

National Heart, Lung and Blood Institute

GENETIC RISK FACTORS FOR PRETERM BIRTH

Sabah Munir, *Wartburg College* Journey Penney, *Willamette University* Advisor: Dr. Patrick Breheny, *University of Iowa College of Public Health*

Iowa Summer Institute of Biostatistics

Background

- Preterm Birth
 - Occurs when baby is born before 37 completed weeks of gestation
 - Normally, pregnancies last around 40 weeks
 - Factors
 - Smoking, nutrition, race, age
 - Genetics
 - Affects 5-18% of pregnancies worldwide
 - Leading cause of death in children under 5 years old

Background

- Genetic Terminology:
 - Nucleotide
 - Building blocks of DNA. Four bases: Adenine, Cytosine, Guanine, Thymine
 - Genetic Variant
 - Nucleotide causing variation from most common DNA sequence

- Minor Allele Frequency (MAF)
 - The frequency of a variant allele occurring in the population
 - Rare variants: MAF < 2%

Image URL: https://www.slideshare.net/dasbipul/single-nucleotide-polymorphism-41650224

Background

- Exon
 - Coding region of a gene
 - The portion that is ultimately expressed as protein (DNA->RNA->Protein)
 - Exome: collection of all the exons in an individual's DNA

- Whole exome sequencing: determines nucleotide order of the exome
 - Cheaper, more practical than sequencing entire genome

Image URL: http://de.academic.ru/pictures/dewiki/68/DNA_exons_introns.gif

Study Design

- Our Data
 - Used whole exome sequencing
 - Participants
 - Women of European ancestry (Denmark), history of preterm birth
 - 93 sister pairs, 2 sister trios (originally 97 pairs)
 - Example:

TMEM52	$N_P = 0$	$N_P = 1$	$N_P = 2$
Variant 1	16	20	57
Variant 2	83	7	3
Variant 3	83	7	3
Variant 4	92	0	1

TMEM52	$N_T = 0$	$N_T = 1$	$N_T = 2$	$N_T = 3$
Variant 1	0	1	1	0
Variant 2	2	0	0	0
Variant 3	2	0	0	0
Variant 4	2	0	0	0

Research Goals

- Develop tests to analyze PTB data against Exome Aggregation Consortium (**ExAC**) data
 - Use exome sequencing data from ExAC as general population
 - Provided us with MAF values
- Identify rare variants that influence the risk of preterm birth
- Compare two methods of statistical analysis that we developed
 - Count-based approach, treats all variants equally
 - Weighted approach, emphasizes variants with larger impact

- Gene Burden Tests
 - Common way to examine whole exome sequencing
 - Combine variants on the same gene and then conduct the test
 - Test at the gene level rather than test each variant
 - 16,934 genes vs. 98,679 variants
 - Fewer tests will increase power

- Assumptions:
 - Known: Punnett Square Probabilities
 - Shows genetic combinations possible for child
 - Can be used to find likelihoods for sibling sets

No minor allele (AA) = $\frac{1}{4}$ 1 minor allele (AB) = $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ 2 minor alleles (BB) = $\frac{1}{4}$

- Presumed: Hardy-Weinberg Equilibrium
 - Use of variables (p, q)

Parents	H-W	S	Sister Pain	rs	Sister Trios				
	Probability	0	1	2	0	1	2	3	
AA AA	\mathbf{q}^4	1	0	0	1	0	0	0	
AA AB	4pq ³	1/4	1/2	1/4	1/8	3/8	3/8	1/8	
AB AB	$4p^2q^2$	1/16	6/16	9/16	1/64	9/64	27/64	27/64	
AA BB	$2\mathbf{p}^2\mathbf{q}^2$	0	0	1	0	0	0	1	
AB BB	4p ³ q	0	0	1	0	0	0	1	
BB BB	p ⁴	0	0	1	0	0	0	1	

$$\mathbf{P}(\mathbf{N}_{\mathbf{P}}=\mathbf{2}) = q^{4}(0) + 4pq^{3}(\frac{1}{4}) + 4p^{2}q^{2}(\frac{9}{16}) + 2p^{2}q^{2}(1) + 4p^{3}q(1) + p^{4}(1) = \mathbf{pq^{3}} + \mathbf{2.25p^{2}q^{2}} + \mathbf{2p^{2}q^{2}} + \mathbf{4p^{3}q} + \mathbf{p^{4}}$$

- Count-Based Test:
 - Poisson Distribution
 - Select data included (burden test)
 - Expected Counts: $\sum_{i=1}^{3} \{n_T(p_{Ti3} + p_{Ti2}) + n_P(p_{Pi2})\}$

1 ME/0152	$N_P = 0$	$N_{P} = 1$	$N_P = 2$
Variant 1	16	20	57
Variant 2	83	7	3
Variant 3	83	7	3
Variant 4	92	0	1

Observed Counts: (3+3+1) $\sum_{i=1}^{N} \{ (\sum N_{Ti3} + N_{Ti2}) + \sum N_{Pi2} \}$

TMEM52	$N_T = 0$	$N_T = 1$	$N_T = 2$	$N_T = 3$
Variant 1	0	1	1	0
Variant 2	2	0	0	0
Variant 3	2	0	0	0
Variant 4	2	0	0	0

