Modeling the Potential Range of the Zika Virus Vector Aedes aegypti

> Mario Ochoa Michelle Weitz Mentor Dr. Kate Cowles

> > ISIB 2016 University of Iowa July 21, 2016

Outline

- The Zika Virus
- Aedes aegypti
- Data Used
- Methods State-by-State Individual Sightings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Conclusions
- Limitations
- Future Research

The Zika Virus

Arbovirus ARthropod-BOrne Virus

History

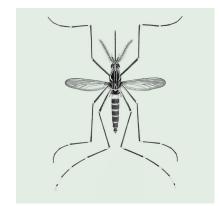
http: //www.who.int/emergencies/zika-virus/ zika-historical-distribution.pdf?ua=1

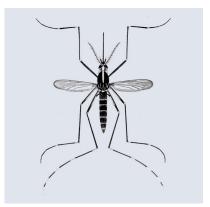
The Zika Virus (continued)

Symptoms

- Fever and/or Headache
- Rash
- Joint and/or Muscle Pain
- Conjunctivitis
- Neurological Birth Defects

Microcephaly


- Microcephaly is a generally uncommon birth defect in which a baby's head and brain are smaller than expected.
- Microcephaly often leads to other issues including seizures, developmental delays, and intellectual disabilities.
- There are still many unknowns surrounding the relationship between pregnancy, microcephaly, and Zika.


Microcephaly (continued)

Range of Microcephaly Severity

Mosquito Vectors

Aedes aegypti Aedes albopictus Vichai Malikul/Dept of Entomology/Smithsonian Institution²

Mosquito Vectors (continued)

- Aedes aegypti
 - Prefers warmer conditions
 - Sip-feeds
 - Smaller range
 - Lays eggs in water
 - Spreads Dengue and Chikungunya
 - Feeds on humans

Aedes albopictus

- Feeds on lower extremities
- Will feed on animals
- Farther range
- Lays eggs in water
- Spreads Dengue and Chikungunya

Feeds on humans

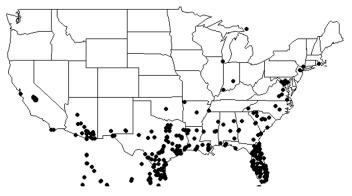
State-by-State Data Used

- Response Variable
 - Mosquito sighting (yes/no) ³

A. aegypti Sightings in the US

³http://www.nature.com/articles/sdata201535 => < => < => < => < => < < >> < <

State-by-State Data Used(continued)


Predictor Variables

- **Jun** average temperature in June
- **Dec** average temperature in December
- Average1 annual average temperature
- precip average annual precipitation
- Afternoon average humidity in the afternoon

- Morning average humidity in the morning
- co2ave CO₂ average emission
- grassland grassland cover
- ene.use energy consumption per capita
- pop.sqmi population by square mile
- urban urbanization

Point-by-Point Data Used

- Response Variable⁴
 - Mosquito sighting (yes/no)
 - Given by latitude and longitude
 - 20,000 worldwide, 650 in N.A., 444 in USA
- A. aegypti sightings

Point-by-Point Data Used (continued)

Predictor Variables

- tmin7 average July minimum temperature
- tmax1 average January maximum temperature
- prec7 average July precipitation
- anthro anthropogenic biomes factor variable
 - recoded "wild forests" to "remote forests"

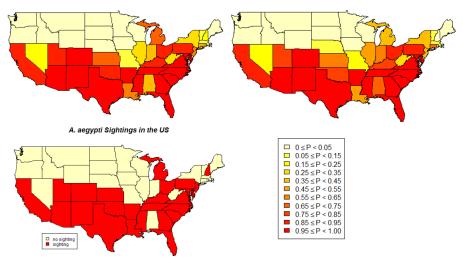
recoded "barren" to "remote rangeland"

Logistic Regression

- Binomial or dichotomous response variable
 - Either a mosquito was not sighted (0) or a mosquito was sighted (1)
- Interested in p, the probability of sighting a mosquito given the characteristics of a location

$$In \ \frac{p}{1-p} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_k \mathbf{x}_k$$

- In R, the functions glm and hglm perform this regression analysis
- hglm takes into account spatial correlation


HGLM and GLM Tables of Coefficients and P-Values: First Model

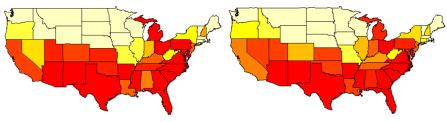
HGLM	Estimate	Std. Error	t-value	Pr(> t)
Jun	2.1975316	1.1240455	1.955	0.0580 .
Average1	-4.0827940	2.0781034	-1.965	0.0568 .
Afternoon	-0.2968083	0.1306983	-2.271	0.0289 *
Dec	2.4152475	1.1380448	2.122	0.0404 *
ene.use	-0.0106655	0.0052916	-2.016	0.0510 .
pop.sqmi	-0.0042416	0.0025911	-1.637	0.1099
urban	0.0009315	0.0007048	1.322	0.1942
GLM (Intercept) Jun Average1 Afternoon Dec ene.use pop.sqmi urban	Estimate -4.9330692 2.0705656 -3.6871047 -0.2714887 2.1532477 -0.0098849 -0.0035785 0.0008812	Std. Error 10.3266367 0.9757733 1.7711481 0.1105421 0.9754965 0.0045083 0.0022398 0.0005726	t-value -0.478 2.122 -2.082 -2.456 2.207 -2.193 -1.598 1.539	Pr(> t) 0.6329 0.0338 * 0.0374 * 0.0141 * 0.0273 * 0.1239

