. Simulated rejection rate under the null and the alternative. The first two values for β correspond
to the null and the the last two values correspond to the alternative.

Nominal Statistic
β Level Λ Λ∗ T T ∗ Mendel

(1, 1)t 0.10 0.098 0.097 0.097 0.096 0.096
0.05 0.044 0.044 0.044 0.044 0.044
0.01 0.015 0.015 0.013 0.013 0.013

(1, 1, 1, 1)t 0.10 0.103 0.099 0.101 0.098 0.098
0.05 0.053 0.050 0.049 0.046 0.047
0.01 0.008 0.007 0.007 0.006 0.007

(1.1, 1.2, 1.3, 1.4)t 0.10 0.505 0.498 0.497 0.493 0.493
0.05 0.394 0.389 0.389 0.381 0.388
0.01 0.198 0.194 0.185 0.177 0.185

(1.1, 1.2, 1.3, 1.4, 1.5, 1.6)t 0.10 0.926 0.924 0.925 0.924 0.925
0.05 0.885 0.879 0.879 0.876 0.876
0.01 0.717 0.709 0.705 0.701 0.705

3. Simulation Studies

The goal of this simulation study is to investigate the performance of the likelihood ratio statistics
and score statistics as well as the Mandel’s test (Mandel, 1961). The Mandel’s test statistic is

Mandel =

∑
j(bj − 1)2

∑
i(yi· − y··)2∑

i

∑
j [(yij − y·j)− bj(yi· − y··)]2

· (n− 2), (3.7)

where yi· = m−1
∑
i yij , y·j = n−1

∑
i yij , y·· = (nm)−1

∑
i,j yij , and

bj =

∑
i yij(yi· − y··)∑
i(yi· − y··)2

.

Under H0, Mandel follows an F distribution with m− 1 and (m− 1)(n− 2) degrees of freedom.
Data were generated from model (2.2) with α = 0 and σ2 = 1. For the study of type I

error rate, two situations with β = (1, 1)t and β = (1, 1, 1, 1)t, respectively, are considered.
Another two β vectors were considered for the study of power: β = (1.1, 1.2, 1.3, 1.4)t and β =
(1.1, 1.2, 1.3, 1.4, 1.5, 1.6)t. The number of subjects n is fixed at 100. The simulated rejection rates
over 1000 replicates are reported in table 1. All the tests have satisfactory type I error rate. Their
power are also similar to sach other.

4. An Example

The data frame named hba1c in the R package MethComp contains measurements of HbA1c
(glycosylated haemoglobin) on blood samples from 38 individuals. A venous blood sample and
a capillary blood sample were obtained from each individual. Three analyzers were then used to
determine the level of HbA1c in each sample. So the total number of methods is m = 2× 3 = 6.
Each sample was analyzed on five different days. This data were analyzed in Carstensen (2004).
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Fig. 1. Plot of the HbA1c measurement averaged over 5 different sample analysis days. One line corre-
sponds to one measurement method.
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Table 2. MLEs of the model parameter for the HbA1c data. Each method consists of two parts: analyzer
(BR.V2, BR.VC, or Tosoh) and type of blood sample (Cap or Ven). REMLEs can be obtained easily by
using formulae in (2.4).

Method
Parameter BR.V2.Cap BR.VC.Cap Tosoh.Cap BR.V2.Ven BR.VC.Ven Tosoh.Ven

α 8.228289 8.344518 7.955263 8.281798 8.096053 8.171053
β 1.382097 1.328687 1.329025 1.339047 1.290518 1.375324
σ2 0.02196932

Table 3. P -value of various tests for H0 : β1 = β2 = β3 = β4 = β5 = β6.

Λ Λ∗ T T ∗ Mandel
0.08759307 0.09619505 0.09643245 0.10556074 0.1034894

In our analysis, measurements from each method over these 5 days are averaged so there is no
replicated measurement per method per individual. The data is graphically presented in figure 1.

The MLEs of the model parameters are presented in table 2. There is no significant difference
among the 6 β coefficients (table 3). Based on the results in table 2, prediction equations for
each method given measurements from all others can be computed using equations (2.5) and
(2.6). These prediction equations are shown in table 4. For instance, the prediction equation for
BR.V2.Cap is

BR.V2.Cap = −0.2216 + 0.2062BR.VC.Cap + 0.2063Tosoh.Cap

+0.2079BR.V2.Ven + 0.2003BR.VC.Ven

+0.2135Tosoh.Ven.

A salient feature of these prediction equations is that they use all other methods simultaneously.
In contrast, the equations reported in Carstensen (2004) are for pair-wise prediction — only one
predicting method is used in each equation. The prediction standard error is about 10 times as
large as reported here.

5. Discussion

We have presented analysis methods for two-factor unreplicated experiments where one factor
is random. As this research is motivated by studies of comparing methods of measurement,
its foci include parameter estimation, tests of additivity, and prediction of one method given
measurements of other methods. In this context, treating one factor (i.e., subject) as random is
more reasonable than treating it as fixed effect. In addition, it reduces the number of nuisance
parameters and is expected to result in more powerful tests (although the simulated power of the
proposed tests are similar to that of the Mandel’s test).

The programming of the method proposed in this work is straightforward. The author’s R
code used for the analysis in this paper is available upon request.
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Table 4.