- Shortcomings of Count-Based Test:
 - All variants are treated with equal importance
 - Counts are not weighted
 - Doesn't reflect the magnitude of "harmful" variants
 - Neglects the N=1 column
- Extending our analysis:
 - Develop a test which incorporates CADD score
 - CADD: quantifies how negatively a variant impacts the gene
 - 0-10: benign mutation; 10-20: ambiguous impact; 20+: deleterious

- Weighted Test:
 - Normal distribution
 - Different weights for each variant, where weight = CADD score
 - Gives increasing importance to N=1, N=2, N=3

Weighted Obs. Score:
$$\sum_{i=1}^{4} w_i \{ (2N_{Pi2} + N_{Pi1}) + \{ (3N_{Ti3} + 2N_{Ti2} + N_{Ti1}) \}$$

TMEM52	Weight (CADD)	$N_P = 0$	$N_P = 1$	$N_P = 2$	$N_T = 0$	$N_T = 1$	$N_T = 2$	$N_T = 3$
Variant 1	0.641	16	20	57	0	1	1	0
Variant 2	0.006	83	7	3	2	0	0	0
Variant 3	6.413	83	7	3	2	0	0	0
Variant 4	3.406	92	0	1	2	0	0	0

• Top 15 Genes (Count-Based Test, p-value):

Gene	Obs Counts	Exp Counts	p-value	Gene	Obs Counts	Exp Counts	p-value	Gene	Obs Counts	Exp Counts	p-value
NBPF6	9	0.019404599	<1e-8	ERVV-2	15	0.029110346	<1e-8	OPN1LW	15	0.378936839	<1e-8
OVGP1	17	0.255769466	<1e-8	KIR2DL4	82	2.552574663	<1e-8	SNAPC2	6	0.002912044	1.110223e-16
HRNR	80	7.56510990	<1e-8	ZNF417	38	2.123848164	<1e-8	STAG3	6	0.001454056	1.110223e-16
TCEB3B	48	7.271477521	<1e-8	APOBEC3A, APOBEC3A_B	20	0.001565610	<1e-8	ARHGEF5	10	0.067956302	1.110223e-16
OR10H1	25	1.037639734	<1e-8	C4B, C4B_2	37	0.025425610	<1e-8	FAM104B	9	0.060295828	1.110223e-16

• Gene of Interest (Count-Based Test): STAG3

Gene	Obs Counts	Exp Counts	p-value
STAG3	6	0.001454056	1.110223e-16

	Ref	Alt	ExAC	CADD	Ро	Pı	P2	То	Tı	T2	T ₃
Vı	G	Т	0.2275	0.135	86	7	0	2	0	ο	0
V2	A	С	0.2275	0.099	72	20	1	1	0	1	0
V ₃	A	С	0.4788	0.003	13	22	58	0	0	ο	2
V4	G	А	0.000015	16.670	57	31	5	1	0	1	ο
V5	Т	А	0.2519	10.010	38	26	29	1	0	0	1

• Top 15 Genes (Weighted Test, z-score):

Gene	Obs Score	Exp Score	Z Score	p-value	Gene	Obs Score	Exp Score	Z Score	p-value
APOBEC3A, APOBEC3A_B	1.5625	9.599520e-04	258.94514	< 1e-8	KRBOX4	KRBOX4 452.1000 1.052		68.24436	< 1e-8
C4B,C4B_2	55.0860	1.703607e-01	165.47704	< 1e-8	TRIM49C	176.0975	4.363174e-01	64.10503	< 1e-8
SNAPC2	334.0500	3.420501e-01	155.30341	< 1e-8	ARHGEF5	1.2960	8.598589e-03	63.08797	< 1e-8
HOXA5	776.4875	4.707281	127.05214	< 1e-8	FAM231B	197.6855	8.937407e-01	60.82407	< 1e-8
TPTE2	444.4605	1.003293	110.03000	< 1e-8	APOBEC3B	110.8230	3.456109e-01	55.77816	< 1e-8
PQLC1	398.0450	9.971981e-01	88.76319	< 1e-8	POMZP3	202.2690	1.407742	53.85290	< 1e-8
ZNF479	429.2115	9.076900e-01	76.53471	< 1e-8	TUBB2B	295.2000	9.074234e-01	51.69657	< 1e-8
CLEC18C	181.1715	1.235847	75.12158	< 1e-8		-	r	-	

• Gene of Interest (Weighted Test): HOXA5

Gene	Obs Score	Exp Score	Z Score	p-value
HOXA5	776.4875	4.707281	127.05214	< 1e-8

	Ref	Alt	ExAC	CADD	Ро	P1	P2	То	Tı	T2	Т3
Vı	G	А	0.000063	7.756	92	1	0	2	0	0	0
V2	с	G	0.000025	20.400	58	32	3	2	о	0	0
V ₃	А	G	0.0056	1.691	89	3	1	2	0	0	0

- Limitations
 - Confounding variables
 - Source of data (only one ethnic group studied)
- Replication studies
 - Follow-up study to confirm importance of rare variants found
- Refinements to weighted testing approach
 - Normal distribution not accurate for extremely rare variants
 - Weights are relative within genes, not absolute

National Heart, Lung, and Blood Institute

Acknowledgments

- Dr. Patrick Breheny
- Dr. Kelli Ryckman
- Dr. Gideon Zamba
- Monica Ahrens
- ISIB Cohort Members
- National Heart, Lung, and Blood Institute (NHLBI, Grant No. HL131467)