SPEECH INTELLIGIBILITY INDEX MODEL:

A Key Aspect to a Child's Development of Speech and Language

July 17, 2014

Mentor: Dr. Jacob Oleson Melissa Jay Colorado College Katelyn Zumpf North Central College

Outline

- 1. Importance of the study
- 2. Introduction to hearing
- 3. Methods for imputation
- 4. Construction of SII Model
- 5. Analysis of Imputations
- 6. Concluding Remarks

Importance

- The development of speech and language in children is critically impacted by the child's ability to hear
 OCHL Grant
- It has been found that children with hearing loss, who fail to seek proper help, have a delay in their speech development

Hearing

- "Speech Banana"
- Shows the pitches and levels of loudness for which certain sounds and speech are heard

Hearing Aids

- Amplifies sound
- Patients have mild to moderate hearing loss

Cochlear Implants

- A Surgically implanted electronic device
- Patients damaged hair cells in cochlea
- Severe to complete hearing loss
- How it works?
 - Microphone captures sound from environment
 - Noise is filtered and converted to electric impulses

What is Speech Intelligibility Index?

- Measure between 0 and 1
 - 0: no understanding of speech
 - 1: speech information is audible and usable (normal hearing)
- Unable to be measured in individuals with cochlear implants
- No other way of obtaining this value

Goal of the Study

- Find a model that predicts "functional" Speech Intelligibility Index (SII) for a child with a cochlear implant
- Determine when hearing loss is identified, which hearing corrective action approach would provide a child with the most long term advantages: -hearing aids or cochlear implants?

Data Set and Variables

- 77 Children, ages 7-9
 - 18 with Cochlear Implants (CI)
 - 59 with Hearing Aids (HA)
- 16 Variables
 - o SII
 - Word Attack, Passage Score, Mother's Education, Pure-tone Average

Multiple Imputation

- A method used to predict missing data values
- Imputations of SII for children with CI and of missing values in explanatory variables
- Software package used: Multivariate Imputation by Chained Equations (MICE) in R
- A Markov-Chain Monte Carlo algorithm (MCMC) is used in this package

MCMC Example

SII	Word Attack Score	Passage Score	Mother's Education Level
0.90	90		3
0.884	122	125	4
		132	5
	115	120	5
	109	110	2

Iteration Order: 1. Word Attack \rightarrow Passage \rightarrow SII

. . .

200. Word Attack \rightarrow Passage \rightarrow SII

$$\theta_1^{*(t)} \sim P\left(\theta_1 \middle| Y_1^{obs}, Y_2^{(t-1)}, \dots, Y_p^{(t-1)}\right)$$
$$Y_1^{*(t)} \sim P(Y_1 \middle| Y_1^{obs}, Y_2^{(t-1)}, \dots, Y_p^{(t-1)}, \theta_1^{*(t)})$$

$$\theta_{P}^{*(t)} \sim P\left(\theta_{P} \middle| Y_{P}^{obs}, Y_{1}^{(t)}, \dots, Y_{p-1}^{(t)}\right)$$
$$Y_{P}^{*(t)} \sim P(Y_{P} \middle| Y_{P}^{obs}, Y_{1}^{(t)}, \dots, Y_{p}^{(t)}, \theta_{P}^{*(t)})$$

MCMC Example

SII	Word Attack Score	Passage Score	Mother's Education Level
0.90	90	120	3
0.884	122	125	4
0.86	117	132	5
0.57	115	120	5
0.77	109	110	2

Iteration Order: 1. Word Attack \rightarrow Passage \rightarrow SII

. . .