Probability of Sighting A.aegypti Due to Environmental Factors

HGLM

GLM

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで


HGLM and GLM Tables of Coefficients and P-Values: Second Model

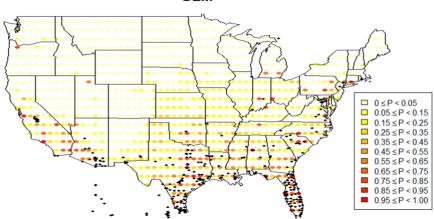
HGLM	Estimate	Std. Error	t-value	Pr(> t)
Jun	3.1665093	1.5236635	2.078	0.0447 *
Average1	-7.1559163	3.3739711	-2.121	0.0407 *
Afternoon	-0.9952385	0.4639207	-2.145	0.0386 *
Dec	4.7814874	2.1573120	2.216	0.0329 *
co2ave	0.0259530	0.0145098	1.789	0.0819 .
precip	-0.6180143	0.3043027	-2.031	0.0495 *
grassland	-0.0003297	0.0001813	-1.818	0.0771 .
Morning	0.8193666	0.4112484	1.992	0.0537 .
GLM	Estimate	Std. Error	t-value	Pr(> t])
(Intercept)	-6.6316666	10.1708462	-0.652	0.5144
Jun	1.9576004	0.8232388	2.378	0.0174 *
Average1	-4.0223452	1.7131545	-2.348	0.0189 *
Afternoon	-0.6793151	0.2853446	-2.381	0.0173 *
Dec	2.7147974	1.1074659	2.451	0.0142 *
co2ave	0.0180823	0.0098537	1.835	0.0665 .
precip	-0.3902584	0.1739865	-2.243	0.0249 *
grassland	-0.0002269	0.0001193	-1.903	0.0571 .
Morning	0.4908419	0.2325590	2.111	0.0348 *

Probability of Sighting A.aegypti Due to Environmental Factors

HGLM

GLM

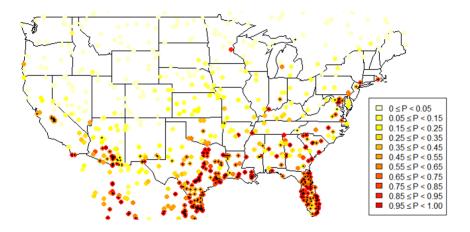
A. aegypti Sightings in the US


0 ≤ P < 0.05
0.05 ≤ P < 0.15
0.15 ≤ P < 0.25
0.25 ≤ P < 0.35
0.35 ≤ P < 0.45
0.45 ≤ P < 0.55
0.55 ≤ P < 0.65
0.65 ≤ P < 0.75
0.75 ≤ P < 0.85
0.85 ≤ P < 0.95
$0.95 \le P \le 1.00$

GLM and HGLM Summary Tables

GLM	Estimate	Std. Error	t-value Pr(> t)
(Intercept)	-1.818393	0.758286	-2.398 0.01648 *
tmin7all	0.021095	0.003384	6.234 4.55e-10 ***
tmax1a]]	0.011507	0.001566	7.348 2.02e-13 ***
anthallnumfact2	-1.478668	0.598932	-2.469 0.01356 *
anthallnumfact3	-3.632262	0.506576	-7.170 7.49e-13 ***
anthallnumfact4	-4.630921	0.532974	-8.689 < 2e-16 ***
anthallnumfact5	-5.632761	0.565565	-9.960 < 2e-16 ***
prec7all	-0.003780	0.001239	-3.050 0.00229 **

HGLM	Estimate	Std. Error	t-value Pr(> t)
(Intercept)	-0.983376	0.763879	-1.287 0.198258
tmax1all	0.013464	0.001597	8.431 < 2e-16 ***
tmin7all	0.015601	0.003241	4.813 1.70e-06 ***
prec7all	-0.005015	0.001443	-3.476 0.000529 ***
anthallnumfact2	-1.907404	0.575521	-3.314 0.000950 ***
anthallnumfact3	-3.518135	0.502755	-6.998 4.63e-12 ***
anthallnumfact4	-4.894315	0.536166	-9.128 < 2e-16 ***
anthallnumfact5	-5.150937	0.574133	-8.972 < 2e-16 ***


Predicted Probability of Sighting A. aegypti

GLM

Predicted Probability of Sighting A. aegypti

HGLM

Conclusions

- We found locations with higher summer and winter temperatures to have a higher probability of mosquito sighting.
- We found locations with more precipitation had a lower probability of mosquito sighting.
- Overall, both the state-by-state and point-by-point analyses produced the same, or similar, statistically significant predictor variables.
- To our knowledge this is the first analysis concerning Aedes aegypti range that utilizes spatial modeling techniques, as well as CO₂ emissions and energy emissions as predictor variables.

