PREDICTION OF CROP DAMAGE ON ST. KITTS

Joey Alamo Senan Agblonon

Mentor: Dr. Daniel Sewell

 To develop a predictive model to evaluate the probability of crop damage occurrence due to vervet monkeys on the island of St. Kitts

Background – Vervet Monkeys on St. Kitts

Vervet Monkeys Source: africadreamsafaris.com

St. Kitts Source: www.caribbean-on-line.com

- Vervet Monkeys introduced to St. Kitts with the introduction of African slave labor forces
- Crop Damage due to vervet monkeys has existed for over 350 years

Background – Data Collection

Using GPS and GIS technology, a halfacre grid system has been implemented.

- Data collected by anthropologist Kerry Dore
- 65 farms sampled from 9 parishes
- 6115 observations of half-acre cells

Background – Covariates Influencing Crop Damage

- Independent Variable: Damage (proportion between 0 and 1)
- Continuous Covariates:
 - Distance to Water (m)
 - Distance to Road (m)
 - Distance to Forest (m)
- Discrete Covariates:
 - Season: Mango Season (May-August)
 Non-Mango Season (September-April)
 - Guarding: Extent Farms Guarded For Crop Damage (Scale: 1-8)
 - Preference: Most Preferred Crop for Crop Raiding (Scale: 0-10)
 - Neighbors: Number of Neighboring Farms

Data

Farm Cells with Damage	174
Farm Cells without Damage	5941
Total	6115

Prevalence ≈ 0.028

Data

Scatterplot Matrix: Damage, Water, Forest, and Road

Data

Methods – Data Splitting

Data Split into Two Mutually Disjoint Sets:

• Training Set: 80% of data,

regression models built from this set

 Testing Set: remaining 20% of data, tests the predictive strength of models built from training set

Generalized Linear Models

Models utilize Logistic Regression, where:

$$\log\left(\frac{P(damage)}{1 - P(damage)}\right) = X\beta$$

Saturated Model:

Coefficients:

coerricients.					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-5.943e-01	6.726e-01	-0.884	0.37686	
water	-1.677e-02	3.740e-03	-4.484	7.33e-06	***
road	7.758e-04	1.051e-02	0.074	0.94115	
forest	-2.331e-03	5.454e-04	-4.275	1.91e-05	***
guarding	-4.696e-01	1.161e-01	-4.046	5.22e-05	***
pref	2.643e-01	3.338e-02	7.917	2.43e-15	***
neighbors	-8.182e-01	1.973e-01	-4.147	3.37e-05	***
mango	9.308e-01	7.769e-01	1.198	0.23088	
forest:guarding	2.903e-04	9.897e-05	2.933	0.00336	**
road:forest	8.362e-06	7.815e-06	1.070	0.28463	
guarding:mango	-3.705e-01	1.309e-01	-2.829	0.00467	**
water:guarding	2.168e-03	4.795e-04	4.521	6.17e-06	***
road:guarding	2.820e-04	1.665e-03	0.169	0.86551	
pref:mango	-7.450e-02	8.428e-02	-0.884	0.37672	
guarding:neighbors	7.101e-02	3.481e-02	2.040	0.04139	*
Signif. codes: 0	'***' 0.001	'**' 0.01 '	'*' 0.05	'.' 0.1	''1

Generalized Linear Models

Reduced Model:

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-6.118e-01	6.287e-01	-0.973	0.330534	
water	-1.742e-02	3.726e-03	-4.675	2.94e-06	***
road	6.993e-03	3.458e-03	2.022	0.043177	*
forest	-2.141e-03	5.161e-04	-4.148	3.35e-05	***
guarding	-4.862e-01	1.036e-01	-4.692	2.71e-06	***
pref	2.531e-01	3.098e-02	8.168	3.14e-16	***
neighbors	-8.346e-01	1.973e-01	-4.231	2.32e-05	***
mango	4.813e-01	5.917e-01	0.813	0.415985	
forest:guarding	3.328e-04	9.109e-05	3.653	0.000259	***
guarding:mango	-3.815e-01	1.322e-01	-2.885	0.003911	**
water:guarding	2.258e-03	4.776e-04	4.728	2.26e-06	***
guarding:neighbors	7.112e-02	3.469e-02	2.051	0.040311	*
Signif. codes: 0	'***' 0.001	'**' 0.01	'*' 0.05	'.' 0.1 '	• • •

(All p-values constrained to be below 0.05)

1

Calculating Estimated Probability of Damages

- $\hat{\beta}$ = matrix of coefficients taken from R
- X = matrix of corresponding dependent variables from testing set
- Inverse Logit Transformation

$$\hat{p} = \frac{e^{X\widehat{\beta}}}{1 + e^{X\widehat{\beta}}}$$

Where \hat{p} is the estimated probabilities of incurring damage (bounded between 0 and 1)

ROC plots

- Two Methods for Finding Optimal Sensitivity/Specificity:
 - Closest Top Left
 - Youden: Maximizes: J = Specificity + Sensitivity 1

Maximizing Specificity and Sensitivity

	Saturated Model – Youden	Saturated Model – Closest Top Left	Reduced Model – Youden	Reduced Model – Closest Top Left
Threshold	0.03077822	0.03077822	0.02329385	0.0267694
Sensitivity	0.84848485	0.84848485	0.87878788	0.8484848
Specificity	0.79177162	0.79177162	0.75230898	0.7707809

Reduced Model – Youden Method:

	Damage +	Damage -	Total
Prediction +	29	295	324
Prediction -	4	896	900
Total	33	1191	1224

Misclassification Rates

Model	Misclassification Rate
Saturated - Youden	0.2066993
Saturated – Closest Top Left	0.2066993
Reduced – Youden	0.244281
Reduced – Closest Top Left	0.2271242

Cost and Prevalence

 Calculations of Optimal Specificity/Sensitivity Can Account for Cost and Low Prevalence (Prevalence=0.02845)

Reduced Model - Youden

Cost and Prevalence

Comparision of Saturated and Reduced Models' Sensitivity and Specificity Versus Cost

Cost

Conclusions

- Saturated Model provides the lowest misclassification rate
- Reduced Model with Youden optimization provides the highest sensitivity but has the highest misclassification rate

Conclusions

- Statistically Significant Covariates:
 - O Water
 - o Road
 - o Forest
 - Guarding
 - Preference
 - Neighbors

- Statistically Significant Interaction Terms:
 - Forest and Guarding
 - Mango Season and Guarding
 - Water and Guarding
 - Neighbors and Guarding

Future Work

- Account for Outliers in Water, Road, and Forest Covariates
- Account for Hierarchical Variation between Farms and Individual Cells

Acknowledgements

We would like to thank and acknowledge:

- Mentor: Dr. Daniel Sewell
- Teaching Assistant: Lauren Sager
- ISIB Classroom Teacher: Gideon Zamba

ISIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI) Grant#: HL131467

National Heart, Lung, and Blood Institute