200. Word Attack \rightarrow Passage \rightarrow SII

$$\theta_1^{*(t)} \sim P\left(\theta_1 \middle| Y_1^{obs}, Y_2^{(t-1)}, \dots, Y_p^{(t-1)}\right) Y_1^{*(t)} \sim P(Y_1 \middle| Y_1^{obs}, Y_2^{(t-1)}, \dots, Y_p^{(t-1)}, \theta_1^{*(t)})$$

$$\theta_{P}^{*(t)} \sim P\left(\theta_{P} \middle| Y_{P}^{obs}, Y_{1}^{(t)}, \dots, Y_{p-1}^{(t)}\right)$$
$$Y_{P}^{*(t)} \sim P(Y_{P} \middle| Y_{P}^{obs}, Y_{1}^{(t)}, \dots, Y_{p}^{(t)}, \theta_{P}^{*(t)})$$

Model Assumptions

- To perform multiple imputation, response variables are supposed to be "Missing at Random" (MAR). Is SII for CI children MAR?
- Same relationship between SII and explanatory variables for children with HA and CI
- Explanatory variables are independent

SII (3 Explanatory Variables) vs PTA

Transformed Better Ear PTA

Explanatory Variables: Word Attack, Passage Score, Mother's Education

produces

Fathers!"

Better Ear SII

SII (Logistic Imputations, 3 Explanatory Variables) vs PTA

- Imputes SII using logistic transformation
- Creates upper bound of 1.0
- Transforms SII back to normal range after imputation
- No pregnant fathers

- Imputed SII values are strongly influenced by PTA
- Conceptually this does not make sense
- Violates "variables missing at random"- significant difference between CI and HA
- Conclusion: remove PTA from the model

Our Final Imputation Model

• Impute Logistic SII (Response Variable)

 Explanatory variables: Word Attack, Passage Score, Mother's Education

SII (Logistic Imputations, 3 Explanatory Variables) vs PTA

Regression with Completed Data

• After completing data set, the following multiple regression can be used to predict SII:

 $Predicted \ Cl \ SII = -2.21 - 0.016(Word - Attack) + 0.049(Passage) +$

0.053(Mom'sEd3) + 0.011(Mom'sEd4) + 0.117(Mom'sEd5)

Multiple R-squared: 0.3279

Testing Aided SII Points (Logistic Imputations) vs PTA

PTA vs. Improved SII

SII (Logistic Imputations, 3 Explanatory Variables) vs PTA

Conclusion

- New Criteria:
 - \circ Any child with aided SII < 0.42
 - \circ Any child with PTA > 49.5 dB
- Future research topics:
 - Determine if the newly-developed less-invasive Hybrid
 10 Implants could further improve SII in children with
 severe hearing loss
 - Studying how generalizable our model is to different age groups

Acknowledgements

• We would like to thank our mentor, Dr. Jacob Oleson, for his support and guidance throughout this research as well as:

Dr. Bruce Tomblin Dr. Gideon Zamba Terry Kirk Melissa Pugh

Joe Moen Entire Biostatistics Department Home Institutions

References

- Buuren, Stef, and Karin Groothuis-Oudshoorn. "MICE: Multivariate imputation by chained equations in R." *Journal of statistical software* 45.3 (2011).
- Gantz, Bruce J., Marlan R. Hansen, Christopher W. Turner, Jacob J. Oleson, Lina A. Reiss, and Aaron J. Parkinson. "Hybrid 10 Clinical Trial." *Audiology and Neurotology* 14.1 (2009): 32-38. Web.
- Holte, Lenore, et al. "Factors influencing follow-up to newborn hearing screening for infants who are hard of hearing." *American Journal of Audiology* 21.2 (2012): 163-174.
- "The Speech Banana." *Listening and Spoken Language Knowledge Center*. Alexander Graham Bell Association for the Deaf and Hard of Hearing, n.d. Web. 15 July 2014.
- Tomblin, Bruce J., PhD, Jacob J. Oleson, PhD, Sophie E. Ambrose, PhD, and Elizabeth Walker, PhD. "The Influence of Hearing Aids on the Speech and Language Development of Children With Hearing Aids." *American Medical Association* (2014): 403-09. Print.

Questions?