Predicting Predicted method
Method BR.V2.Cap BR.VC.Cap Tosoh.Cap BR.V2.Ven BR.VC.Ven Tosoh.Ven

Intercept −0.2216 0.3093 −0.1584 0.1595 0.2868 −0.2406
BR.V2.Cap 0 0.2029 0.2030 0.2052 0.1950 0.2130
BR.VC.Cap 0.2062 0 0.1952 0.1972 0.1874 0.2048
Tosoh.Cap 0.2063 0.1952 0 0.1973 0.1875 0.2049
BR.V2.Ven 0.2079 0.1966 0.1967 0 0.1889 0.2064
BR.VC.Ven 0.2003 0.1895 0.1896 0.1916 0 0.1989
Tosoh.Ven 0.2135 0.2020 0.2020 0.2042 0.1940 0
Prediction
Standard 0.02444 0.02440 0.02440 0.02440 0.02437 0.02443

Error
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Appendix Derivations related to maximum likelihood estimates

Because of the general relationships that

∂ log |Σ|
∂θ

= tr

(
Σ−1

∂Σ

∂θ

)
and

∂Σ−1

∂θ
= −Σ−1

∂Σ

∂θ
Σ−1,

it is straightforward to compute the first-order derivatives.

l̇α = Σ−1
∑
i

(yi −α), (5.8)

l̇βm = −n
2

∂ log |Σ|
∂βm

− 1

2
tr

[
∂Σ−1

∂βm

∑
i

(yi −α)(yi −α)t

]

= −n
2
tr(Σ−1

∂Σ

∂βm
) +

1

2
tr

[
Σ−1

∂Σ

∂βm
Σ−1

∑
i

(yi −α)(yi −α)t

]

= −n
2
tr(Σ−1(β1tm + 1mβt)) +

1

2
tr

[
Σ−1(β1tm + 1mβt)Σ−1

∑
i

(yi −α)(yi −α)t

]

= −n
2
tr(Σ−1(β1tm + 1mβt)) +

1

2

∑
i

(yi −α)tΣ−1(β1tm + 1mβt)Σ−1(yi −α)

= 1tm[−nΣ−1β +
∑
i

Σ−1(yi −α)(yi −α)tΣ−1β], (5.9)

l̇β = −nΣ−1

[
β + Σ−1 · n−1

∑
i

(yi −α)(yi −α)t ·Σ−1β

]
,

l̇σ2 = −n
2

∂ log |Σ|
∂σ2

− 1

2
tr

[
∂Σ−1

∂σ2

∑
i

(yi −α)(yi −α)t

]

= −n
2
tr(Σ−1

∂Σ

∂σ2
) +

1

2
tr

[
Σ−1

∂Σ

∂σ2
Σ−1

∑
i

(yi −α)(yi −α)t

]

= −n
2
tr(Σ−1) +

n

2
tr

[
Σ−2 · n−1

∑
i

(yi −α)(yi −α)t

]
. (5.10)

From (5.8), the α is equal to
α̂ = y·.

Substituting α̂ into (5.9) and (5.10), which is equivalent to replacing n−1
∑
i(y1 − α)(yi − α)t

by S,

β = SΣ−1β

=
1

βtβ + σ2
Sβ, (5.11)

tr(Σ−1) = tr(Σ−2S). (5.12)
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From (5.11),
βtSβ = βtβ(βtβ + σ2) (5.13)

we have from (5.12) and (5.13)

σ2 =
tr(S)− βtβ

m
. (5.14)

The Fisher information is computed using standard formulae for matrix expectation.

E(l̇α l̇αt) = nΣ−1,

E(l̇α l̇βt) = E([Σ−1
∑
i

(yi −α)] · [−nβtΣ−1 +
∑
i

βtΣ−1(yi −α)(yi −α)tΣ−1]

= nΣ−1E[(y −α)βtΣ−1(y −α)(y −α)t]Σ−1

= 0,

E(l̇α l̇σ2) =
n

2
E[Σ−1(y −α) · (y −α)tΣ−1Σ−1(y −α)]

= 0,

E(l̇β l̇βt) = E(−nΣ−1 +
∑
i

Σ−1(yi −α)(yi −α)tΣ−1)ββt(−nΣ−1 +
∑
i

Σ−1(yi −α)(yi −α)tΣ−1)

= −nΣ−1ββtΣ−1 + nΣ−1E[(y −α)(y −α)tΣ−1ββtΣ−1(y −α)(y −α)t]Σ−1

= nΣ−1ββtΣ−1 + n(βtΣ−1β)Σ−1

E(l̇β l̇σ2) =
1

2
E[−ntr(Σ−1) +

∑
i

(yi −α)tΣ−1Σ−1(yi −α)] · [−nΣ−1 +
∑
i

Σ−1(yi −α)(yi −α)tΣ−1]β

=
1

2
E[−ntr(Σ−1) +

∑
i

(yi −α)tΣ−1Σ−1(yi −α)] · [
∑
i

Σ−1(yi −α)(yi −α)tΣ−1]β

=
1

2
E[−n2tr(Σ−1)Σ−1 + n(n− 1)tr(Σ−1)Σ−1 + n(y −α)tΣ−2(y −α)Σ−1(y −α)(y −α)tΣ−1]β

=
n

2
E[−tr(Σ−1) + (y −α)tΣ−2(y −α)Σ−1(y −α)(y −α)t]Σ−1β

= −n
2
tr(Σ−1)Σ−1β +

n

2
Σ−1E[(y −α)(y −α)tΣ−2(y −α)(y −α)t]Σ−1β

= −n
2
tr(Σ−1)Σ−1β +

n

2
Σ−1[2I + tr(Σ−1)Σ]Σ−1β

= nΣ−2β

E(l̇σ2)2 =
1

4
(−n2[tr(Σ−1)]2 + n(n− 1)[tr(Σ−1)]2 + nE[(y −α)tΣ−2(y −α)]2)

=
1

4
(−n[tr(Σ−1)]2 + nE[(y −α)tΣ−2(y −α)]2)

=
n

2
tr(Σ−2)
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