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Background 

 Over 1 in 4 cancer deaths 
in the US 

 Early-stage detection 
improves prognosis 

 CT Scans 

 National Lung Screening 
Trial (NLST)  
 CT screening detects more 

early-stage cancers  

 CT Scans have a False 
Positive Rate of 96.4%  

 False positives may require 
invasive procedures to 
resolve the diagnosis 
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Overview – Data Collection 

 Radiomic features – quantified 
characteristics of tumor/nodule 

 Process 
 Image segmentation – nodule and 

parenchyma 
 Feature extraction – summary statistics 

of the following: 
 Intensity  
 Shape 
 Border 
 Texture 

 

 

 

Dilger et al. 
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Overview – Data Analysis 

 Goal: Use radiomic features to improve classification of 
nodule 

 Supervised machine learning 

 Variables 
 Input:144 radiomic variables and 2 clinical variables 

 Output: Cancer status - Malignant or Benign 

 4 models 

 Use Cross Validation to estimate predictive performance 

 Compare the area under the ROC curve for each 
combination of tuning parameter(s) 
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Data Summary 

Variable Value 
Number of Subjects 198 (100%) 

Benign 89 (44.9%) 
Malignant 109 (55.1%) 

Clinical Variables 8 
Age (years) Mean = 59.93   sd = 13.77 
Pack Years Mean = 26.39   sd = 29.11 

Radiomic Variables 144 
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Cross Validation (CV)  

 Used to estimate predictive performance 

 Process (3-Fold CV):  

 

 

 

 

 

 

 Protects against “over-fitting” a model 

 To improve estimation, we chose to use 10-Fold CV repeated 
10 times 

Kuhn and Johnson, p. 71 
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Model 4 - Artificial Neural 
Network 
 Thought of as a 

“black box” inspired 
by the brain 

 Tuning Parameter: 
number of hidden 
units  

 Hard to interpret 

 ROC = 0.79 

 

Kuhn and Johnson, p. 142 
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Model 3– Partial Least 
Squares 
 Linear regression model with fewer variables 

 Orthogonal linear combinations of predictor variables 

 Dimensions are reduced 

 Tuning Parameter: number of components 

 Hard to interpret 

 Continuous outcomes…  

 ROC= 0.80 
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Model 2 – Stochastic 
Gradient Boosting 
 Uses many binary trees 

 Final decision based on majority rule 
 (Ties broken at random) 

 Variable selection at each node 

 Tuning parameters: number of trees, height of tree 

 ROC = 0.83 

Age < 55 

 Pack Years < 22 

RECIST < 20 

Malignant Benign Malignant Benign 
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Model 1 – Elastic Net 
Penalized Logistic Regression 
 Binomial model is represented by 

 log Pr 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷=1 𝑋𝑋=𝑥𝑥)
Pr 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷=0 𝑋𝑋=𝑥𝑥)

=  β0 +  β𝑇𝑇𝑥𝑥 

 G = {0, 1} where 0 is Benign and 1 is Malignant 

 X is vector of input variables 

 𝛽𝛽 is vector of coefficients 

 Objective function 

min
(𝛽𝛽0,𝛽𝛽)∈ℝ𝑝𝑝+1

−
1
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Ridge vs Lasso 

Variability vs Bias 
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Elastic Net Penalized Logistic 
Regression – Optimization 

Tuning parameters 
 Mixing percentage(𝛼𝛼) 

 Regularization parameter(𝜆𝜆) 

 

Optimal Performance 

 𝛼𝛼= 0.94 

 𝜆𝜆= 0.03 

 ROC = 0.84 
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Elastic Net Penalized Logistic 
Regression – Equation 

log
Pr 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 𝑋𝑋 = 𝑥𝑥)
Pr 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0 𝑋𝑋 = 𝑥𝑥)

= 0.299
+ 0.993𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
+0.764𝐴𝐴𝐴𝐴𝐴𝐴
− 0.217𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ 0.213𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
+ 0.191𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
− 0.189𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ 0.157𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
+ 0.085𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
+ 0.048𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
+ 0.002𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
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Elastic Net Penalized Logistic 
Regression – Variables 
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Summary 
 Models were based on 146 measurements from 198 

subjects at the University of Iowa Hospital  
 Clinical variables had a large impact  

 Both nodule and parenchyma features had an impact 

 All of our models had similar performance despite 
design differences 
 ROC between 0.79 and 0.84 

 Approach from uninterpretable black box to a collection 
of binary trees to logistic regression 

 Elastic net model performance 
 Reduced false positive rate (23.6%) 

 At the expense of sensitivity (70.6%) 
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Future Work 

 Set a threshold for false negative then minimize the false 
positive 

 Study the impact of changing the population on the 
performance of this model 
 Adults aged 55-80 with a history of smoking 

 Multicenter 
 Across US vs. global 

 Beyond academic medical institutions 

 Use model to differentiate between types of lung cancer 
 Histology-based 

 Molecular subsets 
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