Intervening in *Clostridium difficile* Infections in California Hospitals

Erik Boonstra, Katherine Rodriguez, Isaac Slagel Mentor: Dr. Daniel Sewell

What is *Clostridium difficile*?

- Bacteria
- Common symptoms:
 - Colitis
 - Diarrhea
 - Fever
 - Loss of appetite
 - Nausea
 - Abdominal pain
- How it spreads:
 - Spores passed through feces that have contacted other surfaces
 - Passed through hands of healthcare personnel who have touched contaminated surfaces

Why are *Clostridium difficile* infections a problem?

• Costly

- \$6.3 billion dollars annually
- Resulted in an estimated 2.4 million days of inpatient stay
- Dangerous
 - The most common microbial cause of healthcare-associated infections in U.S. hospitals
 - 2015 Infections 500,000 ; Deaths 29,000
 - Increasingly resistant to antibiotic treatments
- Previous clinical trials have failed or had short term effects
 - Cooper et al. 2004
 - Harris et al. 2013
 - Hobson et al. 1996

What causes a *Clostridium difficile* infection?

- Risk Factors
 - Individual
 - Advanced age
 - Extended antibiotic use (broad spectrum)
 - Severe illness
 - Environmental
 - Bathroom sharing with infected patients
 - Patient transfers
 - Seasonal trends
- Treatment
 - Discontinuing current antibiotics
 - Taking antibiotics specifically to treat CDI
 - Fecal transplant

Question of Interest

Can we **effectively** choose hospitals within a region to include in a clinical study with the aim of **maximizing the reduction of CDI** cases for a fixed treatment efficacy rate?

Data

- Healthcare Cost and Utilization Project California State Inpatient Database
- December 2005 through November 2011
- 383 hospitals and their patient transfers
- 23,296,211 total admissions
- 196,912 total CDI cases
- 535,223 total number of transfers

Our Approach

Overview of the Predictive Model

The model used was a linear mixed model:

- Predicts based on
 - Covariates (fixed effects)
 - Hospital specific effects (random effects)
- Errors are temporally correlated (AR structure)

Choosing Hospitals to Include

- Given:
 - Score vector (inclusion criteria), $s \in \mathbb{R}^n$
 - Cost vector (total number of admissions), $\boldsymbol{c} \in \mathbb{R}^n$
 - Total cost constraint, $\mathcal{C} \in \mathbb{R}$
 - Inclusion vector, $\boldsymbol{\tau} \in \{0, 1\}^n$
- Can we find τ such that, $\max(s^T \tau)$ subject to $c^t \tau \leq C$?
 - Binary linear programming

Application of Model

- $\log(Y_{i,t} + c) = X_{i,t}\beta + \alpha_i + \epsilon_{i,t}$
- Simulate an intervention by modifying specific α_i
 - $\circ \quad \alpha_i \ \leftarrow \ \alpha_i + \log(1 \tau_i(reduction)) \quad \Rightarrow \quad y_i \approx e^{X\beta + \alpha_i}(1 \tau_i(reduction))$
- Compare to a baseline
 - No intervention
 - Random intervention

Number of Predicted CDI Cases over 24 Months

Inclusion Strategy	Treated Hospitals (Proportion)	Spillover Hospitals (Proportion)	Total Reduction (count)
CDI History	0.92	0.08	2095.73
Degree & % over 65	0.85	0.15	1730.05
% over 65	0.87	0.13	1635.52
Degree Centrality	0.86	0.14	1502.21
Eigenvector Centrality	0.81	0.19	1326.31

P(Number of CDI cases of the Row < Number of CDI case of the Column)*

Conclusion

Our results suggest that targeting certain hospitals within a network can be beneficial to decreasing CDI cases, potentially leading to more powerful studies.

References

CDC."Clostridium difficile Infection Information for Patients." Center for Disease Control and Prevention 24 February 2015.

Centers for Disease Control and Prevention. (2015). *Medical illustration of Clostridium difficile* [graphic]. Retrieved from https://www.cdc.gov/hai/organisms/cdiff/cdiff-patient.html

CDC."Nearly half a million Americans suffered from Clostridium difficile infections in a single year." *Center for Disease Control and Prevention* 25 February 2015.

Cooper, B. S. et al. "Methicillin-Resistant *Staphylococcus Aureus* in Hospitals and the Community: Stealth Dynamics and Control Catastrophes." *Proceedings of the National Academy of Sciences of the United States of America* 101.27 (2004): 10223–10228. *PMC* Web. 15 July 2018.

Huskins, W. Charles et al. "Intervention to Reduce Transmission of Resistant Bacteria in Intensive Care." *The New England journal of medicine* 364.15 (2011): 1407–1418. *PMC* Web. 15 July 2018.

Simmering, Jacob E. et al. "Hospital Transfer Network Structure as a Risk Factor for *Clostridium Difficile* Infection." *Infection control and hospital epidemiology* 36.9 (2015): 1031–1037. *PMC* Web. 15 July 2018.

Zhang, Shanshan et al. "Cost of Hospital Management of *Clostridium Difficile*Infection in United States—a Meta-Analysis and Modelling Study." *BMC Infectious Diseases* 16.1 (2016): 447. *PMC*. Web. 17 July 2018.

"Introduction to Linear Mixed Models." UCLA: Statistical Consulting Group. from https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/ (accessed July 22, 2016).

Acknowledgements

- University of Iowa Biostatistics Department
 - Dan Sewell, PhD
 - Gideon Zamba, PhD
 - Terry Kirk
 - Javier Flores, Monica Ahrens, and Daren Kuwaye
- ISIB Program 2018 sponsored by the National Heart Lung and Blood Institute Grant: HL131467

Auxiliary Slides (Mostly Plots)

The Prediction Model

$$Z_{i,t} = X_{i,t}\beta + \alpha_i + \epsilon_{i,t}$$
$$Z_{i,t} := \log(Y_{i,t} + c)$$
$$\alpha_i \stackrel{iid}{\sim} N(0, \tau^2)$$
$$\epsilon_{i,t} \sim N(0, \sigma^2)$$
$$\operatorname{Cor}(\epsilon_{i,t}, \epsilon_{i',s}) = \begin{cases} \phi^{|t-s|} & \text{if } i = i' \\ 0 & \text{otherwise} \end{cases}$$

Assessing the Network Effect

Degree Centrality vs. Eigen Vector Centrality

Weights

Model Outputs on Testing Data

Total CDI Incidence in CA

Months out from training data

Predicted CDI Cases over 24 months given Degree and % 65

Predicted CDI Cases over 24 months given Degree