Study Limitations

- Not all mosquito sightings are reported, therefore the data tends to be small
- Mistaken identity of mosquitoes
- There can be A. aegypti in certain states but maybe they are not reported

Choosing background/absence points

Future Research

- Use predicted future values of climatic variables to model the potential spread of Aedes aegypti
- Incorporate information on the Zika virus such as prevalence and odds ratios
- Map data of microcephaly occurrence against our model
- Expand our models from the United States to worldwide, specifically South America

(日) (同) (三) (三) (三) (○) (○)

 Follow the spread of Zika from Brazil post-Olympics

Acknowledgments

We would like to offer our thanks to the following:

- Dr. Kate Cowles
- Dr. Gideon Zamba
- Lauren Sager and Javier Flores
- Terry Kirk and Miles Dietz
- The entire Biostatistics Department
- The University of Iowa
- ISIB Program sponsored by the National Heart Lung and Blood Institute Grant: HL131467

R Citations

•R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

- •Robert J. Hijmans, Steven Phillips, John Leathwick and Jane Elith (2016). dismo: Species Distribution Modeling. R package version 1.1-1.
- https://CRAN.R-project.org/package=dismo.
- •Lars Ronnegard, Xia Shen and Moudud Alam (2010) hglm: A Package for Fitting Hierarchical Generalized Linear Models. The R Journal, 2(2): 20-28.
- http://journal.r-project.org/archive/2010-2/ RJournal_2010-2_Roennegaard~et~al.pdf.

R Citations (continued)

Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka and Alex Deckmyn. (2016). maps: Draw Geographical Maps. R package version 3.1.0. https://CRAN.R-project.org/package=maps
Douglas Nychka, Reinhard Furrer, John Paige and Stephan

Sain (2015). fields: Tools for spatial data. doi:

- 10.5065/D6W957CT (URL:
- http://doi.org/10.5065/D6W957CT), R package version 8.4-1, www.image.ucar.edu/fields.

References

•Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2:150035 doi: 10.1038/sdata.2015.35 (2015). •Zika Virus. (2016). Retrieved July 5, 2016, from https://www.cdc.gov/zika/ •WorldClim - Global Climate Data. (n.d.). Retrieved July 5, 2016, from http://www.worldclim.org/ •Hijmans, R. J., Elith, J. (2016, June 15). Species distribution modeling with R. Retrieved July 5, 2016, from https://cran.r-project.org/web/packages/dismo/ vignettes/sdm.pdf •Ellis, E.C., and N. Ramankutty. 2008. Putting People in the Map: Anthropogenic Biomes of the World. Frontiers in Ecology and the Environment 6 (8): 439-447. http://dx.doi.org/10.1890/070062. Retrieved 5 July 2016.

References

•Average Mean Temperature Index by month. (n.d.). Retrieved July 5, 2016, from http://www.esrl.noaa.gov/ psd/data/usclimate/tmp.state.19712000.climo •U.S. Energy Information Administration - EIA - Independent Statistics and Analysis. (2013). Retrieved July 6, 2016, from http://www.eia.gov/state/ •Adjacency List of States of the United States (US). (2009). Retrieved July 6, 2016, from https://writeonly.wordpress.com/2009/03/20/ adjacency-list-of-states-of-the-united-states-us/ •Reisen, W. K. (2016, June 9). Journal of Medical Entomology. Retrieved July 5, 2016, from http://jme.oxfordjournals.org/content/early/2016/ 06/07/jme.tjw072

References

•Mylne, A. (2015, July 7). The global compendium of Aedes aegypti and Ae. albopictus occurrence. Retrieved July 5, 2016, from http://www.nature.com/articles/sdata201535 •Average Summer Humidity by USA State. (n.d.). Retrieved July 6, 2016, from https://www.currentresults.com/ Weather/US/humidity-by-state-in-summer.php •U.S. Energy Information Administration - EIA - Independent Statistics and Analysis. (2015). Retrieved July 5, 2016, from http://www.eia.gov/environment/emissions/state/ •Resident Population Data (Text Version). (n.d.). Retrieved July 5, 2016, from https://www.census.gov/2010census/ data/apportionment-dens-text.php •Agricultural Statistics, 2009 (Paperback). (n.d.). Retrieved July 6, 2016, from https://books.google.com/books?id=XA-TOToWPAsC