Platelet counts and their effect on patient outcomes with patent ductus arteriosus (PDA)

Edel Sah, University of Notre Dame
Lorena Cristal, University of Puerto Rico at Humacao
Chelsea Robalino, University of Florida

Dr. Patrick Breheny, University of Iowa
What is PDA?

- Ductus Arteriosus is a blood vessel that allows the blood to pass from the pulmonary artery to the aorta, bypassing the not yet functional lungs.
- Once the baby is born, it is expected to close the open aorta.
- If it’s still open, some of the blood skips the step of becoming oxygenated.
- This circulatory disorder is called Patent Ductus Arteriosus (PDA).
Why is it bad?

- Deoxygenated and oxygenated blood do not separate.
- Increased pulmonary blood flow
- Pulmonary edema
- Worsening of cardiopulmonary status
Premature babies and PDA

- Not a common problem in full term babies
- There is an increased risk between premature babies and the prevalence of PDA
How is it diagnosed?

- All babies are born with Ductus Arteriosus.
- In premature babies, an echocardiogram is performed on the fifth day after birth to diagnose PDA.
- Doctors have different thoughts on how to treat it—some are more conservative than others.
Research Goal:

Find risk factors that examine the relationship in premature babies with three clinical outcomes: development of PDA, recovery without intervention and successful indomethacin treatment.
What is logistic regression?

\[\ln \frac{p}{1-p} = \beta_0 + \beta_1 x_1 + \ldots + \beta_i x_i \ldots \]

- \(\beta_0 \) is the “intercept”
- \(\beta_i \) is the regression coefficient of \(x_i \)
- \(x_i \) is a value of the predictor
- \(p \) is the probability that the dependent variable equals a case
Our Data

- From chart reviews
- 404 babies (207 with PDA)
- University of Iowa Hospitals and Clinics
- All born prematurely (< 29 weeks)
- Very low birth weight (<1800 grams)

Our Factors

- Platelet count
- Gender
- Preeclampsia
- Gestational age(weeks)
- Birth weight (grams)
Platelet counts

In this study we focused on a baby’s platelet counts. Counts were recorded on their first seven days of life. We are interested in this because platelets help blood clot, meaning there might be an association with PDA.
Missing Data

- Incomplete data on platelet counts
- Linear prediction for specific day platelet counts
- This assumes the data is missing at random
Missing Data Example

```
<table>
<thead>
<tr>
<th>pltctD0</th>
<th>pltctD1</th>
<th>pltctD2</th>
<th>pltctD3</th>
<th>pltctD4</th>
<th>pltctD5</th>
<th>pltctD6</th>
<th>pltctD7</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

![Graph showing platelet count over days](image)
Predict if a baby will develop PDA

Gestational Age

PDA

OR: 0.67 CI: (0.58,0.78) p = 2e-7
Predict if a baby will develop PDA

Birth weight -- but confounding with GA weeks

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>CI (95%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birthweight</td>
<td>0.897 (0.83, 0.97)</td>
<td>0.007</td>
</tr>
<tr>
<td>Birthweight + GA weeks</td>
<td>1.05 (0.94, 1.16)</td>
<td>0.402</td>
</tr>
<tr>
<td>GA weeks</td>
<td>0.64 (0.53, 0.776)</td>
<td>4.41E-06</td>
</tr>
</tbody>
</table>

*Birthweight is per 100g
Predict if a baby will develop PDA

Platelet counts

<table>
<thead>
<tr>
<th>Days</th>
<th>OR</th>
<th>CI 2.5%</th>
<th>CI 97.5%</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.02</td>
<td>0.79</td>
<td>1.31</td>
<td>0.87</td>
</tr>
<tr>
<td>1</td>
<td>0.87</td>
<td>0.67</td>
<td>1.12</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>0.85</td>
<td>0.67</td>
<td>1.08</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>0.81</td>
<td>0.66</td>
<td>1.01</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>0.80</td>
<td>0.66</td>
<td>0.98</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.83</td>
<td>0.69</td>
<td>0.99</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>0.85</td>
<td>0.73</td>
<td>0.99</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>0.86</td>
<td>0.75</td>
<td>0.99</td>
<td>0.04</td>
</tr>
</tbody>
</table>

per 100 counts
Prediction of recovery without intervention

Platelet counts

<table>
<thead>
<tr>
<th>Days</th>
<th>OR</th>
<th>CI 2.5%</th>
<th>CI 97.5%</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.51</td>
<td>0.28</td>
<td>0.91</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0.63</td>
<td>0.33</td>
<td>1.21</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0.58</td>
<td>0.32</td>
<td>1.02</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.73</td>
<td>0.44</td>
<td>1.24</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td>0.98</td>
<td>0.61</td>
<td>1.66</td>
<td>0.94</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>0.63</td>
<td>1.67</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>1.14</td>
<td>0.74</td>
<td>1.87</td>
<td>0.58</td>
</tr>
<tr>
<td>7</td>
<td>1.19</td>
<td>0.81</td>
<td>1.86</td>
<td>0.40</td>
</tr>
</tbody>
</table>

*per 100 counts
Predict if the indomethacin treatment is effective (no surgery)

Average Platelet Count

OR: 0.64
CI: (0.40, 1.0)
\(p = 0.0547 \)
*per 100 counts
Predict if the indomethacin treatment is effective (no surgery)

Average platelet count + preeclampsia

Average platelet count
OR: 0.58 CI: (0.35, 0.91) p = 0.02
*per 100 counts

Preeclampsia
OR: 0.40 CI: (0.16, 0.90) p = 0.03
Predict if the indomethacin treatment is effective (no surgery)

No Preeclampsia
Average platelet count * gender

Average Platelet Count
Female OR: 0.30 CI: (0.13, 0.62) $p = 0.003$
Male OR: 0.80 CI: (0.37, 1.66) $p = 0.554$
*per 100 counts

Average Platelet Count : Gender
$p = 0.08$
Results & Discussion

- Preeclampsia, gender and gestational age are significant.
- Platelet count is a significant factor in all three clinical outcomes.
- Interesting dynamics between different days and its predictive power.
- Higher platelet counts lead to good clinical outcomes.
The future

- Clinical collaboration: show our results
- Prospective studies: allow us to have more control of the data
- Randomized trials (far future)
Acknowledgements

Dr. Patrick Breheny- our favorite mentor
Dr. Gideon Zamba- our favorite program director
Terry Kirk- our favorite program coordinator
John Vanburen and Monelle Tamegnon- our favorite graduate students
National Heart, Lung and Blood Institute- our favorite grant